| /* |
| * Copyright 2015-2016 Freescale Semiconductor, Inc. |
| * Copyright 2017 NXP |
| * |
| * SPDX-License-Identifier:GPL-2.0+ |
| */ |
| #include <net/pfe_eth/pfe_eth.h> |
| #include <net/pfe_eth/pfe/pfe_hw.h> |
| |
| static struct pe_info pe[MAX_PE]; |
| |
| /* |
| * Initializes the PFE library. |
| * Must be called before using any of the library functions. |
| */ |
| void pfe_lib_init(void) |
| { |
| int pfe_pe_id; |
| |
| for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) { |
| pe[pfe_pe_id].dmem_base_addr = |
| (u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id); |
| pe[pfe_pe_id].pmem_base_addr = |
| (u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id); |
| pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE; |
| pe[pfe_pe_id].mem_access_wdata = |
| (void *)CLASS_MEM_ACCESS_WDATA; |
| pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR; |
| pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA; |
| } |
| |
| for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) { |
| if (pfe_pe_id == TMU2_ID) |
| continue; |
| pe[pfe_pe_id].dmem_base_addr = |
| (u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID); |
| pe[pfe_pe_id].pmem_base_addr = |
| (u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID); |
| pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE; |
| pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA; |
| pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR; |
| pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA; |
| } |
| } |
| |
| /* |
| * Writes a buffer to PE internal memory from the host |
| * through indirect access registers. |
| * |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] mem_access_addr DMEM destination address (must be 32bit |
| * aligned) |
| * @param[in] src Buffer source address |
| * @param[in] len Number of bytes to copy |
| */ |
| static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src, |
| unsigned int len) |
| { |
| u32 offset = 0, val, addr; |
| unsigned int len32 = len >> 2; |
| int i; |
| |
| addr = mem_access_addr | PE_MEM_ACCESS_WRITE | |
| PE_MEM_ACCESS_BYTE_ENABLE(0, 4); |
| |
| for (i = 0; i < len32; i++, offset += 4, src += 4) { |
| val = *(u32 *)src; |
| writel(cpu_to_be32(val), pe[id].mem_access_wdata); |
| writel(addr + offset, pe[id].mem_access_addr); |
| } |
| |
| len = (len & 0x3); |
| if (len) { |
| val = 0; |
| |
| addr = (mem_access_addr | PE_MEM_ACCESS_WRITE | |
| PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset; |
| |
| for (i = 0; i < len; i++, src++) |
| val |= (*(u8 *)src) << (8 * i); |
| |
| writel(cpu_to_be32(val), pe[id].mem_access_wdata); |
| writel(addr, pe[id].mem_access_addr); |
| } |
| } |
| |
| /* |
| * Writes a buffer to PE internal data memory (DMEM) from the host |
| * through indirect access registers. |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] dst DMEM destination address (must be 32bit |
| * aligned) |
| * @param[in] src Buffer source address |
| * @param[in] len Number of bytes to copy |
| */ |
| static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, |
| unsigned int len) |
| { |
| pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM, |
| src, len); |
| } |
| |
| /* |
| * Writes a buffer to PE internal program memory (PMEM) from the host |
| * through indirect access registers. |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., TMU3_ID) |
| * @param[in] dst PMEM destination address (must be 32bit |
| * aligned) |
| * @param[in] src Buffer source address |
| * @param[in] len Number of bytes to copy |
| */ |
| static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, |
| unsigned int len) |
| { |
| pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size |
| - 1)) | PE_MEM_ACCESS_IMEM, src, len); |
| } |
| |
| /* |
| * Reads PE internal program memory (IMEM) from the host |
| * through indirect access registers. |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., TMU3_ID) |
| * @param[in] addr PMEM read address (must be aligned on size) |
| * @param[in] size Number of bytes to read (maximum 4, must not |
| * cross 32bit boundaries) |
| * @return the data read (in PE endianness, i.e BE). |
| */ |
| u32 pe_pmem_read(int id, u32 addr, u8 size) |
| { |
| u32 offset = addr & 0x3; |
| u32 mask = 0xffffffff >> ((4 - size) << 3); |
| u32 val; |
| |
| addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1)) |
| | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM | |
| PE_MEM_ACCESS_BYTE_ENABLE(offset, size); |
| |
| writel(addr, pe[id].mem_access_addr); |
| val = be32_to_cpu(readl(pe[id].mem_access_rdata)); |
| |
| return (val >> (offset << 3)) & mask; |
| } |
| |
| /* |
| * Writes PE internal data memory (DMEM) from the host |
| * through indirect access registers. |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] val Value to write (in PE endianness, i.e BE) |
| * @param[in] addr DMEM write address (must be aligned on size) |
| * @param[in] size Number of bytes to write (maximum 4, must not |
| * cross 32bit boundaries) |
| */ |
| void pe_dmem_write(int id, u32 val, u32 addr, u8 size) |
| { |
| u32 offset = addr & 0x3; |
| |
| addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE | |
| PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size); |
| |
| /* Indirect access interface is byte swapping data being written */ |
| writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata); |
| writel(addr, pe[id].mem_access_addr); |
| } |
| |
| /* |
| * Reads PE internal data memory (DMEM) from the host |
| * through indirect access registers. |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] addr DMEM read address (must be aligned on size) |
| * @param[in] size Number of bytes to read (maximum 4, must not |
| * cross 32bit boundaries) |
| * @return the data read (in PE endianness, i.e BE). |
| */ |
| u32 pe_dmem_read(int id, u32 addr, u8 size) |
| { |
| u32 offset = addr & 0x3; |
| u32 mask = 0xffffffff >> ((4 - size) << 3); |
| u32 val; |
| |
| addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ | |
| PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size); |
| |
| writel(addr, pe[id].mem_access_addr); |
| |
| /* Indirect access interface is byte swapping data being read */ |
| val = be32_to_cpu(readl(pe[id].mem_access_rdata)); |
| |
| return (val >> (offset << 3)) & mask; |
| } |
| |
| /* |
| * This function is used to write to CLASS internal bus peripherals (ccu, |
| * pe-lem) from the host |
| * through indirect access registers. |
| * @param[in] val value to write |
| * @param[in] addr Address to write to (must be aligned on size) |
| * @param[in] size Number of bytes to write (1, 2 or 4) |
| * |
| */ |
| static void class_bus_write(u32 val, u32 addr, u8 size) |
| { |
| u32 offset = addr & 0x3; |
| |
| writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE); |
| |
| addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE | |
| (size << 24); |
| |
| writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA); |
| writel(addr, CLASS_BUS_ACCESS_ADDR); |
| } |
| |
| /* |
| * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host |
| * through indirect access registers. |
| * @param[in] addr Address to read from (must be aligned on size) |
| * @param[in] size Number of bytes to read (1, 2 or 4) |
| * @return the read data |
| */ |
| static u32 class_bus_read(u32 addr, u8 size) |
| { |
| u32 offset = addr & 0x3; |
| u32 mask = 0xffffffff >> ((4 - size) << 3); |
| u32 val; |
| |
| writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE); |
| |
| addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24); |
| |
| writel(addr, CLASS_BUS_ACCESS_ADDR); |
| val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA)); |
| |
| return (val >> (offset << 3)) & mask; |
| } |
| |
| /* |
| * Writes data to the cluster memory (PE_LMEM) |
| * @param[in] dst PE LMEM destination address (must be 32bit aligned) |
| * @param[in] src Buffer source address |
| * @param[in] len Number of bytes to copy |
| */ |
| static void class_pe_lmem_memcpy_to32(u32 dst, const void *src, |
| unsigned int len) |
| { |
| u32 len32 = len >> 2; |
| int i; |
| |
| for (i = 0; i < len32; i++, src += 4, dst += 4) |
| class_bus_write(*(u32 *)src, dst, 4); |
| |
| if (len & 0x2) { |
| class_bus_write(*(u16 *)src, dst, 2); |
| src += 2; |
| dst += 2; |
| } |
| |
| if (len & 0x1) { |
| class_bus_write(*(u8 *)src, dst, 1); |
| src++; |
| dst++; |
| } |
| } |
| |
| /* |
| * Writes value to the cluster memory (PE_LMEM) |
| * @param[in] dst PE LMEM destination address (must be 32bit aligned) |
| * @param[in] val Value to write |
| * @param[in] len Number of bytes to write |
| */ |
| static void class_pe_lmem_memset(u32 dst, int val, unsigned int len) |
| { |
| u32 len32 = len >> 2; |
| int i; |
| |
| val = val | (val << 8) | (val << 16) | (val << 24); |
| |
| for (i = 0; i < len32; i++, dst += 4) |
| class_bus_write(val, dst, 4); |
| |
| if (len & 0x2) { |
| class_bus_write(val, dst, 2); |
| dst += 2; |
| } |
| |
| if (len & 0x1) { |
| class_bus_write(val, dst, 1); |
| dst++; |
| } |
| } |
| |
| /* |
| * Reads data from the cluster memory (PE_LMEM) |
| * @param[out] dst pointer to the source buffer data are copied to |
| * @param[in] len length in bytes of the amount of data to read |
| * from cluster memory |
| * @param[in] offset offset in bytes in the cluster memory where data are |
| * read from |
| */ |
| void pe_lmem_read(u32 *dst, u32 len, u32 offset) |
| { |
| u32 len32 = len >> 2; |
| int i = 0; |
| |
| for (i = 0; i < len32; dst++, i++, offset += 4) |
| *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4); |
| |
| if (len & 0x03) |
| *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03)); |
| } |
| |
| /* |
| * Writes data to the cluster memory (PE_LMEM) |
| * @param[in] src pointer to the source buffer data are copied from |
| * @param[in] len length in bytes of the amount of data to write to the |
| * cluster memory |
| * @param[in] offset offset in bytes in the cluster memory where data are |
| * written to |
| */ |
| void pe_lmem_write(u32 *src, u32 len, u32 offset) |
| { |
| u32 len32 = len >> 2; |
| int i = 0; |
| |
| for (i = 0; i < len32; src++, i++, offset += 4) |
| class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4); |
| |
| if (len & 0x03) |
| class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len & |
| 0x03)); |
| } |
| |
| /* |
| * Loads an elf section into pmem |
| * Code needs to be at least 16bit aligned and only PROGBITS sections are |
| * supported |
| * |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, ..., |
| * TMU3_ID) |
| * @param[in] data pointer to the elf firmware |
| * @param[in] shdr pointer to the elf section header |
| */ |
| static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr) |
| { |
| u32 offset = be32_to_cpu(shdr->sh_offset); |
| u32 addr = be32_to_cpu(shdr->sh_addr); |
| u32 size = be32_to_cpu(shdr->sh_size); |
| u32 type = be32_to_cpu(shdr->sh_type); |
| |
| if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { |
| printf( |
| "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", |
| __func__, addr, (unsigned long)data + offset); |
| |
| return -1; |
| } |
| |
| if (addr & 0x1) { |
| printf("%s: load address(%x) is not 16bit aligned\n", |
| __func__, addr); |
| return -1; |
| } |
| |
| if (size & 0x1) { |
| printf("%s: load size(%x) is not 16bit aligned\n", __func__, |
| size); |
| return -1; |
| } |
| |
| debug("pmem pe%d @%x len %d\n", id, addr, size); |
| switch (type) { |
| case SHT_PROGBITS: |
| pe_pmem_memcpy_to32(id, addr, data + offset, size); |
| break; |
| |
| default: |
| printf("%s: unsupported section type(%x)\n", __func__, type); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Loads an elf section into dmem |
| * Data needs to be at least 32bit aligned, NOBITS sections are correctly |
| * initialized to 0 |
| * |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] data pointer to the elf firmware |
| * @param[in] shdr pointer to the elf section header |
| */ |
| static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr) |
| { |
| u32 offset = be32_to_cpu(shdr->sh_offset); |
| u32 addr = be32_to_cpu(shdr->sh_addr); |
| u32 size = be32_to_cpu(shdr->sh_size); |
| u32 type = be32_to_cpu(shdr->sh_type); |
| u32 size32 = size >> 2; |
| int i; |
| |
| if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { |
| printf( |
| "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", |
| __func__, addr, (unsigned long)data + offset); |
| |
| return -1; |
| } |
| |
| if (addr & 0x3) { |
| printf("%s: load address(%x) is not 32bit aligned\n", |
| __func__, addr); |
| return -1; |
| } |
| |
| switch (type) { |
| case SHT_PROGBITS: |
| debug("dmem pe%d @%x len %d\n", id, addr, size); |
| pe_dmem_memcpy_to32(id, addr, data + offset, size); |
| break; |
| |
| case SHT_NOBITS: |
| debug("dmem zero pe%d @%x len %d\n", id, addr, size); |
| for (i = 0; i < size32; i++, addr += 4) |
| pe_dmem_write(id, 0, addr, 4); |
| |
| if (size & 0x3) |
| pe_dmem_write(id, 0, addr, size & 0x3); |
| |
| break; |
| |
| default: |
| printf("%s: unsupported section type(%x)\n", __func__, type); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Loads an elf section into DDR |
| * Data needs to be at least 32bit aligned, NOBITS sections are correctly |
| * initialized to 0 |
| * |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] data pointer to the elf firmware |
| * @param[in] shdr pointer to the elf section header |
| */ |
| static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr) |
| { |
| u32 offset = be32_to_cpu(shdr->sh_offset); |
| u32 addr = be32_to_cpu(shdr->sh_addr); |
| u32 size = be32_to_cpu(shdr->sh_size); |
| u32 type = be32_to_cpu(shdr->sh_type); |
| u32 flags = be32_to_cpu(shdr->sh_flags); |
| |
| switch (type) { |
| case SHT_PROGBITS: |
| debug("ddr pe%d @%x len %d\n", id, addr, size); |
| if (flags & SHF_EXECINSTR) { |
| if (id <= CLASS_MAX_ID) { |
| /* DO the loading only once in DDR */ |
| if (id == CLASS0_ID) { |
| debug( |
| "%s: load address(%x) and elf file address(%lx) rcvd\n" |
| , __func__, addr, |
| (unsigned long)data + offset); |
| if (((unsigned long)(data + offset) |
| & 0x3) != (addr & 0x3)) { |
| printf( |
| "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", |
| __func__, addr, |
| (unsigned long)data + |
| offset); |
| |
| return -1; |
| } |
| |
| if (addr & 0x1) { |
| printf( |
| "%s: load address(%x) is not 16bit aligned\n" |
| , __func__, addr); |
| return -1; |
| } |
| |
| if (size & 0x1) { |
| printf( |
| "%s: load length(%x) is not 16bit aligned\n" |
| , __func__, size); |
| return -1; |
| } |
| |
| memcpy((void *)DDR_PFE_TO_VIRT(addr), |
| data + offset, size); |
| } |
| } else { |
| printf( |
| "%s: unsupported ddr section type(%x) for PE(%d)\n" |
| , __func__, type, id); |
| return -1; |
| } |
| |
| } else { |
| memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset, |
| size); |
| } |
| |
| break; |
| |
| case SHT_NOBITS: |
| debug("ddr zero pe%d @%x len %d\n", id, addr, size); |
| memset((void *)DDR_PFE_TO_VIRT(addr), 0, size); |
| |
| break; |
| |
| default: |
| printf("%s: unsupported section type(%x)\n", __func__, type); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Loads an elf section into pe lmem |
| * Data needs to be at least 32bit aligned, NOBITS sections are correctly |
| * initialized to 0 |
| * |
| * @param[in] id PE identification (CLASS0_ID,..., CLASS5_ID) |
| * @param[in] data pointer to the elf firmware |
| * @param[in] shdr pointer to the elf section header |
| */ |
| static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr) |
| { |
| u32 offset = be32_to_cpu(shdr->sh_offset); |
| u32 addr = be32_to_cpu(shdr->sh_addr); |
| u32 size = be32_to_cpu(shdr->sh_size); |
| u32 type = be32_to_cpu(shdr->sh_type); |
| |
| if (id > CLASS_MAX_ID) { |
| printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n", |
| __func__, type, id); |
| return -1; |
| } |
| |
| if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { |
| printf( |
| "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", |
| __func__, addr, (unsigned long)data + offset); |
| |
| return -1; |
| } |
| |
| if (addr & 0x3) { |
| printf("%s: load address(%x) is not 32bit aligned\n", |
| __func__, addr); |
| return -1; |
| } |
| |
| debug("lmem pe%d @%x len %d\n", id, addr, size); |
| |
| switch (type) { |
| case SHT_PROGBITS: |
| class_pe_lmem_memcpy_to32(addr, data + offset, size); |
| break; |
| |
| case SHT_NOBITS: |
| class_pe_lmem_memset(addr, 0, size); |
| break; |
| |
| default: |
| printf("%s: unsupported section type(%x)\n", __func__, type); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Loads an elf section into a PE |
| * For now only supports loading a section to dmem (all PE's), pmem (class and |
| * tmu PE's), DDDR (util PE code) |
| * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, |
| * ..., UTIL_ID) |
| * @param[in] data pointer to the elf firmware |
| * @param[in] shdr pointer to the elf section header |
| */ |
| int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr) |
| { |
| u32 addr = be32_to_cpu(shdr->sh_addr); |
| u32 size = be32_to_cpu(shdr->sh_size); |
| |
| if (IS_DMEM(addr, size)) |
| return pe_load_dmem_section(id, data, shdr); |
| else if (IS_PMEM(addr, size)) |
| return pe_load_pmem_section(id, data, shdr); |
| else if (IS_PFE_LMEM(addr, size)) |
| return 0; |
| else if (IS_PHYS_DDR(addr, size)) |
| return pe_load_ddr_section(id, data, shdr); |
| else if (IS_PE_LMEM(addr, size)) |
| return pe_load_pe_lmem_section(id, data, shdr); |
| |
| printf("%s: unsupported memory range(%x)\n", __func__, addr); |
| |
| return 0; |
| } |
| |
| /**************************** BMU ***************************/ |
| /* |
| * Resets a BMU block. |
| * @param[in] base BMU block base address |
| */ |
| static inline void bmu_reset(void *base) |
| { |
| writel(CORE_SW_RESET, base + BMU_CTRL); |
| |
| /* Wait for self clear */ |
| while (readl(base + BMU_CTRL) & CORE_SW_RESET) |
| ; |
| } |
| |
| /* |
| * Enabled a BMU block. |
| * @param[in] base BMU block base address |
| */ |
| void bmu_enable(void *base) |
| { |
| writel(CORE_ENABLE, base + BMU_CTRL); |
| } |
| |
| /* |
| * Disables a BMU block. |
| * @param[in] base BMU block base address |
| */ |
| static inline void bmu_disable(void *base) |
| { |
| writel(CORE_DISABLE, base + BMU_CTRL); |
| } |
| |
| /* |
| * Sets the configuration of a BMU block. |
| * @param[in] base BMU block base address |
| * @param[in] cfg BMU configuration |
| */ |
| static inline void bmu_set_config(void *base, struct bmu_cfg *cfg) |
| { |
| writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR); |
| writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG); |
| writel(cfg->size & 0xffff, base + BMU_BUF_SIZE); |
| |
| /* Interrupts are never used */ |
| writel(0x0, base + BMU_INT_ENABLE); |
| } |
| |
| /* |
| * Initializes a BMU block. |
| * @param[in] base BMU block base address |
| * @param[in] cfg BMU configuration |
| */ |
| void bmu_init(void *base, struct bmu_cfg *cfg) |
| { |
| bmu_disable(base); |
| |
| bmu_set_config(base, cfg); |
| |
| bmu_reset(base); |
| } |
| |
| /**************************** GPI ***************************/ |
| /* |
| * Resets a GPI block. |
| * @param[in] base GPI base address |
| */ |
| static inline void gpi_reset(void *base) |
| { |
| writel(CORE_SW_RESET, base + GPI_CTRL); |
| } |
| |
| /* |
| * Enables a GPI block. |
| * @param[in] base GPI base address |
| */ |
| void gpi_enable(void *base) |
| { |
| writel(CORE_ENABLE, base + GPI_CTRL); |
| } |
| |
| /* |
| * Disables a GPI block. |
| * @param[in] base GPI base address |
| */ |
| void gpi_disable(void *base) |
| { |
| writel(CORE_DISABLE, base + GPI_CTRL); |
| } |
| |
| /* |
| * Sets the configuration of a GPI block. |
| * @param[in] base GPI base address |
| * @param[in] cfg GPI configuration |
| */ |
| static inline void gpi_set_config(void *base, struct gpi_cfg *cfg) |
| { |
| writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base |
| + GPI_LMEM_ALLOC_ADDR); |
| writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base |
| + GPI_LMEM_FREE_ADDR); |
| writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base |
| + GPI_DDR_ALLOC_ADDR); |
| writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base |
| + GPI_DDR_FREE_ADDR); |
| writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR); |
| writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET); |
| writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET); |
| writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET); |
| writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET); |
| writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE); |
| writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE); |
| |
| writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) | |
| GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG); |
| writel(cfg->tmlf_txthres, base + GPI_TMLF_TX); |
| writel(cfg->aseq_len, base + GPI_DTX_ASEQ); |
| |
| /*Make GPI AXI transactions non-bufferable */ |
| writel(0x1, base + GPI_AXI_CTRL); |
| } |
| |
| /* |
| * Initializes a GPI block. |
| * @param[in] base GPI base address |
| * @param[in] cfg GPI configuration |
| */ |
| void gpi_init(void *base, struct gpi_cfg *cfg) |
| { |
| gpi_reset(base); |
| |
| gpi_disable(base); |
| |
| gpi_set_config(base, cfg); |
| } |
| |
| /**************************** CLASSIFIER ***************************/ |
| /* |
| * Resets CLASSIFIER block. |
| */ |
| static inline void class_reset(void) |
| { |
| writel(CORE_SW_RESET, CLASS_TX_CTRL); |
| } |
| |
| /* |
| * Enables all CLASS-PE's cores. |
| */ |
| void class_enable(void) |
| { |
| writel(CORE_ENABLE, CLASS_TX_CTRL); |
| } |
| |
| /* |
| * Disables all CLASS-PE's cores. |
| */ |
| void class_disable(void) |
| { |
| writel(CORE_DISABLE, CLASS_TX_CTRL); |
| } |
| |
| /* |
| * Sets the configuration of the CLASSIFIER block. |
| * @param[in] cfg CLASSIFIER configuration |
| */ |
| static inline void class_set_config(struct class_cfg *cfg) |
| { |
| if (PLL_CLK_EN == 0) { |
| /* Clock ratio: for 1:1 the value is 0 */ |
| writel(0x0, CLASS_PE_SYS_CLK_RATIO); |
| } else { |
| /* Clock ratio: for 1:2 the value is 1 */ |
| writel(0x1, CLASS_PE_SYS_CLK_RATIO); |
| } |
| writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE); |
| writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE); |
| writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) | |
| CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits), |
| CLASS_ROUTE_HASH_ENTRY_SIZE); |
| writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI); |
| |
| writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE); |
| memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0, |
| ROUTE_TABLE_SIZE); |
| |
| writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0); |
| writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1); |
| writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0); |
| writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1); |
| writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR); |
| |
| writel(23, CLASS_AFULL_THRES); |
| writel(23, CLASS_TSQ_FIFO_THRES); |
| |
| writel(24, CLASS_MAX_BUF_CNT); |
| writel(24, CLASS_TSQ_MAX_CNT); |
| |
| /*Make Class AXI transactions non-bufferable */ |
| writel(0x1, CLASS_AXI_CTRL); |
| |
| /*Make Util AXI transactions non-bufferable */ |
| /*Util is disabled in U-boot, do it from here */ |
| writel(0x1, UTIL_AXI_CTRL); |
| } |
| |
| /* |
| * Initializes CLASSIFIER block. |
| * @param[in] cfg CLASSIFIER configuration |
| */ |
| void class_init(struct class_cfg *cfg) |
| { |
| class_reset(); |
| |
| class_disable(); |
| |
| class_set_config(cfg); |
| } |
| |
| /**************************** TMU ***************************/ |
| /* |
| * Enables TMU-PE cores. |
| * @param[in] pe_mask TMU PE mask |
| */ |
| void tmu_enable(u32 pe_mask) |
| { |
| writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL); |
| } |
| |
| /* |
| * Disables TMU cores. |
| * @param[in] pe_mask TMU PE mask |
| */ |
| void tmu_disable(u32 pe_mask) |
| { |
| writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL); |
| } |
| |
| /* |
| * Initializes TMU block. |
| * @param[in] cfg TMU configuration |
| */ |
| void tmu_init(struct tmu_cfg *cfg) |
| { |
| int q, phyno; |
| |
| /* keep in soft reset */ |
| writel(SW_RESET, TMU_CTRL); |
| |
| /*Make Class AXI transactions non-bufferable */ |
| writel(0x1, TMU_AXI_CTRL); |
| |
| /* enable EMAC PHY ports */ |
| writel(0x3, TMU_SYS_GENERIC_CONTROL); |
| |
| writel(750, TMU_INQ_WATERMARK); |
| |
| writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR), |
| TMU_PHY0_INQ_ADDR); |
| writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR), |
| TMU_PHY1_INQ_ADDR); |
| |
| writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR), |
| TMU_PHY3_INQ_ADDR); |
| writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR); |
| writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR); |
| writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), |
| TMU_BMU_INQ_ADDR); |
| |
| /* enabling all 10 schedulers [9:0] of each TDQ */ |
| writel(0x3FF, TMU_TDQ0_SCH_CTRL); |
| writel(0x3FF, TMU_TDQ1_SCH_CTRL); |
| writel(0x3FF, TMU_TDQ3_SCH_CTRL); |
| |
| if (PLL_CLK_EN == 0) { |
| /* Clock ratio: for 1:1 the value is 0 */ |
| writel(0x0, TMU_PE_SYS_CLK_RATIO); |
| } else { |
| /* Clock ratio: for 1:2 the value is 1 */ |
| writel(0x1, TMU_PE_SYS_CLK_RATIO); |
| } |
| |
| /* Extra packet pointers will be stored from this address onwards */ |
| debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr); |
| writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR); |
| |
| debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len); |
| writel(cfg->llm_queue_len, TMU_LLM_QUE_LEN); |
| |
| writel(5, TMU_TDQ_IIFG_CFG); |
| writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE); |
| |
| writel(0x0, TMU_CTRL); |
| |
| /* MEM init */ |
| writel(MEM_INIT, TMU_CTRL); |
| |
| while (!(readl(TMU_CTRL) & MEM_INIT_DONE)) |
| ; |
| |
| /* LLM init */ |
| writel(LLM_INIT, TMU_CTRL); |
| |
| while (!(readl(TMU_CTRL) & LLM_INIT_DONE)) |
| ; |
| |
| /* set up each queue for tail drop */ |
| for (phyno = 0; phyno < 4; phyno++) { |
| if (phyno == 2) |
| continue; |
| for (q = 0; q < 16; q++) { |
| u32 qmax; |
| |
| writel((phyno << 8) | q, TMU_TEQ_CTRL); |
| writel(BIT(22), TMU_TEQ_QCFG); |
| |
| if (phyno == 3) |
| qmax = DEFAULT_TMU3_QDEPTH; |
| else |
| qmax = (q == 0) ? DEFAULT_Q0_QDEPTH : |
| DEFAULT_MAX_QDEPTH; |
| |
| writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2); |
| writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3); |
| } |
| } |
| writel(0x05, TMU_TEQ_DISABLE_DROPCHK); |
| writel(0, TMU_CTRL); |
| } |
| |
| /**************************** HIF ***************************/ |
| /* |
| * Enable hif tx DMA and interrupt |
| */ |
| void hif_tx_enable(void) |
| { |
| writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL); |
| } |
| |
| /* |
| * Disable hif tx DMA and interrupt |
| */ |
| void hif_tx_disable(void) |
| { |
| u32 hif_int; |
| |
| writel(0, HIF_TX_CTRL); |
| |
| hif_int = readl(HIF_INT_ENABLE); |
| hif_int &= HIF_TXPKT_INT_EN; |
| writel(hif_int, HIF_INT_ENABLE); |
| } |
| |
| /* |
| * Enable hif rx DMA and interrupt |
| */ |
| void hif_rx_enable(void) |
| { |
| writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL); |
| } |
| |
| /* |
| * Disable hif rx DMA and interrupt |
| */ |
| void hif_rx_disable(void) |
| { |
| u32 hif_int; |
| |
| writel(0, HIF_RX_CTRL); |
| |
| hif_int = readl(HIF_INT_ENABLE); |
| hif_int &= HIF_RXPKT_INT_EN; |
| writel(hif_int, HIF_INT_ENABLE); |
| } |
| |
| /* |
| * Initializes HIF copy block. |
| */ |
| void hif_init(void) |
| { |
| /* Initialize HIF registers */ |
| writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE, |
| HIF_POLL_CTRL); |
| /* Make HIF AXI transactions non-bufferable */ |
| writel(0x1, HIF_AXI_CTRL); |
| } |