blob: 9dc3d426a3d34ed9fef3493b96f939fef16d0e20 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
*
* Copyright (C) 2018-2021 Xilinx Inc.
*
* Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
* Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
* Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <generic-phy.h>
#include <log.h>
#include <power-domain.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/hardware.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/lists.h>
#include <dt-bindings/phy/phy.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
/*
* Lane Registers
*/
/* TX De-emphasis parameters */
#define L0_TX_ANA_TM_18 0x0048
#define L0_TX_ANA_TM_118 0x01d8
#define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0)
/* DN Resistor calibration code parameters */
#define L0_TXPMA_ST_3 0x0b0c
#define L0_DN_CALIB_CODE 0x3f
/* PMA control parameters */
#define L0_TXPMD_TM_45 0x0cb4
#define L0_TXPMD_TM_48 0x0cc0
#define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0)
#define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1)
#define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2)
#define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3)
#define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4)
#define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5)
/* PCS control parameters */
#define L0_TM_DIG_6 0x106c
#define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f
#define L0_TX_DIG_61 0x00f4
#define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f
/* PLL Test Mode register parameters */
#define L0_TM_PLL_DIG_37 0x2094
#define L0_TM_COARSE_CODE_LIMIT 0x10
/* PLL SSC step size offsets */
#define L0_PLL_SS_STEPS_0_LSB 0x2368
#define L0_PLL_SS_STEPS_1_MSB 0x236c
#define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370
#define L0_PLL_SS_STEP_SIZE_1 0x2374
#define L0_PLL_SS_STEP_SIZE_2 0x2378
#define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c
#define L0_PLL_STATUS_READ_1 0x23e4
/* SSC step size parameters */
#define STEP_SIZE_0_MASK 0xff
#define STEP_SIZE_1_MASK 0xff
#define STEP_SIZE_2_MASK 0xff
#define STEP_SIZE_3_MASK 0x3
#define STEP_SIZE_SHIFT 8
#define FORCE_STEP_SIZE 0x10
#define FORCE_STEPS 0x20
#define STEPS_0_MASK 0xff
#define STEPS_1_MASK 0x07
/* Reference clock selection parameters */
#define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4)
#define L0_REF_CLK_SEL_MASK 0x8f
/* Calibration digital logic parameters */
#define L3_TM_CALIB_DIG19 0xec4c
#define L3_CALIB_DONE_STATUS 0xef14
#define L3_TM_CALIB_DIG18 0xec48
#define L3_TM_CALIB_DIG19_NSW 0x07
#define L3_TM_CALIB_DIG18_NSW 0xe0
#define L3_TM_OVERRIDE_NSW_CODE 0x20
#define L3_CALIB_DONE 0x02
#define L3_NSW_SHIFT 5
#define L3_NSW_PIPE_SHIFT 4
#define L3_NSW_CALIB_SHIFT 3
#define PHY_REG_OFFSET 0x4000
/*
* Global Registers
*/
/* Refclk selection parameters */
#define PLL_REF_SEL(n) (0x10000 + (n) * 4)
#define PLL_FREQ_MASK 0x1f
#define PLL_STATUS_LOCKED 0x10
/* Inter Connect Matrix parameters */
#define ICM_CFG0 0x10010
#define ICM_CFG1 0x10014
#define ICM_CFG0_L0_MASK 0x07
#define ICM_CFG0_L1_MASK 0x70
#define ICM_CFG1_L2_MASK 0x07
#define ICM_CFG2_L3_MASK 0x70
#define ICM_CFG_SHIFT 4
/* Inter Connect Matrix allowed protocols */
#define ICM_PROTOCOL_PD 0x0
#define ICM_PROTOCOL_PCIE 0x1
#define ICM_PROTOCOL_SATA 0x2
#define ICM_PROTOCOL_USB 0x3
#define ICM_PROTOCOL_DP 0x4
#define ICM_PROTOCOL_SGMII 0x5
/* Test Mode common reset control parameters */
#define TM_CMN_RST 0x10018
#define TM_CMN_RST_EN 0x1
#define TM_CMN_RST_SET 0x2
#define TM_CMN_RST_MASK 0x3
/* Bus width parameters */
#define TX_PROT_BUS_WIDTH 0x10040
#define RX_PROT_BUS_WIDTH 0x10044
#define PROT_BUS_WIDTH_10 0x0
#define PROT_BUS_WIDTH_20 0x1
#define PROT_BUS_WIDTH_40 0x2
#define PROT_BUS_WIDTH_MASK 0x3
#define PROT_BUS_WIDTH_SHIFT 2
/* Number of GT lanes */
#define NUM_LANES 4
/* SIOU SATA control register */
#define SATA_CONTROL_OFFSET 0x0100
/* Total number of controllers */
#define CONTROLLERS_PER_LANE 5
/* Protocol Type parameters */
enum {
XPSGTR_TYPE_USB0 = 0, /* USB controller 0 */
XPSGTR_TYPE_USB1 = 1, /* USB controller 1 */
XPSGTR_TYPE_SATA_0 = 2, /* SATA controller lane 0 */
XPSGTR_TYPE_SATA_1 = 3, /* SATA controller lane 1 */
XPSGTR_TYPE_PCIE_0 = 4, /* PCIe controller lane 0 */
XPSGTR_TYPE_PCIE_1 = 5, /* PCIe controller lane 1 */
XPSGTR_TYPE_PCIE_2 = 6, /* PCIe controller lane 2 */
XPSGTR_TYPE_PCIE_3 = 7, /* PCIe controller lane 3 */
XPSGTR_TYPE_DP_0 = 8, /* Display Port controller lane 0 */
XPSGTR_TYPE_DP_1 = 9, /* Display Port controller lane 1 */
XPSGTR_TYPE_SGMII0 = 10, /* Ethernet SGMII controller 0 */
XPSGTR_TYPE_SGMII1 = 11, /* Ethernet SGMII controller 1 */
XPSGTR_TYPE_SGMII2 = 12, /* Ethernet SGMII controller 2 */
XPSGTR_TYPE_SGMII3 = 13, /* Ethernet SGMII controller 3 */
};
/* Timeout values */
#define TIMEOUT_US 1000
#define IOU_SLCR_GEM_CLK_CTRL 0x308
#define GEM_CTRL_GEM_SGMII_MODE BIT(2)
#define GEM_CTRL_GEM_REF_SRC_SEL BIT(1)
#define IOU_SLCR_GEM_CTRL 0x360
#define GEM_CTRL_GEM_SGMII_SD BIT(0)
/**
* struct xpsgtr_ssc - structure to hold SSC settings for a lane
* @refclk_rate: PLL reference clock frequency
* @pll_ref_clk: value to be written to register for corresponding ref clk rate
* @steps: number of steps of SSC (Spread Spectrum Clock)
* @step_size: step size of each step
*/
struct xpsgtr_ssc {
u32 refclk_rate;
u8 pll_ref_clk;
u32 steps;
u32 step_size;
};
/**
* struct xpsgtr_phy - representation of a lane
* @dev: pointer to the xpsgtr_dev instance
* @refclk: reference clock index
* @type: controller which uses this lane
* @lane: lane number
* @protocol: protocol in which the lane operates
*/
struct xpsgtr_phy {
struct xpsgtr_dev *dev;
unsigned int refclk;
u8 type;
u8 lane;
u8 protocol;
};
/**
* struct xpsgtr_dev - representation of a ZynMP GT device
* @dev: pointer to device
* @serdes: serdes base address
* @siou: siou base address
* @phys: PHY lanes
* @refclk_sscs: spread spectrum settings for the reference clocks
* @clk: reference clocks
*/
struct xpsgtr_dev {
struct udevice *dev;
u8 *serdes;
u8 *siou;
struct xpsgtr_phy phys[NUM_LANES];
const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
struct clk clk[NUM_LANES];
};
/* Configuration Data */
/* lookup table to hold all settings needed for a ref clock frequency */
static const struct xpsgtr_ssc ssc_lookup[] = {
{ 19200000, 0x05, 608, 264020 },
{ 20000000, 0x06, 634, 243454 },
{ 24000000, 0x07, 760, 168973 },
{ 26000000, 0x08, 824, 143860 },
{ 27000000, 0x09, 856, 86551 },
{ 38400000, 0x0a, 1218, 65896 },
{ 40000000, 0x0b, 634, 243454 },
{ 52000000, 0x0c, 824, 143860 },
{ 100000000, 0x0d, 1058, 87533 },
{ 108000000, 0x0e, 856, 86551 },
{ 125000000, 0x0f, 992, 119497 },
{ 135000000, 0x10, 1070, 55393 },
{ 150000000, 0x11, 792, 187091 }
};
/* I/O Accessors */
static u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
{
return readl(gtr_dev->serdes + reg);
}
static void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
{
writel(value, gtr_dev->serdes + reg);
}
static void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
u32 clr, u32 set)
{
u32 value = xpsgtr_read(gtr_dev, reg);
value &= ~clr;
value |= set;
xpsgtr_write(gtr_dev, reg, value);
}
static u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
return readl(addr);
}
static void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 value)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel(value, addr);
}
static void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
u32 reg, u32 clr, u32 set)
{
void __iomem *addr = gtr_phy->dev->serdes
+ gtr_phy->lane * PHY_REG_OFFSET + reg;
writel((readl(addr) & ~clr) | set, addr);
}
/* Configure PLL and spread-sprectrum clock. */
static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
{
const struct xpsgtr_ssc *ssc;
u32 step_size;
ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
step_size = ssc->step_size;
xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
PLL_FREQ_MASK, ssc->pll_ref_clk);
/* Enable lane clock sharing, if required */
if (gtr_phy->refclk != gtr_phy->lane) {
/* Lane3 Ref Clock Selection Register */
xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
}
/* SSC step size [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
/* SSC step size [15:8] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
/* SSC step size [23:16] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
/* SSC steps [7:0] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
/* SSC steps [10:8] */
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
STEPS_1_MASK,
(ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
/* SSC step size [24:25] */
step_size >>= STEP_SIZE_SHIFT;
xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
FORCE_STEP_SIZE | FORCE_STEPS);
}
/* Configure the lane protocol. */
static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u8 protocol = gtr_phy->protocol;
switch (gtr_phy->lane) {
case 0:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
break;
case 1:
xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
case 2:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
break;
case 3:
xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
protocol << ICM_CFG_SHIFT);
break;
default:
/* We already checked 0 <= lane <= 3 */
break;
}
}
/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
{
xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
}
/* SGMII-specific initialization. */
static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
{
struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
u32 shift = gtr_phy->lane * PROT_BUS_WIDTH_SHIFT;
/* Set SGMII protocol TX and RX bus width to 10 bits. */
xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
PROT_BUS_WIDTH_10 << shift);
xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, PROT_BUS_WIDTH_MASK << shift,
PROT_BUS_WIDTH_10 << shift);
xpsgtr_bypass_scrambler_8b10b(gtr_phy);
/*
* Below code is just temporary solution till we have a way how to
* do it via firmware interface in sync with Linux. Till that happen
* this is the most sensible thing to do here.
*/
/* GEM I/O Clock Control */
clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CLK_CTRL,
0xf << shift,
(GEM_CTRL_GEM_SGMII_MODE | GEM_CTRL_GEM_REF_SRC_SEL) <<
shift);
/* Setup signal detect */
clrsetbits_le32(ZYNQMP_IOU_SLCR_BASEADDR + IOU_SLCR_GEM_CTRL,
PROT_BUS_WIDTH_MASK << shift,
GEM_CTRL_GEM_SGMII_SD << shift);
}
static int xpsgtr_init(struct phy *x)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
struct xpsgtr_phy *gtr_phy;
u32 phy_lane = x->id;
gtr_phy = &gtr_dev->phys[phy_lane];
/* Enable coarse code saturation limiting logic. */
xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
/*
* Configure the PLL, the lane protocol, and perform protocol-specific
* initialization.
*/
xpsgtr_configure_pll(gtr_phy);
xpsgtr_lane_set_protocol(gtr_phy);
switch (gtr_phy->protocol) {
case ICM_PROTOCOL_SGMII:
xpsgtr_phy_init_sgmii(gtr_phy);
break;
case ICM_PROTOCOL_DP:
case ICM_PROTOCOL_SATA:
return -EINVAL;
}
dev_dbg(gtr_dev->dev, "lane %u (type %u, protocol %u): init done\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return 0;
}
/* Wait for the PLL to lock (with a timeout). */
static int xpsgtr_wait_pll_lock(struct phy *phy)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
struct xpsgtr_phy *gtr_phy;
u32 phy_lane = phy->id;
int ret = 0;
unsigned int timeout = TIMEOUT_US;
gtr_phy = &gtr_dev->phys[phy_lane];
dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
while (1) {
u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
ret = 0;
break;
}
if (--timeout == 0) {
ret = -ETIMEDOUT;
break;
}
udelay(1);
}
if (ret == -ETIMEDOUT)
dev_err(gtr_dev->dev,
"lane %u (type %u, protocol %u): PLL lock timeout\n",
gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
return ret;
}
static int xpsgtr_power_on(struct phy *phy)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(phy->dev);
struct xpsgtr_phy *gtr_phy;
u32 phy_lane = phy->id;
int ret = 0;
gtr_phy = &gtr_dev->phys[phy_lane];
/*
* Wait for the PLL to lock. For DP, only wait on DP0 to avoid
* cumulating waits for both lanes. The user is expected to initialize
* lane 0 last.
*/
if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
gtr_phy->type == XPSGTR_TYPE_DP_0)
ret = xpsgtr_wait_pll_lock(phy);
return ret;
}
/*
* OF Xlate Support
*/
/* Set the lane type and protocol based on the PHY type and instance number. */
static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
unsigned int phy_instance)
{
unsigned int num_phy_types;
const int *phy_types;
switch (phy_type) {
case PHY_TYPE_SATA: {
static const int types[] = {
XPSGTR_TYPE_SATA_0,
XPSGTR_TYPE_SATA_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SATA;
break;
}
case PHY_TYPE_USB3: {
static const int types[] = {
XPSGTR_TYPE_USB0,
XPSGTR_TYPE_USB1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_USB;
break;
}
case PHY_TYPE_DP: {
static const int types[] = {
XPSGTR_TYPE_DP_0,
XPSGTR_TYPE_DP_1,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_DP;
break;
}
case PHY_TYPE_PCIE: {
static const int types[] = {
XPSGTR_TYPE_PCIE_0,
XPSGTR_TYPE_PCIE_1,
XPSGTR_TYPE_PCIE_2,
XPSGTR_TYPE_PCIE_3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_PCIE;
break;
}
case PHY_TYPE_SGMII: {
static const int types[] = {
XPSGTR_TYPE_SGMII0,
XPSGTR_TYPE_SGMII1,
XPSGTR_TYPE_SGMII2,
XPSGTR_TYPE_SGMII3,
};
phy_types = types;
num_phy_types = ARRAY_SIZE(types);
gtr_phy->protocol = ICM_PROTOCOL_SGMII;
break;
}
default:
return -EINVAL;
}
if (phy_instance >= num_phy_types)
return -EINVAL;
gtr_phy->type = phy_types[phy_instance];
return 0;
}
/*
* Valid combinations of controllers and lanes (Interconnect Matrix).
*/
static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
};
/* Translate OF phandle and args to PHY instance. */
static int xpsgtr_of_xlate(struct phy *x,
struct ofnode_phandle_args *args)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(x->dev);
struct xpsgtr_phy *gtr_phy;
struct udevice *dev = x->dev;
unsigned int phy_instance;
unsigned int phy_lane;
unsigned int phy_type;
unsigned int refclk;
unsigned int i;
int ret;
if (args->args_count != 4) {
dev_err(dev, "Invalid number of cells in 'phy' property\n");
return -EINVAL;
}
/*
* Get the PHY parameters from the OF arguments and derive the lane
* type.
*/
phy_lane = args->args[0];
if (phy_lane >= NUM_LANES) {
dev_err(dev, "Invalid lane number %u\n", phy_lane);
return -EINVAL;
}
gtr_phy = &gtr_dev->phys[phy_lane];
phy_type = args->args[1];
phy_instance = args->args[2];
ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
if (ret) {
dev_err(dev, "Invalid PHY type and/or instance\n");
return ret;
}
refclk = args->args[3];
if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
!gtr_dev->refclk_sscs[refclk]) {
dev_err(dev, "Invalid reference clock number %u\n", refclk);
return -EINVAL;
}
gtr_phy->refclk = refclk;
/* This is difference compare to Linux */
gtr_phy->dev = gtr_dev;
gtr_phy->lane = phy_lane;
/*
* Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
* is allowed to operate on the lane.
*/
for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
if (icm_matrix[phy_lane][i] == gtr_phy->type) {
x->id = phy_lane;
return 0;
}
}
return -EINVAL;
}
/*
* Probe & Platform Driver
*/
static int xpsgtr_get_ref_clocks(struct udevice *dev)
{
unsigned int refclk;
struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
int ret;
for (refclk = 0; refclk < NUM_LANES; ++refclk) {
int i;
u32 rate;
char name[8];
struct clk *clk = &gtr_dev->clk[refclk];
snprintf(name, sizeof(name), "ref%u", refclk);
dev_dbg(dev, "Checking name: %s\n", name);
ret = clk_get_by_name(dev, name, clk);
if (ret == -ENODATA) {
dev_dbg(dev, "%s clock not specified (err %d)\n",
name, ret);
continue;
} else if (ret) {
dev_dbg(dev, "couldn't get clock %s (err %d)\n",
name, ret);
return ret;
}
rate = clk_get_rate(clk);
dev_dbg(dev, "clk rate %d\n", rate);
ret = clk_enable(clk);
if (ret) {
dev_err(dev, "failed to enable refclk %d clock\n",
refclk);
return ret;
}
for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
if (rate == ssc_lookup[i].refclk_rate) {
gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
dev_dbg(dev, "Found rate %d\n", i);
break;
}
}
if (i == ARRAY_SIZE(ssc_lookup)) {
dev_err(dev,
"Invalid rate %u for reference clock %u\n",
rate, refclk);
return -EINVAL;
}
}
return 0;
}
static int xpsgtr_probe(struct udevice *dev)
{
struct xpsgtr_dev *gtr_dev = dev_get_priv(dev);
gtr_dev->serdes = dev_remap_addr_name(dev, "serdes");
if (!gtr_dev->serdes)
return -EINVAL;
gtr_dev->siou = dev_remap_addr_name(dev, "siou");
if (!gtr_dev->siou)
return -EINVAL;
gtr_dev->dev = dev;
return xpsgtr_get_ref_clocks(dev);
}
static const struct udevice_id xpsgtr_phy_ids[] = {
{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
{ }
};
static const struct phy_ops xpsgtr_phy_ops = {
.init = xpsgtr_init,
.of_xlate = xpsgtr_of_xlate,
.power_on = xpsgtr_power_on,
};
U_BOOT_DRIVER(psgtr_phy) = {
.name = "psgtr_phy",
.id = UCLASS_PHY,
.of_match = xpsgtr_phy_ids,
.ops = &xpsgtr_phy_ops,
.probe = xpsgtr_probe,
.priv_auto = sizeof(struct xpsgtr_dev),
};