blob: a704a3e9d314fe24d57e57a091de006f771fca9d [file] [log] [blame]
/*
* Copyright (C) Marvell International Ltd. and its affiliates
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <i2c.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "ddr3_init.h"
u8 is_reg_dump = 0;
u8 debug_pbs = DEBUG_LEVEL_ERROR;
/*
* API to change flags outside of the lib
*/
#ifndef SILENT_LIB
/* Debug flags for other Training modules */
u8 debug_training_static = DEBUG_LEVEL_ERROR;
u8 debug_training = DEBUG_LEVEL_ERROR;
u8 debug_leveling = DEBUG_LEVEL_ERROR;
u8 debug_centralization = DEBUG_LEVEL_ERROR;
u8 debug_training_ip = DEBUG_LEVEL_ERROR;
u8 debug_training_bist = DEBUG_LEVEL_ERROR;
u8 debug_training_hw_alg = DEBUG_LEVEL_ERROR;
u8 debug_training_access = DEBUG_LEVEL_ERROR;
u8 debug_training_a38x = DEBUG_LEVEL_ERROR;
void ddr3_hws_set_log_level(enum ddr_lib_debug_block block, u8 level)
{
switch (block) {
case DEBUG_BLOCK_STATIC:
debug_training_static = level;
break;
case DEBUG_BLOCK_TRAINING_MAIN:
debug_training = level;
break;
case DEBUG_BLOCK_LEVELING:
debug_leveling = level;
break;
case DEBUG_BLOCK_CENTRALIZATION:
debug_centralization = level;
break;
case DEBUG_BLOCK_PBS:
debug_pbs = level;
break;
case DEBUG_BLOCK_ALG:
debug_training_hw_alg = level;
break;
case DEBUG_BLOCK_DEVICE:
debug_training_a38x = level;
break;
case DEBUG_BLOCK_ACCESS:
debug_training_access = level;
break;
case DEBUG_STAGES_REG_DUMP:
if (level == DEBUG_LEVEL_TRACE)
is_reg_dump = 1;
else
is_reg_dump = 0;
break;
case DEBUG_BLOCK_ALL:
default:
debug_training_static = level;
debug_training = level;
debug_leveling = level;
debug_centralization = level;
debug_pbs = level;
debug_training_hw_alg = level;
debug_training_access = level;
debug_training_a38x = level;
}
}
#else
void ddr3_hws_set_log_level(enum ddr_lib_debug_block block, u8 level)
{
return;
}
#endif
struct hws_tip_config_func_db config_func_info[HWS_MAX_DEVICE_NUM];
u8 is_default_centralization = 0;
u8 is_tune_result = 0;
u8 is_validate_window_per_if = 0;
u8 is_validate_window_per_pup = 0;
u8 sweep_cnt = 1;
u32 is_bist_reset_bit = 1;
static struct hws_xsb_info xsb_info[HWS_MAX_DEVICE_NUM];
/*
* Dump Dunit & Phy registers
*/
int ddr3_tip_reg_dump(u32 dev_num)
{
u32 if_id, reg_addr, data_value, bus_id;
u32 read_data[MAX_INTERFACE_NUM];
struct hws_topology_map *tm = ddr3_get_topology_map();
printf("-- dunit registers --\n");
for (reg_addr = 0x1400; reg_addr < 0x19f0; reg_addr += 4) {
printf("0x%x ", reg_addr);
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST,
if_id, reg_addr, read_data,
MASK_ALL_BITS));
printf("0x%x ", read_data[if_id]);
}
printf("\n");
}
printf("-- Phy registers --\n");
for (reg_addr = 0; reg_addr <= 0xff; reg_addr++) {
printf("0x%x ", reg_addr);
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0;
bus_id < tm->num_of_bus_per_interface;
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA, reg_addr,
&data_value));
printf("0x%x ", data_value);
}
for (bus_id = 0;
bus_id < tm->num_of_bus_per_interface;
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_CONTROL, reg_addr,
&data_value));
printf("0x%x ", data_value);
}
}
printf("\n");
}
return MV_OK;
}
/*
* Register access func registration
*/
int ddr3_tip_init_config_func(u32 dev_num,
struct hws_tip_config_func_db *config_func)
{
if (config_func == NULL)
return MV_BAD_PARAM;
memcpy(&config_func_info[dev_num], config_func,
sizeof(struct hws_tip_config_func_db));
return MV_OK;
}
/*
* Get training result info pointer
*/
enum hws_result *ddr3_tip_get_result_ptr(u32 stage)
{
return training_result[stage];
}
/*
* Device info read
*/
int ddr3_tip_get_device_info(u32 dev_num, struct ddr3_device_info *info_ptr)
{
if (config_func_info[dev_num].tip_get_device_info_func != NULL) {
return config_func_info[dev_num].
tip_get_device_info_func((u8) dev_num, info_ptr);
}
return MV_FAIL;
}
#ifndef EXCLUDE_SWITCH_DEBUG
/*
* Convert freq to character string
*/
static char *convert_freq(enum hws_ddr_freq freq)
{
switch (freq) {
case DDR_FREQ_LOW_FREQ:
return "DDR_FREQ_LOW_FREQ";
case DDR_FREQ_400:
return "400";
case DDR_FREQ_533:
return "533";
case DDR_FREQ_667:
return "667";
case DDR_FREQ_800:
return "800";
case DDR_FREQ_933:
return "933";
case DDR_FREQ_1066:
return "1066";
case DDR_FREQ_311:
return "311";
case DDR_FREQ_333:
return "333";
case DDR_FREQ_467:
return "467";
case DDR_FREQ_850:
return "850";
case DDR_FREQ_900:
return "900";
case DDR_FREQ_360:
return "DDR_FREQ_360";
case DDR_FREQ_1000:
return "DDR_FREQ_1000";
default:
return "Unknown Frequency";
}
}
/*
* Convert device ID to character string
*/
static char *convert_dev_id(u32 dev_id)
{
switch (dev_id) {
case 0x6800:
return "A38xx";
case 0x6900:
return "A39XX";
case 0xf400:
return "AC3";
case 0xfc00:
return "BC2";
default:
return "Unknown Device";
}
}
/*
* Convert device ID to character string
*/
static char *convert_mem_size(u32 dev_id)
{
switch (dev_id) {
case 0:
return "512 MB";
case 1:
return "1 GB";
case 2:
return "2 GB";
case 3:
return "4 GB";
case 4:
return "8 GB";
default:
return "wrong mem size";
}
}
int print_device_info(u8 dev_num)
{
struct ddr3_device_info info_ptr;
struct hws_topology_map *tm = ddr3_get_topology_map();
CHECK_STATUS(ddr3_tip_get_device_info(dev_num, &info_ptr));
printf("=== DDR setup START===\n");
printf("\tDevice ID: %s\n", convert_dev_id(info_ptr.device_id));
printf("\tDDR3 CK delay: %d\n", info_ptr.ck_delay);
print_topology(tm);
printf("=== DDR setup END===\n");
return MV_OK;
}
void hws_ddr3_tip_sweep_test(int enable)
{
if (enable) {
is_validate_window_per_if = 1;
is_validate_window_per_pup = 1;
debug_training = DEBUG_LEVEL_TRACE;
} else {
is_validate_window_per_if = 0;
is_validate_window_per_pup = 0;
}
}
#endif
char *ddr3_tip_convert_tune_result(enum hws_result tune_result)
{
switch (tune_result) {
case TEST_FAILED:
return "FAILED";
case TEST_SUCCESS:
return "PASS";
case NO_TEST_DONE:
return "NOT COMPLETED";
default:
return "Un-KNOWN";
}
}
/*
* Print log info
*/
int ddr3_tip_print_log(u32 dev_num, u32 mem_addr)
{
u32 if_id = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
#ifndef EXCLUDE_SWITCH_DEBUG
if ((is_validate_window_per_if != 0) ||
(is_validate_window_per_pup != 0)) {
u32 is_pup_log = 0;
enum hws_ddr_freq freq;
freq = tm->interface_params[first_active_if].memory_freq;
is_pup_log = (is_validate_window_per_pup != 0) ? 1 : 0;
printf("===VALIDATE WINDOW LOG START===\n");
printf("DDR Frequency: %s ======\n", convert_freq(freq));
/* print sweep windows */
ddr3_tip_run_sweep_test(dev_num, sweep_cnt, 1, is_pup_log);
ddr3_tip_run_sweep_test(dev_num, sweep_cnt, 0, is_pup_log);
ddr3_tip_print_all_pbs_result(dev_num);
ddr3_tip_print_wl_supp_result(dev_num);
printf("===VALIDATE WINDOW LOG END ===\n");
CHECK_STATUS(ddr3_tip_restore_dunit_regs(dev_num));
ddr3_tip_reg_dump(dev_num);
}
#endif
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("IF %d Status:\n", if_id));
if (mask_tune_func & INIT_CONTROLLER_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tInit Controller: %s\n",
ddr3_tip_convert_tune_result
(training_result[INIT_CONTROLLER]
[if_id])));
}
if (mask_tune_func & SET_LOW_FREQ_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tLow freq Config: %s\n",
ddr3_tip_convert_tune_result
(training_result[SET_LOW_FREQ]
[if_id])));
}
if (mask_tune_func & LOAD_PATTERN_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tLoad Pattern: %s\n",
ddr3_tip_convert_tune_result
(training_result[LOAD_PATTERN]
[if_id])));
}
if (mask_tune_func & SET_MEDIUM_FREQ_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tMedium freq Config: %s\n",
ddr3_tip_convert_tune_result
(training_result[SET_MEDIUM_FREQ]
[if_id])));
}
if (mask_tune_func & WRITE_LEVELING_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tWL: %s\n",
ddr3_tip_convert_tune_result
(training_result[WRITE_LEVELING]
[if_id])));
}
if (mask_tune_func & LOAD_PATTERN_2_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tLoad Pattern: %s\n",
ddr3_tip_convert_tune_result
(training_result[LOAD_PATTERN_2]
[if_id])));
}
if (mask_tune_func & READ_LEVELING_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tRL: %s\n",
ddr3_tip_convert_tune_result
(training_result[READ_LEVELING]
[if_id])));
}
if (mask_tune_func & WRITE_LEVELING_SUPP_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tWL Supp: %s\n",
ddr3_tip_convert_tune_result
(training_result[WRITE_LEVELING_SUPP]
[if_id])));
}
if (mask_tune_func & PBS_RX_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tPBS RX: %s\n",
ddr3_tip_convert_tune_result
(training_result[PBS_RX]
[if_id])));
}
if (mask_tune_func & PBS_TX_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tPBS TX: %s\n",
ddr3_tip_convert_tune_result
(training_result[PBS_TX]
[if_id])));
}
if (mask_tune_func & SET_TARGET_FREQ_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tTarget freq Config: %s\n",
ddr3_tip_convert_tune_result
(training_result[SET_TARGET_FREQ]
[if_id])));
}
if (mask_tune_func & WRITE_LEVELING_TF_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tWL TF: %s\n",
ddr3_tip_convert_tune_result
(training_result[WRITE_LEVELING_TF]
[if_id])));
}
if (mask_tune_func & READ_LEVELING_TF_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tRL TF: %s\n",
ddr3_tip_convert_tune_result
(training_result[READ_LEVELING_TF]
[if_id])));
}
if (mask_tune_func & WRITE_LEVELING_SUPP_TF_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tWL TF Supp: %s\n",
ddr3_tip_convert_tune_result
(training_result
[WRITE_LEVELING_SUPP_TF]
[if_id])));
}
if (mask_tune_func & CENTRALIZATION_RX_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tCentr RX: %s\n",
ddr3_tip_convert_tune_result
(training_result[CENTRALIZATION_RX]
[if_id])));
}
if (mask_tune_func & VREF_CALIBRATION_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tVREF_CALIBRATION: %s\n",
ddr3_tip_convert_tune_result
(training_result[VREF_CALIBRATION]
[if_id])));
}
if (mask_tune_func & CENTRALIZATION_TX_MASK_BIT) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("\tCentr TX: %s\n",
ddr3_tip_convert_tune_result
(training_result[CENTRALIZATION_TX]
[if_id])));
}
}
return MV_OK;
}
/*
* Print stability log info
*/
int ddr3_tip_print_stability_log(u32 dev_num)
{
u8 if_id = 0, csindex = 0, bus_id = 0, idx = 0;
u32 reg_data;
u32 read_data[MAX_INTERFACE_NUM];
u32 max_cs = hws_ddr3_tip_max_cs_get();
struct hws_topology_map *tm = ddr3_get_topology_map();
/* Title print */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
printf("Title: I/F# , Tj, Calibration_n0, Calibration_p0, Calibration_n1, Calibration_p1, Calibration_n2, Calibration_p2,");
for (csindex = 0; csindex < max_cs; csindex++) {
printf("CS%d , ", csindex);
printf("\n");
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
printf("VWTx, VWRx, WL_tot, WL_ADLL, WL_PH, RL_Tot, RL_ADLL, RL_PH, RL_Smp, Cen_tx, Cen_rx, Vref, DQVref,");
printf("\t\t");
for (idx = 0; idx < 11; idx++)
printf("PBSTx-Pad%d,", idx);
printf("\t\t");
for (idx = 0; idx < 11; idx++)
printf("PBSRx-Pad%d,", idx);
}
}
printf("\n");
/* Data print */
for (if_id = 0; if_id < MAX_INTERFACE_NUM; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
printf("Data: %d,%d,", if_id,
(config_func_info[dev_num].tip_get_temperature != NULL)
? (config_func_info[dev_num].
tip_get_temperature(dev_num)) : (0));
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0x14c8,
read_data, MASK_ALL_BITS));
printf("%d,%d,", ((read_data[if_id] & 0x3f0) >> 4),
((read_data[if_id] & 0xfc00) >> 10));
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0x17c8,
read_data, MASK_ALL_BITS));
printf("%d,%d,", ((read_data[if_id] & 0x3f0) >> 4),
((read_data[if_id] & 0xfc00) >> 10));
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST, if_id, 0x1dc8,
read_data, MASK_ALL_BITS));
printf("%d,%d,", ((read_data[if_id] & 0x3f0000) >> 16),
((read_data[if_id] & 0xfc00000) >> 22));
for (csindex = 0; csindex < max_cs; csindex++) {
printf("CS%d , ", csindex);
for (bus_id = 0; bus_id < MAX_BUS_NUM; bus_id++) {
printf("\n");
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
RESULT_DB_PHY_REG_ADDR +
csindex, &reg_data);
printf("%d,%d,", (reg_data & 0x1f),
((reg_data & 0x3e0) >> 5));
/* WL */
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
WL_PHY_REG +
csindex * 4, &reg_data);
printf("%d,%d,%d,",
(reg_data & 0x1f) +
((reg_data & 0x1c0) >> 6) * 32,
(reg_data & 0x1f),
(reg_data & 0x1c0) >> 6);
/* RL */
CHECK_STATUS(ddr3_tip_if_read
(dev_num, ACCESS_TYPE_UNICAST,
if_id,
READ_DATA_SAMPLE_DELAY,
read_data, MASK_ALL_BITS));
read_data[if_id] =
(read_data[if_id] &
(0xf << (4 * csindex))) >>
(4 * csindex);
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA,
RL_PHY_REG + csindex * 4,
&reg_data);
printf("%d,%d,%d,%d,",
(reg_data & 0x1f) +
((reg_data & 0x1c0) >> 6) * 32 +
read_data[if_id] * 64,
(reg_data & 0x1f),
((reg_data & 0x1c0) >> 6),
read_data[if_id]);
/* Centralization */
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA,
WRITE_CENTRALIZATION_PHY_REG
+ csindex * 4, &reg_data);
printf("%d,", (reg_data & 0x3f));
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA,
READ_CENTRALIZATION_PHY_REG
+ csindex * 4, &reg_data);
printf("%d,", (reg_data & 0x1f));
/* Vref */
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_id,
DDR_PHY_DATA,
PAD_CONFIG_PHY_REG,
&reg_data);
printf("%d,", (reg_data & 0x7));
/* DQVref */
/* Need to add the Read Function from device */
printf("%d,", 0);
printf("\t\t");
for (idx = 0; idx < 11; idx++) {
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
0xd0 +
12 * csindex +
idx, &reg_data);
printf("%d,", (reg_data & 0x3f));
}
printf("\t\t");
for (idx = 0; idx < 11; idx++) {
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
0x10 +
16 * csindex +
idx, &reg_data);
printf("%d,", (reg_data & 0x3f));
}
printf("\t\t");
for (idx = 0; idx < 11; idx++) {
ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
0x50 +
16 * csindex +
idx, &reg_data);
printf("%d,", (reg_data & 0x3f));
}
}
}
}
printf("\n");
return MV_OK;
}
/*
* Register XSB information
*/
int ddr3_tip_register_xsb_info(u32 dev_num, struct hws_xsb_info *xsb_info_table)
{
memcpy(&xsb_info[dev_num], xsb_info_table, sizeof(struct hws_xsb_info));
return MV_OK;
}
/*
* Read ADLL Value
*/
int read_adll_value(u32 pup_values[MAX_INTERFACE_NUM * MAX_BUS_NUM],
int reg_addr, u32 mask)
{
u32 data_value;
u32 if_id = 0, bus_id = 0;
u32 dev_num = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
/*
* multi CS support - reg_addr is calucalated in calling function
* with CS offset
*/
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface;
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
CHECK_STATUS(ddr3_tip_bus_read(dev_num, if_id,
ACCESS_TYPE_UNICAST,
bus_id,
DDR_PHY_DATA, reg_addr,
&data_value));
pup_values[if_id *
tm->num_of_bus_per_interface + bus_id] =
data_value & mask;
}
}
return 0;
}
/*
* Write ADLL Value
*/
int write_adll_value(u32 pup_values[MAX_INTERFACE_NUM * MAX_BUS_NUM],
int reg_addr)
{
u32 if_id = 0, bus_id = 0;
u32 dev_num = 0, data;
struct hws_topology_map *tm = ddr3_get_topology_map();
/*
* multi CS support - reg_addr is calucalated in calling function
* with CS offset
*/
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_id = 0; bus_id < tm->num_of_bus_per_interface;
bus_id++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_id);
data = pup_values[if_id *
tm->num_of_bus_per_interface +
bus_id];
CHECK_STATUS(ddr3_tip_bus_write(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
bus_id, DDR_PHY_DATA,
reg_addr, data));
}
}
return 0;
}
#ifndef EXCLUDE_SWITCH_DEBUG
u32 rl_version = 1; /* 0 - old RL machine */
struct hws_tip_config_func_db config_func_info[HWS_MAX_DEVICE_NUM];
u32 start_xsb_offset = 0;
u8 is_rl_old = 0;
u8 is_freq_old = 0;
u8 is_dfs_disabled = 0;
u32 default_centrlization_value = 0x12;
u32 vref = 0x4;
u32 activate_select_before_run_alg = 1, activate_deselect_after_run_alg = 1,
rl_test = 0, reset_read_fifo = 0;
int debug_acc = 0;
u32 ctrl_sweepres[ADLL_LENGTH][MAX_INTERFACE_NUM][MAX_BUS_NUM];
u32 ctrl_adll[MAX_CS_NUM * MAX_INTERFACE_NUM * MAX_BUS_NUM];
u8 cs_mask_reg[] = {
0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
u32 xsb_test_table[][8] = {
{0x00000000, 0x11111111, 0x22222222, 0x33333333, 0x44444444, 0x55555555,
0x66666666, 0x77777777},
{0x88888888, 0x99999999, 0xaaaaaaaa, 0xbbbbbbbb, 0xcccccccc, 0xdddddddd,
0xeeeeeeee, 0xffffffff},
{0x00000000, 0xffffffff, 0x00000000, 0xffffffff, 0x00000000, 0xffffffff,
0x00000000, 0xffffffff},
{0x00000000, 0xffffffff, 0x00000000, 0xffffffff, 0x00000000, 0xffffffff,
0x00000000, 0xffffffff},
{0x00000000, 0xffffffff, 0x00000000, 0xffffffff, 0x00000000, 0xffffffff,
0x00000000, 0xffffffff},
{0x00000000, 0xffffffff, 0x00000000, 0xffffffff, 0x00000000, 0xffffffff,
0x00000000, 0xffffffff},
{0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000, 0x00000000,
0xffffffff, 0xffffffff},
{0x00000000, 0x00000000, 0x00000000, 0xffffffff, 0x00000000, 0x00000000,
0x00000000, 0x00000000},
{0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x00000000, 0xffffffff,
0xffffffff, 0xffffffff}
};
static int ddr3_tip_access_atr(u32 dev_num, u32 flag_id, u32 value, u32 **ptr);
int ddr3_tip_print_adll(void)
{
u32 bus_cnt = 0, if_id, data_p1, data_p2, ui_data3, dev_num = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_cnt = 0; bus_cnt < GET_TOPOLOGY_NUM_OF_BUSES();
bus_cnt++) {
VALIDATE_ACTIVE(tm->bus_act_mask, bus_cnt);
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id,
ACCESS_TYPE_UNICAST, bus_cnt,
DDR_PHY_DATA, 0x1, &data_p1));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA, 0x2, &data_p2));
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA, 0x3, &ui_data3));
DEBUG_TRAINING_IP(DEBUG_LEVEL_TRACE,
(" IF %d bus_cnt %d phy_reg_1_data 0x%x phy_reg_2_data 0x%x phy_reg_3_data 0x%x\n",
if_id, bus_cnt, data_p1, data_p2,
ui_data3));
}
}
return MV_OK;
}
/*
* Set attribute value
*/
int ddr3_tip_set_atr(u32 dev_num, u32 flag_id, u32 value)
{
int ret;
u32 *ptr_flag = NULL;
ret = ddr3_tip_access_atr(dev_num, flag_id, value, &ptr_flag);
if (ptr_flag != NULL) {
printf("ddr3_tip_set_atr Flag ID 0x%x value is set to 0x%x (was 0x%x)\n",
flag_id, value, *ptr_flag);
*ptr_flag = value;
} else {
printf("ddr3_tip_set_atr Flag ID 0x%x value is set to 0x%x\n",
flag_id, value);
}
return ret;
}
/*
* Access attribute
*/
static int ddr3_tip_access_atr(u32 dev_num, u32 flag_id, u32 value, u32 **ptr)
{
u32 tmp_val = 0, if_id = 0, pup_id = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
*ptr = NULL;
switch (flag_id) {
case 0:
*ptr = (u32 *)&(tm->if_act_mask);
break;
case 0x1:
*ptr = (u32 *)&mask_tune_func;
break;
case 0x2:
*ptr = (u32 *)&low_freq;
break;
case 0x3:
*ptr = (u32 *)&medium_freq;
break;
case 0x4:
*ptr = (u32 *)&generic_init_controller;
break;
case 0x5:
*ptr = (u32 *)&rl_version;
break;
case 0x8:
*ptr = (u32 *)&start_xsb_offset;
break;
case 0x20:
*ptr = (u32 *)&is_rl_old;
break;
case 0x21:
*ptr = (u32 *)&is_freq_old;
break;
case 0x23:
*ptr = (u32 *)&is_dfs_disabled;
break;
case 0x24:
*ptr = (u32 *)&is_pll_before_init;
break;
case 0x25:
*ptr = (u32 *)&is_adll_calib_before_init;
break;
#ifdef STATIC_ALGO_SUPPORT
case 0x26:
*ptr = (u32 *)&(silicon_delay[0]);
break;
case 0x27:
*ptr = (u32 *)&wl_debug_delay;
break;
#endif
case 0x28:
*ptr = (u32 *)&is_tune_result;
break;
case 0x29:
*ptr = (u32 *)&is_validate_window_per_if;
break;
case 0x2a:
*ptr = (u32 *)&is_validate_window_per_pup;
break;
case 0x30:
*ptr = (u32 *)&sweep_cnt;
break;
case 0x31:
*ptr = (u32 *)&is_bist_reset_bit;
break;
case 0x32:
*ptr = (u32 *)&is_dfs_in_init;
break;
case 0x33:
*ptr = (u32 *)&p_finger;
break;
case 0x34:
*ptr = (u32 *)&n_finger;
break;
case 0x35:
*ptr = (u32 *)&init_freq;
break;
case 0x36:
*ptr = (u32 *)&(freq_val[DDR_FREQ_LOW_FREQ]);
break;
case 0x37:
*ptr = (u32 *)&start_pattern;
break;
case 0x38:
*ptr = (u32 *)&end_pattern;
break;
case 0x39:
*ptr = (u32 *)&phy_reg0_val;
break;
case 0x4a:
*ptr = (u32 *)&phy_reg1_val;
break;
case 0x4b:
*ptr = (u32 *)&phy_reg2_val;
break;
case 0x4c:
*ptr = (u32 *)&phy_reg3_val;
break;
case 0x4e:
*ptr = (u32 *)&sweep_pattern;
break;
case 0x50:
*ptr = (u32 *)&is_rzq6;
break;
case 0x51:
*ptr = (u32 *)&znri_data_phy_val;
break;
case 0x52:
*ptr = (u32 *)&zpri_data_phy_val;
break;
case 0x53:
*ptr = (u32 *)&finger_test;
break;
case 0x54:
*ptr = (u32 *)&n_finger_start;
break;
case 0x55:
*ptr = (u32 *)&n_finger_end;
break;
case 0x56:
*ptr = (u32 *)&p_finger_start;
break;
case 0x57:
*ptr = (u32 *)&p_finger_end;
break;
case 0x58:
*ptr = (u32 *)&p_finger_step;
break;
case 0x59:
*ptr = (u32 *)&n_finger_step;
break;
case 0x5a:
*ptr = (u32 *)&znri_ctrl_phy_val;
break;
case 0x5b:
*ptr = (u32 *)&zpri_ctrl_phy_val;
break;
case 0x5c:
*ptr = (u32 *)&is_reg_dump;
break;
case 0x5d:
*ptr = (u32 *)&vref;
break;
case 0x5e:
*ptr = (u32 *)&mode2_t;
break;
case 0x5f:
*ptr = (u32 *)&xsb_validate_type;
break;
case 0x60:
*ptr = (u32 *)&xsb_validation_base_address;
break;
case 0x67:
*ptr = (u32 *)&activate_select_before_run_alg;
break;
case 0x68:
*ptr = (u32 *)&activate_deselect_after_run_alg;
break;
case 0x69:
*ptr = (u32 *)&odt_additional;
break;
case 0x70:
*ptr = (u32 *)&debug_mode;
break;
case 0x71:
*ptr = (u32 *)&pbs_pattern;
break;
case 0x72:
*ptr = (u32 *)&delay_enable;
break;
case 0x73:
*ptr = (u32 *)&ck_delay;
break;
case 0x74:
*ptr = (u32 *)&ck_delay_16;
break;
case 0x75:
*ptr = (u32 *)&ca_delay;
break;
case 0x100:
*ptr = (u32 *)&debug_dunit;
break;
case 0x101:
debug_acc = (int)value;
break;
case 0x102:
debug_training = (u8)value;
break;
case 0x103:
debug_training_bist = (u8)value;
break;
case 0x104:
debug_centralization = (u8)value;
break;
case 0x105:
debug_training_ip = (u8)value;
break;
case 0x106:
debug_leveling = (u8)value;
break;
case 0x107:
debug_pbs = (u8)value;
break;
case 0x108:
debug_training_static = (u8)value;
break;
case 0x109:
debug_training_access = (u8)value;
break;
case 0x112:
*ptr = &start_pattern;
break;
case 0x113:
*ptr = &end_pattern;
break;
default:
if ((flag_id >= 0x200) && (flag_id < 0x210)) {
if_id = flag_id - 0x200;
*ptr = (u32 *)&(tm->interface_params
[if_id].memory_freq);
} else if ((flag_id >= 0x210) && (flag_id < 0x220)) {
if_id = flag_id - 0x210;
*ptr = (u32 *)&(tm->interface_params
[if_id].speed_bin_index);
} else if ((flag_id >= 0x220) && (flag_id < 0x230)) {
if_id = flag_id - 0x220;
*ptr = (u32 *)&(tm->interface_params
[if_id].bus_width);
} else if ((flag_id >= 0x230) && (flag_id < 0x240)) {
if_id = flag_id - 0x230;
*ptr = (u32 *)&(tm->interface_params
[if_id].memory_size);
} else if ((flag_id >= 0x240) && (flag_id < 0x250)) {
if_id = flag_id - 0x240;
*ptr = (u32 *)&(tm->interface_params
[if_id].cas_l);
} else if ((flag_id >= 0x250) && (flag_id < 0x260)) {
if_id = flag_id - 0x250;
*ptr = (u32 *)&(tm->interface_params
[if_id].cas_wl);
} else if ((flag_id >= 0x270) && (flag_id < 0x2cf)) {
if_id = (flag_id - 0x270) / MAX_BUS_NUM;
pup_id = (flag_id - 0x270) % MAX_BUS_NUM;
*ptr = (u32 *)&(tm->interface_params[if_id].
as_bus_params[pup_id].is_ck_swap);
} else if ((flag_id >= 0x2d0) && (flag_id < 0x32f)) {
if_id = (flag_id - 0x2d0) / MAX_BUS_NUM;
pup_id = (flag_id - 0x2d0) % MAX_BUS_NUM;
*ptr = (u32 *)&(tm->interface_params[if_id].
as_bus_params[pup_id].is_dqs_swap);
} else if ((flag_id >= 0x330) && (flag_id < 0x38f)) {
if_id = (flag_id - 0x330) / MAX_BUS_NUM;
pup_id = (flag_id - 0x330) % MAX_BUS_NUM;
*ptr = (u32 *)&(tm->interface_params[if_id].
as_bus_params[pup_id].cs_bitmask);
} else if ((flag_id >= 0x390) && (flag_id < 0x3ef)) {
if_id = (flag_id - 0x390) / MAX_BUS_NUM;
pup_id = (flag_id - 0x390) % MAX_BUS_NUM;
*ptr = (u32 *)&(tm->interface_params
[if_id].as_bus_params
[pup_id].mirror_enable_bitmask);
} else if ((flag_id >= 0x500) && (flag_id <= 0x50f)) {
tmp_val = flag_id - 0x320;
*ptr = (u32 *)&(clamp_tbl[tmp_val]);
} else {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("flag_id out of boundary %d\n",
flag_id));
return MV_BAD_PARAM;
}
}
return MV_OK;
}
#ifndef EXCLUDE_SWITCH_DEBUG
/*
* Print ADLL
*/
int print_adll(u32 dev_num, u32 adll[MAX_INTERFACE_NUM * MAX_BUS_NUM])
{
u32 i, j;
struct hws_topology_map *tm = ddr3_get_topology_map();
for (j = 0; j < tm->num_of_bus_per_interface; j++) {
VALIDATE_ACTIVE(tm->bus_act_mask, j);
for (i = 0; i < MAX_INTERFACE_NUM; i++) {
printf("%d ,",
adll[i * tm->num_of_bus_per_interface + j]);
}
}
printf("\n");
return MV_OK;
}
#endif
/* byte_index - only byte 0, 1, 2, or 3, oxff - test all bytes */
static u32 ddr3_tip_compare(u32 if_id, u32 *p_src, u32 *p_dst,
u32 byte_index)
{
u32 burst_cnt = 0, addr_offset, i_id;
int b_is_fail = 0;
addr_offset =
(byte_index ==
0xff) ? (u32) 0xffffffff : (u32) (0xff << (byte_index * 8));
for (burst_cnt = 0; burst_cnt < EXT_ACCESS_BURST_LENGTH; burst_cnt++) {
if ((p_src[burst_cnt] & addr_offset) !=
(p_dst[burst_cnt] & addr_offset))
b_is_fail = 1;
}
if (b_is_fail == 1) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("IF %d exp: ", if_id));
for (i_id = 0; i_id <= MAX_INTERFACE_NUM - 1; i_id++) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("0x%8x ", p_src[i_id]));
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("\n_i_f %d rcv: ", if_id));
for (i_id = 0; i_id <= MAX_INTERFACE_NUM - 1; i_id++) {
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR,
("(0x%8x ", p_dst[i_id]));
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_ERROR, ("\n "));
}
return b_is_fail;
}
/* test_type = 0-tx , 1-rx */
int ddr3_tip_sweep_test(u32 dev_num, u32 test_type,
u32 mem_addr, u32 is_modify_adll,
u32 start_if, u32 end_if, u32 startpup, u32 endpup)
{
u32 bus_cnt = 0, adll_val = 0, if_id, ui_prev_adll, ui_mask_bit,
end_adll, start_adll;
u32 reg_addr = 0;
struct hws_topology_map *tm = ddr3_get_topology_map();
if (test_type == 0) {
reg_addr = 1;
ui_mask_bit = 0x3f;
start_adll = 0;
end_adll = ui_mask_bit;
} else {
reg_addr = 3;
ui_mask_bit = 0x1f;
start_adll = 0;
end_adll = ui_mask_bit;
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("==============================\n"));
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO,
("Test type %d (0-tx, 1-rx)\n", test_type));
for (if_id = start_if; if_id <= end_if; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (bus_cnt = startpup; bus_cnt < endpup; bus_cnt++) {
CHECK_STATUS(ddr3_tip_bus_read
(dev_num, if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA, reg_addr,
&ui_prev_adll));
for (adll_val = start_adll; adll_val <= end_adll;
adll_val++) {
if (is_modify_adll == 1) {
CHECK_STATUS(ddr3_tip_bus_read_modify_write
(dev_num,
ACCESS_TYPE_UNICAST,
if_id, bus_cnt,
DDR_PHY_DATA, reg_addr,
adll_val, ui_mask_bit));
}
}
if (is_modify_adll == 1) {
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_UNICAST,
if_id, ACCESS_TYPE_UNICAST,
bus_cnt, DDR_PHY_DATA, reg_addr,
ui_prev_adll));
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("\n"));
}
DEBUG_TRAINING_IP(DEBUG_LEVEL_INFO, ("\n"));
}
return MV_OK;
}
#ifndef EXCLUDE_SWITCH_DEBUG
/*
* Sweep validation
*/
int ddr3_tip_run_sweep_test(int dev_num, u32 repeat_num, u32 direction,
u32 mode)
{
u32 pup = 0, start_pup = 0, end_pup = 0;
u32 adll = 0;
u32 res[MAX_INTERFACE_NUM] = { 0 };
int if_id = 0;
u32 adll_value = 0;
int reg = (direction == 0) ? WRITE_CENTRALIZATION_PHY_REG :
READ_CENTRALIZATION_PHY_REG;
enum hws_access_type pup_access;
u32 cs;
u32 max_cs = hws_ddr3_tip_max_cs_get();
struct hws_topology_map *tm = ddr3_get_topology_map();
if (mode == 1) {
/* per pup */
start_pup = 0;
end_pup = tm->num_of_bus_per_interface - 1;
pup_access = ACCESS_TYPE_UNICAST;
} else {
start_pup = 0;
end_pup = 0;
pup_access = ACCESS_TYPE_MULTICAST;
}
for (cs = 0; cs < max_cs; cs++) {
for (adll = 0; adll < ADLL_LENGTH; adll++) {
for (if_id = 0;
if_id <= MAX_INTERFACE_NUM - 1;
if_id++) {
VALIDATE_ACTIVE
(tm->if_act_mask,
if_id);
for (pup = start_pup; pup <= end_pup; pup++) {
ctrl_sweepres[adll][if_id][pup] =
0;
}
}
}
for (adll = 0; adll < (MAX_INTERFACE_NUM * MAX_BUS_NUM); adll++)
ctrl_adll[adll] = 0;
/* Save DQS value(after algorithm run) */
read_adll_value(ctrl_adll,
(reg + (cs * CS_REGISTER_ADDR_OFFSET)),
MASK_ALL_BITS);
/*
* Sweep ADLL from 0:31 on all I/F on all Pup and perform
* BIST on each stage.
*/
for (pup = start_pup; pup <= end_pup; pup++) {
for (adll = 0; adll < ADLL_LENGTH; adll++) {
adll_value =
(direction == 0) ? (adll * 2) : adll;
CHECK_STATUS(ddr3_tip_bus_write
(dev_num, ACCESS_TYPE_MULTICAST, 0,
pup_access, pup, DDR_PHY_DATA,
reg + CS_REG_VALUE(cs),
adll_value));
hws_ddr3_run_bist(dev_num, sweep_pattern, res,
cs);
/* ddr3_tip_reset_fifo_ptr(dev_num); */
for (if_id = 0;
if_id <= MAX_INTERFACE_NUM - 1;
if_id++) {
VALIDATE_ACTIVE
(tm->if_act_mask,
if_id);
ctrl_sweepres[adll][if_id][pup]
= res[if_id];
if (mode == 1) {
CHECK_STATUS
(ddr3_tip_bus_write
(dev_num,
ACCESS_TYPE_UNICAST,
if_id,
ACCESS_TYPE_UNICAST,
pup,
DDR_PHY_DATA,
reg + CS_REG_VALUE(cs),
ctrl_adll[if_id *
cs *
tm->num_of_bus_per_interface
+ pup]));
}
}
}
}
printf("Final, CS %d,%s, Sweep, Result, Adll,", cs,
((direction == 0) ? "TX" : "RX"));
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
if (mode == 1) {
for (pup = start_pup; pup <= end_pup; pup++) {
VALIDATE_ACTIVE(tm->bus_act_mask, pup);
printf("I/F%d-PHY%d , ", if_id, pup);
}
} else {
printf("I/F%d , ", if_id);
}
}
printf("\n");
for (adll = 0; adll < ADLL_LENGTH; adll++) {
adll_value = (direction == 0) ? (adll * 2) : adll;
printf("Final,%s, Sweep, Result, %d ,",
((direction == 0) ? "TX" : "RX"), adll_value);
for (if_id = 0;
if_id <= MAX_INTERFACE_NUM - 1;
if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
for (pup = start_pup; pup <= end_pup; pup++) {
printf("%d , ",
ctrl_sweepres[adll][if_id]
[pup]);
}
}
printf("\n");
}
/*
* Write back to the phy the Rx DQS value, we store in
* the beginning.
*/
write_adll_value(ctrl_adll,
(reg + cs * CS_REGISTER_ADDR_OFFSET));
/* print adll results */
read_adll_value(ctrl_adll, (reg + cs * CS_REGISTER_ADDR_OFFSET),
MASK_ALL_BITS);
printf("%s, DQS, ADLL,,,", (direction == 0) ? "Tx" : "Rx");
print_adll(dev_num, ctrl_adll);
}
ddr3_tip_reset_fifo_ptr(dev_num);
return 0;
}
void print_topology(struct hws_topology_map *topology_db)
{
u32 ui, uj;
printf("\tinterface_mask: 0x%x\n", topology_db->if_act_mask);
printf("\tNum Bus: %d\n", topology_db->num_of_bus_per_interface);
printf("\tbus_act_mask: 0x%x\n", topology_db->bus_act_mask);
for (ui = 0; ui < MAX_INTERFACE_NUM; ui++) {
VALIDATE_ACTIVE(topology_db->if_act_mask, ui);
printf("\n\tInterface ID: %d\n", ui);
printf("\t\tDDR Frequency: %s\n",
convert_freq(topology_db->
interface_params[ui].memory_freq));
printf("\t\tSpeed_bin: %d\n",
topology_db->interface_params[ui].speed_bin_index);
printf("\t\tBus_width: %d\n",
(4 << topology_db->interface_params[ui].bus_width));
printf("\t\tMem_size: %s\n",
convert_mem_size(topology_db->
interface_params[ui].memory_size));
printf("\t\tCAS-WL: %d\n",
topology_db->interface_params[ui].cas_wl);
printf("\t\tCAS-L: %d\n",
topology_db->interface_params[ui].cas_l);
printf("\t\tTemperature: %d\n",
topology_db->interface_params[ui].interface_temp);
printf("\n");
for (uj = 0; uj < 4; uj++) {
printf("\t\tBus %d parameters- CS Mask: 0x%x\t", uj,
topology_db->interface_params[ui].
as_bus_params[uj].cs_bitmask);
printf("Mirror: 0x%x\t",
topology_db->interface_params[ui].
as_bus_params[uj].mirror_enable_bitmask);
printf("DQS Swap is %s \t",
(topology_db->
interface_params[ui].as_bus_params[uj].
is_dqs_swap == 1) ? "enabled" : "disabled");
printf("Ck Swap:%s\t",
(topology_db->
interface_params[ui].as_bus_params[uj].
is_ck_swap == 1) ? "enabled" : "disabled");
printf("\n");
}
}
}
#endif
/*
* Execute XSB Test transaction (rd/wr/both)
*/
int run_xsb_test(u32 dev_num, u32 mem_addr, u32 write_type,
u32 read_type, u32 burst_length)
{
u32 seq = 0, if_id = 0, addr, cnt;
int ret = MV_OK, ret_tmp;
u32 data_read[MAX_INTERFACE_NUM];
struct hws_topology_map *tm = ddr3_get_topology_map();
for (if_id = 0; if_id <= MAX_INTERFACE_NUM - 1; if_id++) {
VALIDATE_ACTIVE(tm->if_act_mask, if_id);
addr = mem_addr;
for (cnt = 0; cnt <= burst_length; cnt++) {
seq = (seq + 1) % 8;
if (write_type != 0) {
CHECK_STATUS(ddr3_tip_ext_write
(dev_num, if_id, addr, 1,
xsb_test_table[seq]));
}
if (read_type != 0) {
CHECK_STATUS(ddr3_tip_ext_read
(dev_num, if_id, addr, 1,
data_read));
}
if ((read_type != 0) && (write_type != 0)) {
ret_tmp =
ddr3_tip_compare(if_id,
xsb_test_table[seq],
data_read,
0xff);
addr += (EXT_ACCESS_BURST_LENGTH * 4);
ret = (ret != MV_OK) ? ret : ret_tmp;
}
}
}
return ret;
}
#else /*EXCLUDE_SWITCH_DEBUG */
u32 rl_version = 1; /* 0 - old RL machine */
u32 vref = 0x4;
u32 start_xsb_offset = 0;
u8 cs_mask_reg[] = {
0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int run_xsb_test(u32 dev_num, u32 mem_addr, u32 write_type,
u32 read_type, u32 burst_length)
{
return MV_OK;
}
#endif