blob: 143818d4018a2d931f545e559ef683b8ac9bfeba [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Freescale i.MX28 SSP MMC driver
*
* Copyright (C) 2019 DENX Software Engineering
* Lukasz Majewski, DENX Software Engineering, lukma@denx.de
*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*
* Based on code from LTIB:
* (C) Copyright 2008-2010 Freescale Semiconductor, Inc.
* Terry Lv
*
* Copyright 2007, Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*/
#include <common.h>
#include <log.h>
#include <malloc.h>
#include <mmc.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/dma.h>
#include <bouncebuf.h>
#define MXSMMC_MAX_TIMEOUT 10000
#define MXSMMC_SMALL_TRANSFER 512
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mxsmmc_priv {
int id;
int (*mmc_is_wp)(int);
int (*mmc_cd)(int);
struct mmc_config cfg; /* mmc configuration */
struct mxs_dma_desc *desc;
uint32_t buswidth;
struct mxs_ssp_regs *regs;
};
#else /* CONFIG_IS_ENABLED(DM_MMC) */
#include <dm/device.h>
#include <dm/read.h>
#include <dt-structs.h>
struct mxsmmc_plat {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_fsl_imx23_mmc dtplat;
#endif
struct mmc_config cfg;
struct mmc mmc;
fdt_addr_t base;
int non_removable;
int buswidth;
int dma_id;
int clk_id;
};
struct mxsmmc_priv {
int clkid;
struct mxs_dma_desc *desc;
u32 buswidth;
struct mxs_ssp_regs *regs;
unsigned int dma_channel;
};
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
static int mxsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data);
static int mxsmmc_cd(struct mxsmmc_priv *priv)
{
struct mxs_ssp_regs *ssp_regs = priv->regs;
if (priv->mmc_cd)
return priv->mmc_cd(priv->id);
return !(readl(&ssp_regs->hw_ssp_status) & SSP_STATUS_CARD_DETECT);
}
static int mxsmmc_set_ios(struct mmc *mmc)
{
struct mxsmmc_priv *priv = mmc->priv;
struct mxs_ssp_regs *ssp_regs = priv->regs;
/* Set the clock speed */
if (mmc->clock)
mxs_set_ssp_busclock(priv->id, mmc->clock / 1000);
switch (mmc->bus_width) {
case 1:
priv->buswidth = SSP_CTRL0_BUS_WIDTH_ONE_BIT;
break;
case 4:
priv->buswidth = SSP_CTRL0_BUS_WIDTH_FOUR_BIT;
break;
case 8:
priv->buswidth = SSP_CTRL0_BUS_WIDTH_EIGHT_BIT;
break;
}
/* Set the bus width */
clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0,
SSP_CTRL0_BUS_WIDTH_MASK, priv->buswidth);
debug("MMC%d: Set %d bits bus width\n",
mmc->block_dev.devnum, mmc->bus_width);
return 0;
}
static int mxsmmc_init(struct mmc *mmc)
{
struct mxsmmc_priv *priv = mmc->priv;
struct mxs_ssp_regs *ssp_regs = priv->regs;
/* Reset SSP */
mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
/* Reconfigure the SSP block for MMC operation */
writel(SSP_CTRL1_SSP_MODE_SD_MMC |
SSP_CTRL1_WORD_LENGTH_EIGHT_BITS |
SSP_CTRL1_DMA_ENABLE |
SSP_CTRL1_POLARITY |
SSP_CTRL1_RECV_TIMEOUT_IRQ_EN |
SSP_CTRL1_DATA_CRC_IRQ_EN |
SSP_CTRL1_DATA_TIMEOUT_IRQ_EN |
SSP_CTRL1_RESP_TIMEOUT_IRQ_EN |
SSP_CTRL1_RESP_ERR_IRQ_EN,
&ssp_regs->hw_ssp_ctrl1_set);
/* Set initial bit clock 400 KHz */
mxs_set_ssp_busclock(priv->id, 400);
/* Send initial 74 clock cycles (185 us @ 400 KHz)*/
writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_set);
udelay(200);
writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_clr);
return 0;
}
static const struct mmc_ops mxsmmc_ops = {
.send_cmd = mxsmmc_send_cmd,
.set_ios = mxsmmc_set_ios,
.init = mxsmmc_init,
};
int mxsmmc_initialize(struct bd_info *bis, int id, int (*wp)(int),
int (*cd)(int))
{
struct mmc *mmc = NULL;
struct mxsmmc_priv *priv = NULL;
int ret;
const unsigned int mxsmmc_clk_id = mxs_ssp_clock_by_bus(id);
if (!mxs_ssp_bus_id_valid(id))
return -ENODEV;
priv = malloc(sizeof(struct mxsmmc_priv));
if (!priv)
return -ENOMEM;
priv->desc = mxs_dma_desc_alloc();
if (!priv->desc) {
free(priv);
return -ENOMEM;
}
ret = mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + id);
if (ret)
return ret;
priv->mmc_is_wp = wp;
priv->mmc_cd = cd;
priv->id = id;
priv->regs = mxs_ssp_regs_by_bus(id);
priv->cfg.name = "MXS MMC";
priv->cfg.ops = &mxsmmc_ops;
priv->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
priv->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT |
MMC_MODE_HS_52MHz | MMC_MODE_HS;
/*
* SSPCLK = 480 * 18 / 29 / 1 = 297.731 MHz
* SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)),
* CLOCK_DIVIDE has to be an even value from 2 to 254, and
* CLOCK_RATE could be any integer from 0 to 255.
*/
priv->cfg.f_min = 400000;
priv->cfg.f_max = mxc_get_clock(MXC_SSP0_CLK + mxsmmc_clk_id)
* 1000 / 2;
priv->cfg.b_max = 0x20;
mmc = mmc_create(&priv->cfg, priv);
if (!mmc) {
mxs_dma_desc_free(priv->desc);
free(priv);
return -ENOMEM;
}
return 0;
}
#endif /* CONFIG_IS_ENABLED(DM_MMC) */
static int mxsmmc_send_cmd_pio(struct mxsmmc_priv *priv, struct mmc_data *data)
{
struct mxs_ssp_regs *ssp_regs = priv->regs;
uint32_t *data_ptr;
int timeout = MXSMMC_MAX_TIMEOUT;
uint32_t reg;
uint32_t data_count = data->blocksize * data->blocks;
if (data->flags & MMC_DATA_READ) {
data_ptr = (uint32_t *)data->dest;
while (data_count && --timeout) {
reg = readl(&ssp_regs->hw_ssp_status);
if (!(reg & SSP_STATUS_FIFO_EMPTY)) {
*data_ptr++ = readl(&ssp_regs->hw_ssp_data);
data_count -= 4;
timeout = MXSMMC_MAX_TIMEOUT;
} else
udelay(1000);
}
} else {
data_ptr = (uint32_t *)data->src;
timeout *= 100;
while (data_count && --timeout) {
reg = readl(&ssp_regs->hw_ssp_status);
if (!(reg & SSP_STATUS_FIFO_FULL)) {
writel(*data_ptr++, &ssp_regs->hw_ssp_data);
data_count -= 4;
timeout = MXSMMC_MAX_TIMEOUT;
} else
udelay(1000);
}
}
return timeout ? 0 : -ECOMM;
}
static int mxsmmc_send_cmd_dma(struct mxsmmc_priv *priv, struct mmc_data *data)
{
uint32_t data_count = data->blocksize * data->blocks;
int dmach;
struct mxs_dma_desc *desc = priv->desc;
void *addr;
unsigned int flags;
struct bounce_buffer bbstate;
memset(desc, 0, sizeof(struct mxs_dma_desc));
desc->address = (dma_addr_t)desc;
if (data->flags & MMC_DATA_READ) {
priv->desc->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
addr = data->dest;
flags = GEN_BB_WRITE;
} else {
priv->desc->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
addr = (void *)data->src;
flags = GEN_BB_READ;
}
bounce_buffer_start(&bbstate, addr, data_count, flags);
priv->desc->cmd.address = (dma_addr_t)bbstate.bounce_buffer;
priv->desc->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM |
(data_count << MXS_DMA_DESC_BYTES_OFFSET);
#if !CONFIG_IS_ENABLED(DM_MMC)
dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + priv->id;
#else
dmach = priv->dma_channel;
#endif
mxs_dma_desc_append(dmach, priv->desc);
if (mxs_dma_go(dmach)) {
bounce_buffer_stop(&bbstate);
return -ECOMM;
}
bounce_buffer_stop(&bbstate);
return 0;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
/*
* Sends a command out on the bus. Takes the mmc pointer,
* a command pointer, and an optional data pointer.
*/
static int
mxsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
struct mxsmmc_priv *priv = mmc->priv;
struct mxs_ssp_regs *ssp_regs = priv->regs;
#else
static int
mxsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, struct mmc_data *data)
{
struct mxsmmc_plat *plat = dev_get_plat(dev);
struct mxsmmc_priv *priv = dev_get_priv(dev);
struct mxs_ssp_regs *ssp_regs = priv->regs;
struct mmc *mmc = &plat->mmc;
#endif
uint32_t reg;
int timeout;
uint32_t ctrl0;
int ret;
#if !CONFIG_IS_ENABLED(DM_MMC)
int devnum = mmc->block_dev.devnum;
#else
int devnum = mmc_get_blk_desc(mmc)->devnum;
#endif
debug("MMC%d: CMD%d\n", devnum, cmd->cmdidx);
/* Check bus busy */
timeout = MXSMMC_MAX_TIMEOUT;
while (--timeout) {
udelay(1000);
reg = readl(&ssp_regs->hw_ssp_status);
if (!(reg &
(SSP_STATUS_BUSY | SSP_STATUS_DATA_BUSY |
SSP_STATUS_CMD_BUSY))) {
break;
}
}
if (!timeout) {
printf("MMC%d: Bus busy timeout!\n", devnum);
return -ETIMEDOUT;
}
#if !CONFIG_IS_ENABLED(DM_MMC)
/* See if card is present */
if (!mxsmmc_cd(priv)) {
printf("MMC%d: No card detected!\n", devnum);
return -ENOMEDIUM;
}
#endif
/* Start building CTRL0 contents */
ctrl0 = priv->buswidth;
/* Set up command */
if (!(cmd->resp_type & MMC_RSP_CRC))
ctrl0 |= SSP_CTRL0_IGNORE_CRC;
if (cmd->resp_type & MMC_RSP_PRESENT) /* Need to get response */
ctrl0 |= SSP_CTRL0_GET_RESP;
if (cmd->resp_type & MMC_RSP_136) /* It's a 136 bits response */
ctrl0 |= SSP_CTRL0_LONG_RESP;
if (data && (data->blocksize * data->blocks < MXSMMC_SMALL_TRANSFER))
writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
else
writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
/* Command index */
reg = readl(&ssp_regs->hw_ssp_cmd0);
reg &= ~(SSP_CMD0_CMD_MASK | SSP_CMD0_APPEND_8CYC);
reg |= cmd->cmdidx << SSP_CMD0_CMD_OFFSET;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
reg |= SSP_CMD0_APPEND_8CYC;
writel(reg, &ssp_regs->hw_ssp_cmd0);
/* Command argument */
writel(cmd->cmdarg, &ssp_regs->hw_ssp_cmd1);
/* Set up data */
if (data) {
/* READ or WRITE */
if (data->flags & MMC_DATA_READ) {
ctrl0 |= SSP_CTRL0_READ;
#if !CONFIG_IS_ENABLED(DM_MMC)
} else if (priv->mmc_is_wp &&
priv->mmc_is_wp(devnum)) {
printf("MMC%d: Can not write a locked card!\n", devnum);
return -EOPNOTSUPP;
#endif
}
ctrl0 |= SSP_CTRL0_DATA_XFER;
reg = data->blocksize * data->blocks;
#if defined(CONFIG_MX23)
ctrl0 |= reg & SSP_CTRL0_XFER_COUNT_MASK;
clrsetbits_le32(&ssp_regs->hw_ssp_cmd0,
SSP_CMD0_BLOCK_SIZE_MASK | SSP_CMD0_BLOCK_COUNT_MASK,
((data->blocks - 1) << SSP_CMD0_BLOCK_COUNT_OFFSET) |
((ffs(data->blocksize) - 1) <<
SSP_CMD0_BLOCK_SIZE_OFFSET));
#elif defined(CONFIG_MX28)
writel(reg, &ssp_regs->hw_ssp_xfer_size);
reg = ((data->blocks - 1) <<
SSP_BLOCK_SIZE_BLOCK_COUNT_OFFSET) |
((ffs(data->blocksize) - 1) <<
SSP_BLOCK_SIZE_BLOCK_SIZE_OFFSET);
writel(reg, &ssp_regs->hw_ssp_block_size);
#endif
}
/* Kick off the command */
ctrl0 |= SSP_CTRL0_WAIT_FOR_IRQ | SSP_CTRL0_ENABLE | SSP_CTRL0_RUN;
writel(ctrl0, &ssp_regs->hw_ssp_ctrl0);
/* Wait for the command to complete */
timeout = MXSMMC_MAX_TIMEOUT;
while (--timeout) {
udelay(1000);
reg = readl(&ssp_regs->hw_ssp_status);
if (!(reg & SSP_STATUS_CMD_BUSY))
break;
}
if (!timeout) {
printf("MMC%d: Command %d busy\n", devnum, cmd->cmdidx);
return -ETIMEDOUT;
}
/* Check command timeout */
if (reg & SSP_STATUS_RESP_TIMEOUT) {
debug("MMC%d: Command %d timeout (status 0x%08x)\n",
devnum, cmd->cmdidx, reg);
return -ETIMEDOUT;
}
/* Check command errors */
if (reg & (SSP_STATUS_RESP_CRC_ERR | SSP_STATUS_RESP_ERR)) {
printf("MMC%d: Command %d error (status 0x%08x)!\n",
devnum, cmd->cmdidx, reg);
return -ECOMM;
}
/* Copy response to response buffer */
if (cmd->resp_type & MMC_RSP_136) {
cmd->response[3] = readl(&ssp_regs->hw_ssp_sdresp0);
cmd->response[2] = readl(&ssp_regs->hw_ssp_sdresp1);
cmd->response[1] = readl(&ssp_regs->hw_ssp_sdresp2);
cmd->response[0] = readl(&ssp_regs->hw_ssp_sdresp3);
} else
cmd->response[0] = readl(&ssp_regs->hw_ssp_sdresp0);
/* Return if no data to process */
if (!data)
return 0;
if (data->blocksize * data->blocks < MXSMMC_SMALL_TRANSFER) {
ret = mxsmmc_send_cmd_pio(priv, data);
if (ret) {
printf("MMC%d: Data timeout with command %d "
"(status 0x%08x)!\n", devnum, cmd->cmdidx, reg);
return ret;
}
} else {
ret = mxsmmc_send_cmd_dma(priv, data);
if (ret) {
printf("MMC%d: DMA transfer failed\n", devnum);
return ret;
}
}
/* Check data errors */
reg = readl(&ssp_regs->hw_ssp_status);
if (reg &
(SSP_STATUS_TIMEOUT | SSP_STATUS_DATA_CRC_ERR |
SSP_STATUS_FIFO_OVRFLW | SSP_STATUS_FIFO_UNDRFLW)) {
printf("MMC%d: Data error with command %d (status 0x%08x)!\n",
devnum, cmd->cmdidx, reg);
return -ECOMM;
}
return 0;
}
#if CONFIG_IS_ENABLED(DM_MMC)
/* Base numbers of i.MX2[38] clk for ssp0 IP block */
#define MXS_SSP_IMX23_CLKID_SSP0 33
#define MXS_SSP_IMX28_CLKID_SSP0 46
static int mxsmmc_get_cd(struct udevice *dev)
{
struct mxsmmc_plat *plat = dev_get_plat(dev);
struct mxsmmc_priv *priv = dev_get_priv(dev);
struct mxs_ssp_regs *ssp_regs = priv->regs;
if (plat->non_removable)
return 1;
return !(readl(&ssp_regs->hw_ssp_status) & SSP_STATUS_CARD_DETECT);
}
static int mxsmmc_set_ios(struct udevice *dev)
{
struct mxsmmc_plat *plat = dev_get_plat(dev);
struct mxsmmc_priv *priv = dev_get_priv(dev);
struct mxs_ssp_regs *ssp_regs = priv->regs;
struct mmc *mmc = &plat->mmc;
/* Set the clock speed */
if (mmc->clock)
mxs_set_ssp_busclock(priv->clkid, mmc->clock / 1000);
switch (mmc->bus_width) {
case 1:
priv->buswidth = SSP_CTRL0_BUS_WIDTH_ONE_BIT;
break;
case 4:
priv->buswidth = SSP_CTRL0_BUS_WIDTH_FOUR_BIT;
break;
case 8:
priv->buswidth = SSP_CTRL0_BUS_WIDTH_EIGHT_BIT;
break;
}
/* Set the bus width */
clrsetbits_le32(&ssp_regs->hw_ssp_ctrl0,
SSP_CTRL0_BUS_WIDTH_MASK, priv->buswidth);
debug("MMC%d: Set %d bits bus width\n", mmc_get_blk_desc(mmc)->devnum,
mmc->bus_width);
return 0;
}
static int mxsmmc_init(struct udevice *dev)
{
struct mxsmmc_priv *priv = dev_get_priv(dev);
struct mxs_ssp_regs *ssp_regs = priv->regs;
/* Reset SSP */
mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
/* Reconfigure the SSP block for MMC operation */
writel(SSP_CTRL1_SSP_MODE_SD_MMC |
SSP_CTRL1_WORD_LENGTH_EIGHT_BITS |
SSP_CTRL1_DMA_ENABLE |
SSP_CTRL1_POLARITY |
SSP_CTRL1_RECV_TIMEOUT_IRQ_EN |
SSP_CTRL1_DATA_CRC_IRQ_EN |
SSP_CTRL1_DATA_TIMEOUT_IRQ_EN |
SSP_CTRL1_RESP_TIMEOUT_IRQ_EN |
SSP_CTRL1_RESP_ERR_IRQ_EN,
&ssp_regs->hw_ssp_ctrl1_set);
/* Set initial bit clock 400 KHz */
mxs_set_ssp_busclock(priv->clkid, 400);
/* Send initial 74 clock cycles (185 us @ 400 KHz)*/
writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_set);
udelay(200);
writel(SSP_CMD0_CONT_CLKING_EN, &ssp_regs->hw_ssp_cmd0_clr);
return 0;
}
static int mxsmmc_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct mxsmmc_plat *plat = dev_get_plat(dev);
struct mxsmmc_priv *priv = dev_get_priv(dev);
struct blk_desc *bdesc;
struct mmc *mmc;
int ret, clkid;
debug("%s: probe\n", __func__);
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_fsl_imx23_mmc *dtplat = &plat->dtplat;
struct phandle_1_arg *p1a = &dtplat->clocks[0];
priv->buswidth = dtplat->bus_width;
priv->regs = (struct mxs_ssp_regs *)dtplat->reg[0];
priv->dma_channel = dtplat->dmas[1];
clkid = p1a->arg[0];
plat->non_removable = dtplat->non_removable;
debug("OF_PLATDATA: regs: 0x%p bw: %d clkid: %d non_removable: %d\n",
priv->regs, priv->buswidth, clkid, plat->non_removable);
#else
priv->regs = (struct mxs_ssp_regs *)plat->base;
priv->dma_channel = plat->dma_id;
clkid = plat->clk_id;
#endif
#ifdef CONFIG_MX28
priv->clkid = clkid - MXS_SSP_IMX28_CLKID_SSP0;
#else /* CONFIG_MX23 */
priv->clkid = clkid - MXS_SSP_IMX23_CLKID_SSP0;
#endif
mmc = &plat->mmc;
mmc->cfg = &plat->cfg;
mmc->dev = dev;
priv->desc = mxs_dma_desc_alloc();
if (!priv->desc) {
printf("%s: Cannot allocate DMA descriptor\n", __func__);
return -ENOMEM;
}
ret = mxs_dma_init_channel(priv->dma_channel);
if (ret)
return ret;
plat->cfg.name = "MXS MMC";
plat->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
plat->cfg.host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT |
MMC_MODE_HS_52MHz | MMC_MODE_HS;
/*
* SSPCLK = 480 * 18 / 29 / 1 = 297.731 MHz
* SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)),
* CLOCK_DIVIDE has to be an even value from 2 to 254, and
* CLOCK_RATE could be any integer from 0 to 255.
*/
plat->cfg.f_min = 400000;
plat->cfg.f_max = mxc_get_clock(MXC_SSP0_CLK + priv->clkid) * 1000 / 2;
plat->cfg.b_max = 0x20;
bdesc = mmc_get_blk_desc(mmc);
if (!bdesc) {
printf("%s: No block device descriptor!\n", __func__);
return -ENODEV;
}
if (plat->non_removable)
bdesc->removable = 0;
ret = mxsmmc_init(dev);
if (ret)
printf("%s: MMC%d init error %d\n", __func__,
bdesc->devnum, ret);
/* Set the initial clock speed */
mmc_set_clock(mmc, 400000, MMC_CLK_ENABLE);
upriv->mmc = mmc;
return 0;
};
#if CONFIG_IS_ENABLED(BLK)
static int mxsmmc_bind(struct udevice *dev)
{
struct mxsmmc_plat *plat = dev_get_plat(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
#endif
static const struct dm_mmc_ops mxsmmc_ops = {
.get_cd = mxsmmc_get_cd,
.send_cmd = mxsmmc_send_cmd,
.set_ios = mxsmmc_set_ios,
};
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
static int mxsmmc_of_to_plat(struct udevice *bus)
{
struct mxsmmc_plat *plat = bus->plat;
u32 prop[2];
int ret;
plat->base = dev_read_addr(bus);
plat->buswidth =
dev_read_u32_default(bus, "bus-width", 1);
plat->non_removable = dev_read_bool(bus, "non-removable");
ret = dev_read_u32_array(bus, "dmas", prop, ARRAY_SIZE(prop));
if (ret) {
printf("%s: Reading 'dmas' property failed!\n", __func__);
return ret;
}
plat->dma_id = prop[1];
ret = dev_read_u32_array(bus, "clocks", prop, ARRAY_SIZE(prop));
if (ret) {
printf("%s: Reading 'clocks' property failed!\n", __func__);
return ret;
}
plat->clk_id = prop[1];
debug("%s: base=0x%x, bus_width=%d %s dma_id=%d clk_id=%d\n",
__func__, (uint)plat->base, plat->buswidth,
plat->non_removable ? "non-removable" : NULL,
plat->dma_id, plat->clk_id);
return 0;
}
static const struct udevice_id mxsmmc_ids[] = {
{ .compatible = "fsl,imx23-mmc", },
{ .compatible = "fsl,imx28-mmc", },
{ /* sentinel */ }
};
#endif
U_BOOT_DRIVER(fsl_imx23_mmc) = {
.name = "fsl_imx23_mmc",
.id = UCLASS_MMC,
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
.of_match = mxsmmc_ids,
.of_to_plat = mxsmmc_of_to_plat,
#endif
.ops = &mxsmmc_ops,
#if CONFIG_IS_ENABLED(BLK)
.bind = mxsmmc_bind,
#endif
.probe = mxsmmc_probe,
.priv_auto = sizeof(struct mxsmmc_priv),
.plat_auto = sizeof(struct mxsmmc_plat),
};
U_BOOT_DRIVER_ALIAS(fsl_imx23_mmc, fsl_imx28_mmc)
#endif /* CONFIG_DM_MMC */