blob: 6a102d385311ea876ae5228f3d3b12ad51ae80a3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* board.c
*
* (C) Copyright 2016
* Heiko Schocher, DENX Software Engineering, hs@denx.de.
*
* Based on:
* Board functions for TI AM335X based boards
*
* Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
*/
#include <common.h>
#include <bootstage.h>
#include <cpu_func.h>
#include <env.h>
#include <errno.h>
#include <init.h>
#include <irq_func.h>
#include <net.h>
#include <spl.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mem.h>
#include <asm/io.h>
#include <asm/emif.h>
#include <asm/gpio.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <linux/delay.h>
#include <power/tps65217.h>
#include <env_internal.h>
#include <watchdog.h>
#include "mmc.h"
#include "board.h"
DECLARE_GLOBAL_DATA_PTR;
static struct shc_eeprom __attribute__((section(".data"))) header;
static int shc_eeprom_valid;
/*
* Read header information from EEPROM into global structure.
*/
static int read_eeprom(void)
{
/* Check if baseboard eeprom is available */
if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
puts("Could not probe the EEPROM; something fundamentally wrong on the I2C bus.\n");
return -ENODEV;
}
/* read the eeprom using i2c */
if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 2, (uchar *)&header,
sizeof(header))) {
puts("Could not read the EEPROM; something fundamentally wrong on the I2C bus.\n");
return -EIO;
}
if (header.magic != HDR_MAGIC) {
printf("Incorrect magic number (0x%x) in EEPROM\n",
header.magic);
return -EIO;
}
shc_eeprom_valid = 1;
return 0;
}
static void shc_request_gpio(void)
{
gpio_request(LED_PWR_BL_GPIO, "LED PWR BL");
gpio_request(LED_PWR_RD_GPIO, "LED PWR RD");
gpio_request(RESET_GPIO, "reset");
gpio_request(WIFI_REGEN_GPIO, "WIFI REGEN");
gpio_request(WIFI_RST_GPIO, "WIFI rst");
gpio_request(ZIGBEE_RST_GPIO, "ZigBee rst");
gpio_request(BIDCOS_RST_GPIO, "BIDCOS rst");
gpio_request(ENOC_RST_GPIO, "ENOC rst");
#if defined CONFIG_B_SAMPLE
gpio_request(LED_PWR_GN_GPIO, "LED PWR GN");
gpio_request(LED_CONN_BL_GPIO, "LED CONN BL");
gpio_request(LED_CONN_RD_GPIO, "LED CONN RD");
gpio_request(LED_CONN_GN_GPIO, "LED CONN GN");
#else
gpio_request(LED_LAN_BL_GPIO, "LED LAN BL");
gpio_request(LED_LAN_RD_GPIO, "LED LAN RD");
gpio_request(LED_CLOUD_BL_GPIO, "LED CLOUD BL");
gpio_request(LED_CLOUD_RD_GPIO, "LED CLOUD RD");
gpio_request(LED_PWM_GPIO, "LED PWM");
gpio_request(Z_WAVE_RST_GPIO, "Z WAVE rst");
#endif
gpio_request(BACK_BUTTON_GPIO, "Back button");
gpio_request(FRONT_BUTTON_GPIO, "Front button");
}
/*
* Function which forces all installed modules into running state for ICT
* testing. Called by SPL.
*/
static void __maybe_unused force_modules_running(void)
{
/* Wi-Fi power regulator enable - high = enabled */
gpio_direction_output(WIFI_REGEN_GPIO, 1);
/*
* Wait for Wi-Fi power regulator to reach a stable voltage
* (soft-start time, max. 350 µs)
*/
__udelay(350);
/* Wi-Fi module reset - high = running */
gpio_direction_output(WIFI_RST_GPIO, 1);
/* ZigBee reset - high = running */
gpio_direction_output(ZIGBEE_RST_GPIO, 1);
/* BidCos reset - high = running */
gpio_direction_output(BIDCOS_RST_GPIO, 1);
#if !defined(CONFIG_B_SAMPLE)
/* Z-Wave reset - high = running */
gpio_direction_output(Z_WAVE_RST_GPIO, 1);
#endif
/* EnOcean reset - low = running */
gpio_direction_output(ENOC_RST_GPIO, 0);
}
/*
* Function which forces all installed modules into reset - to be released by
* the OS, called by SPL
*/
static void __maybe_unused force_modules_reset(void)
{
/* Wi-Fi module reset - low = reset */
gpio_direction_output(WIFI_RST_GPIO, 0);
/* Wi-Fi power regulator enable - low = disabled */
gpio_direction_output(WIFI_REGEN_GPIO, 0);
/* ZigBee reset - low = reset */
gpio_direction_output(ZIGBEE_RST_GPIO, 0);
/* BidCos reset - low = reset */
/*gpio_direction_output(BIDCOS_RST_GPIO, 0);*/
#if !defined(CONFIG_B_SAMPLE)
/* Z-Wave reset - low = reset */
gpio_direction_output(Z_WAVE_RST_GPIO, 0);
#endif
/* EnOcean reset - high = reset*/
gpio_direction_output(ENOC_RST_GPIO, 1);
}
/*
* Function to set the LEDs in the state "Bootloader booting"
*/
static void __maybe_unused leds_set_booting(void)
{
#if defined(CONFIG_B_SAMPLE)
/* Turn all red LEDs on */
gpio_direction_output(LED_PWR_RD_GPIO, 1);
gpio_direction_output(LED_CONN_RD_GPIO, 1);
#else /* All other SHCs starting with B2-Sample */
/* Set the PWM GPIO */
gpio_direction_output(LED_PWM_GPIO, 1);
/* Turn all red LEDs on */
gpio_direction_output(LED_PWR_RD_GPIO, 1);
gpio_direction_output(LED_LAN_RD_GPIO, 1);
gpio_direction_output(LED_CLOUD_RD_GPIO, 1);
#endif
}
/*
* Function to set the LEDs in the state "Bootloader error"
*/
static void leds_set_failure(int state)
{
#if defined(CONFIG_B_SAMPLE)
/* Turn all blue and green LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_PWR_GN_GPIO, 0);
gpio_set_value(LED_CONN_BL_GPIO, 0);
gpio_set_value(LED_CONN_GN_GPIO, 0);
/* Turn all red LEDs to 'state' */
gpio_set_value(LED_PWR_RD_GPIO, state);
gpio_set_value(LED_CONN_RD_GPIO, state);
#else /* All other SHCs starting with B2-Sample */
/* Set the PWM GPIO */
gpio_direction_output(LED_PWM_GPIO, 1);
/* Turn all blue LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_LAN_BL_GPIO, 0);
gpio_set_value(LED_CLOUD_BL_GPIO, 0);
/* Turn all red LEDs to 'state' */
gpio_set_value(LED_PWR_RD_GPIO, state);
gpio_set_value(LED_LAN_RD_GPIO, state);
gpio_set_value(LED_CLOUD_RD_GPIO, state);
#endif
}
/*
* Function to set the LEDs in the state "Bootloader finished"
*/
static void leds_set_finish(void)
{
#if defined(CONFIG_B_SAMPLE)
/* Turn all LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_PWR_RD_GPIO, 0);
gpio_set_value(LED_PWR_GN_GPIO, 0);
gpio_set_value(LED_CONN_BL_GPIO, 0);
gpio_set_value(LED_CONN_RD_GPIO, 0);
gpio_set_value(LED_CONN_GN_GPIO, 0);
#else /* All other SHCs starting with B2-Sample */
/* Turn all LEDs off */
gpio_set_value(LED_PWR_BL_GPIO, 0);
gpio_set_value(LED_PWR_RD_GPIO, 0);
gpio_set_value(LED_LAN_BL_GPIO, 0);
gpio_set_value(LED_LAN_RD_GPIO, 0);
gpio_set_value(LED_CLOUD_BL_GPIO, 0);
gpio_set_value(LED_CLOUD_RD_GPIO, 0);
/* Turn off the PWM GPIO and mux it to EHRPWM */
gpio_set_value(LED_PWM_GPIO, 0);
enable_shc_board_pwm_pin_mux();
#endif
}
static void check_button_status(void)
{
ulong value;
gpio_direction_input(FRONT_BUTTON_GPIO);
value = gpio_get_value(FRONT_BUTTON_GPIO);
if (value == 0) {
printf("front button activated !\n");
env_set("harakiri", "1");
}
}
#if defined(CONFIG_SPL_BUILD)
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
return 1;
}
#endif
static void shc_board_early_init(void)
{
shc_request_gpio();
# ifdef CONFIG_SHC_ICT
/* Force all modules into enabled state for ICT testing */
force_modules_running();
# else
/* Force all modules to enter Reset state until released by the OS */
force_modules_reset();
# endif
leds_set_booting();
}
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
#define MPU_SPREADING_PERMILLE 18 /* Spread 1.8 percent */
#define OSC (V_OSCK/1000000)
/* Bosch: Predivider must be fixed to 4, so N = 4-1 */
#define MPUPLL_N (4-1)
/* Bosch: Fref = 24 MHz / (N+1) = 24 MHz / 4 = 6 MHz */
#define MPUPLL_FREF (OSC / (MPUPLL_N + 1))
const struct dpll_params dpll_ddr_shc = {
400, OSC-1, 1, -1, -1, -1, -1};
const struct dpll_params *get_dpll_ddr_params(void)
{
return &dpll_ddr_shc;
}
/*
* As we enabled downspread SSC with 1.8%, the values needed to be corrected
* such that the 20% overshoot will not lead to too high frequencies.
* In all cases, this is achieved by subtracting one from M (6 MHz less).
* Example: 600 MHz CPU
* Step size: 24 MHz OSC, N = 4 (fix) --> Fref = 6 MHz
* 600 MHz - 6 MHz (1x Fref) = 594 MHz
* SSC: 594 MHz * 1.8% = 10.7 MHz SSC
* Overshoot: 10.7 MHz * 20 % = 2.2 MHz
* --> Fmax = 594 MHz + 2.2 MHz = 596.2 MHz, lower than 600 MHz --> OK!
*/
const struct dpll_params dpll_mpu_shc_opp100 = {
99, MPUPLL_N, 1, -1, -1, -1, -1};
void am33xx_spl_board_init(void)
{
int sil_rev;
int mpu_vdd;
puts(BOARD_ID_STR);
/*
* Set CORE Frequency to OPP100
* Hint: DCDC3 (CORE) defaults to 1.100V (for OPP100)
*/
do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
sil_rev = readl(&cdev->deviceid) >> 28;
if (sil_rev < 2) {
puts("We do not support Silicon Revisions below 2.0!\n");
return;
}
dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
if (i2c_probe(TPS65217_CHIP_PM))
return;
/*
* Retrieve the CPU max frequency by reading the efuse
* SHC-Default: 600 MHz
*/
switch (dpll_mpu_opp100.m) {
case MPUPLL_M_1000:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
break;
case MPUPLL_M_800:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
break;
case MPUPLL_M_720:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
break;
case MPUPLL_M_600:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
break;
case MPUPLL_M_300:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_950MV;
break;
default:
puts("Cannot determine the frequency, failing!\n");
return;
}
if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set MPU Frequency to what we detected */
printf("MPU reference clock runs at %d MHz\n", MPUPLL_FREF);
printf("Setting MPU clock to %d MHz\n", MPUPLL_FREF *
dpll_mpu_shc_opp100.m);
do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_shc_opp100);
/* Enable Spread Spectrum for this freq to be clean on EMI side */
set_mpu_spreadspectrum(MPU_SPREADING_PERMILLE);
/*
* Using the default voltages for the PMIC (TPS65217D)
* LS1 = 1.8V (VDD_1V8)
* LS2 = 3.3V (VDD_3V3A)
* LDO1 = 1.8V (VIO and VRTC)
* LDO2 = 3.3V (VDD_3V3AUX)
*/
shc_board_early_init();
}
void set_uart_mux_conf(void)
{
enable_uart0_pin_mux();
}
void set_mux_conf_regs(void)
{
enable_shc_board_pin_mux();
}
const struct ctrl_ioregs ioregs_evmsk = {
.cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
};
static const struct ddr_data ddr3_shc_data = {
.datardsratio0 = MT41K256M16HA125E_RD_DQS,
.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
static const struct cmd_control ddr3_shc_cmd_ctrl_data = {
.cmd0csratio = MT41K256M16HA125E_RATIO,
.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd1csratio = MT41K256M16HA125E_RATIO,
.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd2csratio = MT41K256M16HA125E_RATIO,
.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
static struct emif_regs ddr3_shc_emif_reg_data = {
.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
.zq_config = MT41K256M16HA125E_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY |
PHY_EN_DYN_PWRDN,
};
void sdram_init(void)
{
/* Configure the DDR3 RAM */
config_ddr(400, &ioregs_evmsk, &ddr3_shc_data,
&ddr3_shc_cmd_ctrl_data, &ddr3_shc_emif_reg_data, 0);
}
#endif
/*
* Basic board specific setup. Pinmux has been handled already.
*/
int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)
hw_watchdog_init();
#endif
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
if (read_eeprom() < 0)
puts("EEPROM Content Invalid.\n");
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
#if defined(CONFIG_NOR) || defined(CONFIG_MTD_RAW_NAND)
gpmc_init();
#endif
shc_request_gpio();
return 0;
}
#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
check_button_status();
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
if (shc_eeprom_valid)
if (is_valid_ethaddr(header.mac_addr))
eth_env_set_enetaddr("ethaddr", header.mac_addr);
#endif
return 0;
}
#endif
#if defined(CONFIG_USB_ETHER) && \
(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER))
int board_eth_init(bd_t *bis)
{
return usb_eth_initialize(bis);
}
#endif
#ifdef CONFIG_SHOW_BOOT_PROGRESS
static void bosch_check_reset_pin(void)
{
if (readl(GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0) & RESET_MASK) {
printf("Resetting ...\n");
writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
disable_interrupts();
reset_cpu(0);
/*NOTREACHED*/
}
}
static void hang_bosch(const char *cause, int code)
{
int lv;
gpio_direction_input(RESET_GPIO);
/* Enable reset pin interrupt on falling edge */
writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_IRQSTATUS_SET_0);
writel(RESET_MASK, GPIO1_BASE + OMAP_GPIO_FALLINGDETECT);
enable_interrupts();
puts(cause);
for (;;) {
for (lv = 0; lv < code; lv++) {
bosch_check_reset_pin();
leds_set_failure(1);
__udelay(150 * 1000);
leds_set_failure(0);
__udelay(150 * 1000);
}
#if defined(BLINK_CODE)
__udelay(300 * 1000);
#endif
}
}
void show_boot_progress(int val)
{
switch (val) {
case BOOTSTAGE_ID_NEED_RESET:
hang_bosch("need reset", 4);
break;
}
}
void arch_preboot_os(void)
{
leds_set_finish();
}
#endif