blob: 47dcc37c2c7cb8c7c8c92c221a86ca847b55cf49 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2012 SAMSUNG Electronics
* Jaehoon Chung <jh80.chung@samsung.com>
* Rajeshawari Shinde <rajeshwari.s@samsung.com>
*/
#include <bouncebuf.h>
#include <cpu_func.h>
#include <errno.h>
#include <log.h>
#include <malloc.h>
#include <memalign.h>
#include <mmc.h>
#include <dwmmc.h>
#include <wait_bit.h>
#include <asm/cache.h>
#include <linux/delay.h>
#include <power/regulator.h>
#define PAGE_SIZE 4096
/* Internal DMA Controller (IDMAC) descriptor for 32-bit addressing mode */
struct dwmci_idmac32 {
u32 des0; /* Control descriptor */
u32 des1; /* Buffer size */
u32 des2; /* Buffer physical address */
u32 des3; /* Next descriptor physical address */
} __aligned(ARCH_DMA_MINALIGN);
/* Internal DMA Controller (IDMAC) descriptor for 64-bit addressing mode */
struct dwmci_idmac64 {
u32 des0; /* Control descriptor */
u32 des1; /* Reserved */
u32 des2; /* Buffer sizes */
u32 des3; /* Reserved */
u32 des4; /* Lower 32-bits of Buffer Address Pointer 1 */
u32 des5; /* Upper 32-bits of Buffer Address Pointer 1 */
u32 des6; /* Lower 32-bits of Next Descriptor Address */
u32 des7; /* Upper 32-bits of Next Descriptor Address */
} __aligned(ARCH_DMA_MINALIGN);
/* Register offsets for DW MMC blocks with 32-bit IDMAC */
static const struct dwmci_idmac_regs dwmci_idmac_regs32 = {
.dbaddrl = DWMCI_DBADDR,
.idsts = DWMCI_IDSTS,
.idinten = DWMCI_IDINTEN,
.dscaddrl = DWMCI_DSCADDR,
.bufaddrl = DWMCI_BUFADDR,
};
/* Register offsets for DW MMC blocks with 64-bit IDMAC */
static const struct dwmci_idmac_regs dwmci_idmac_regs64 = {
.dbaddrl = DWMCI_DBADDRL,
.dbaddru = DWMCI_DBADDRU,
.idsts = DWMCI_IDSTS64,
.idinten = DWMCI_IDINTEN64,
.dscaddrl = DWMCI_DSCADDRL,
.dscaddru = DWMCI_DSCADDRU,
.bufaddrl = DWMCI_BUFADDRL,
.bufaddru = DWMCI_BUFADDRU,
};
static int dwmci_wait_reset(struct dwmci_host *host, u32 value)
{
unsigned long timeout = 1000;
u32 ctrl;
dwmci_writel(host, DWMCI_CTRL, value);
while (timeout--) {
ctrl = dwmci_readl(host, DWMCI_CTRL);
if (!(ctrl & DWMCI_RESET_ALL))
return 1;
}
return 0;
}
static void dwmci_set_idma_desc32(struct dwmci_idmac32 *desc, u32 control,
u32 buf_size, u32 buf_addr)
{
phys_addr_t desc_phys = virt_to_phys(desc);
u32 next_desc_phys = desc_phys + sizeof(struct dwmci_idmac32);
desc->des0 = control;
desc->des1 = buf_size;
desc->des2 = buf_addr;
desc->des3 = next_desc_phys;
}
static void dwmci_set_idma_desc64(struct dwmci_idmac64 *desc, u32 control,
u32 buf_size, u64 buf_addr)
{
phys_addr_t desc_phys = virt_to_phys(desc);
u64 next_desc_phys = desc_phys + sizeof(struct dwmci_idmac64);
desc->des0 = control;
desc->des1 = 0;
desc->des2 = buf_size;
desc->des3 = 0;
desc->des4 = buf_addr & 0xffffffff;
desc->des5 = buf_addr >> 32;
desc->des6 = next_desc_phys & 0xffffffff;
desc->des7 = next_desc_phys >> 32;
}
static void dwmci_prepare_desc(struct dwmci_host *host, struct mmc_data *data,
void *cur_idmac, void *bounce_buffer)
{
struct dwmci_idmac32 *desc32 = cur_idmac;
struct dwmci_idmac64 *desc64 = cur_idmac;
ulong data_start, data_end;
unsigned int blk_cnt, i;
data_start = (ulong)cur_idmac;
blk_cnt = data->blocks;
for (i = 0;; i++) {
phys_addr_t buf_phys = virt_to_phys(bounce_buffer);
unsigned int flags, cnt;
flags = DWMCI_IDMAC_OWN | DWMCI_IDMAC_CH;
if (i == 0)
flags |= DWMCI_IDMAC_FS;
if (blk_cnt <= 8) {
flags |= DWMCI_IDMAC_LD;
cnt = data->blocksize * blk_cnt;
} else
cnt = data->blocksize * 8;
if (host->dma_64bit_address) {
dwmci_set_idma_desc64(desc64, flags, cnt,
buf_phys + i * PAGE_SIZE);
desc64++;
} else {
dwmci_set_idma_desc32(desc32, flags, cnt,
buf_phys + i * PAGE_SIZE);
desc32++;
}
if (blk_cnt <= 8)
break;
blk_cnt -= 8;
}
if (host->dma_64bit_address)
data_end = (ulong)desc64;
else
data_end = (ulong)desc32;
flush_dcache_range(data_start, roundup(data_end, ARCH_DMA_MINALIGN));
}
static void dwmci_prepare_data(struct dwmci_host *host,
struct mmc_data *data,
void *cur_idmac,
void *bounce_buffer)
{
const u32 idmacl = virt_to_phys(cur_idmac) & 0xffffffff;
const u32 idmacu = (u64)virt_to_phys(cur_idmac) >> 32;
unsigned long ctrl;
dwmci_wait_reset(host, DWMCI_CTRL_FIFO_RESET);
/* Clear IDMAC interrupt */
dwmci_writel(host, host->regs->idsts, 0xffffffff);
dwmci_writel(host, host->regs->dbaddrl, idmacl);
if (host->dma_64bit_address)
dwmci_writel(host, host->regs->dbaddru, idmacu);
dwmci_prepare_desc(host, data, cur_idmac, bounce_buffer);
ctrl = dwmci_readl(host, DWMCI_CTRL);
ctrl |= DWMCI_IDMAC_EN | DWMCI_DMA_EN;
dwmci_writel(host, DWMCI_CTRL, ctrl);
ctrl = dwmci_readl(host, DWMCI_BMOD);
ctrl |= DWMCI_BMOD_IDMAC_FB | DWMCI_BMOD_IDMAC_EN;
dwmci_writel(host, DWMCI_BMOD, ctrl);
dwmci_writel(host, DWMCI_BLKSIZ, data->blocksize);
dwmci_writel(host, DWMCI_BYTCNT, data->blocksize * data->blocks);
}
static int dwmci_fifo_ready(struct dwmci_host *host, u32 bit, u32 *len)
{
u32 timeout = 20000;
*len = dwmci_readl(host, DWMCI_STATUS);
while (--timeout && (*len & bit)) {
udelay(200);
*len = dwmci_readl(host, DWMCI_STATUS);
}
if (!timeout) {
debug("%s: FIFO underflow timeout\n", __func__);
return -ETIMEDOUT;
}
return 0;
}
static unsigned int dwmci_get_timeout(struct mmc *mmc, const unsigned int size)
{
unsigned int timeout;
timeout = size * 8; /* counting in bits */
timeout *= 10; /* wait 10 times as long */
timeout /= mmc->clock;
timeout /= mmc->bus_width;
timeout /= mmc->ddr_mode ? 2 : 1;
timeout *= 1000; /* counting in msec */
timeout = (timeout < 1000) ? 1000 : timeout;
return timeout;
}
static int dwmci_data_transfer_fifo(struct dwmci_host *host,
struct mmc_data *data, u32 mask)
{
const u32 int_rx = mask & (DWMCI_INTMSK_RXDR | DWMCI_INTMSK_DTO);
const u32 int_tx = mask & DWMCI_INTMSK_TXDR;
int ret = 0;
u32 len = 0, size, i;
u32 *buf;
size = (data->blocksize * data->blocks) / 4;
if (!host->fifo_mode || !size)
return 0;
if (data->flags == MMC_DATA_READ)
buf = (unsigned int *)data->dest;
else
buf = (unsigned int *)data->src;
if (data->flags == MMC_DATA_READ && int_rx) {
dwmci_writel(host, DWMCI_RINTSTS, int_rx);
while (size) {
ret = dwmci_fifo_ready(host, DWMCI_FIFO_EMPTY, &len);
if (ret < 0)
break;
len = (len >> DWMCI_FIFO_SHIFT) & DWMCI_FIFO_MASK;
len = min(size, len);
for (i = 0; i < len; i++)
*buf++ = dwmci_readl(host, DWMCI_DATA);
size = size > len ? (size - len) : 0;
}
} else if (data->flags == MMC_DATA_WRITE && int_tx) {
while (size) {
ret = dwmci_fifo_ready(host, DWMCI_FIFO_FULL, &len);
if (ret < 0)
break;
len = host->fifo_depth - ((len >> DWMCI_FIFO_SHIFT) &
DWMCI_FIFO_MASK);
len = min(size, len);
for (i = 0; i < len; i++)
dwmci_writel(host, DWMCI_DATA, *buf++);
size = size > len ? (size - len) : 0;
}
dwmci_writel(host, DWMCI_RINTSTS, DWMCI_INTMSK_TXDR);
}
return ret;
}
static int dwmci_data_transfer(struct dwmci_host *host, struct mmc_data *data)
{
struct mmc *mmc = host->mmc;
int ret = 0;
u32 timeout, mask, size;
ulong start = get_timer(0);
size = data->blocksize * data->blocks;
timeout = dwmci_get_timeout(mmc, size);
for (;;) {
mask = dwmci_readl(host, DWMCI_RINTSTS);
/* Error during data transfer. */
if (mask & (DWMCI_DATA_ERR | DWMCI_DATA_TOUT)) {
debug("%s: DATA ERROR!\n", __func__);
ret = -EINVAL;
break;
}
ret = dwmci_data_transfer_fifo(host, data, mask);
/* Data arrived correctly. */
if (mask & DWMCI_INTMSK_DTO) {
ret = 0;
break;
}
/* Check for timeout. */
if (get_timer(start) > timeout) {
debug("%s: Timeout waiting for data!\n",
__func__);
ret = -ETIMEDOUT;
break;
}
}
dwmci_writel(host, DWMCI_RINTSTS, mask);
return ret;
}
static int dwmci_dma_transfer(struct dwmci_host *host, uint flags,
struct bounce_buffer *bbstate)
{
int ret;
u32 mask, ctrl;
if (flags == MMC_DATA_READ)
mask = DWMCI_IDINTEN_RI;
else
mask = DWMCI_IDINTEN_TI;
ret = wait_for_bit_le32(host->ioaddr + host->regs->idsts,
mask, true, 1000, false);
if (ret)
debug("%s: DWMCI_IDINTEN mask 0x%x timeout\n", __func__, mask);
/* Clear interrupts */
dwmci_writel(host, host->regs->idsts, DWMCI_IDINTEN_MASK);
ctrl = dwmci_readl(host, DWMCI_CTRL);
ctrl &= ~DWMCI_DMA_EN;
dwmci_writel(host, DWMCI_CTRL, ctrl);
bounce_buffer_stop(bbstate);
return ret;
}
static int dwmci_set_transfer_mode(struct dwmci_host *host,
struct mmc_data *data)
{
unsigned long mode;
mode = DWMCI_CMD_DATA_EXP;
if (data->flags & MMC_DATA_WRITE)
mode |= DWMCI_CMD_RW;
return mode;
}
static void dwmci_wait_while_busy(struct dwmci_host *host, struct mmc_cmd *cmd)
{
unsigned int timeout = 500; /* msec */
ulong start;
start = get_timer(0);
while (dwmci_readl(host, DWMCI_STATUS) & DWMCI_BUSY) {
if (get_timer(start) > timeout) {
debug("%s: Timeout on data busy, continue anyway\n",
__func__);
break;
}
}
}
static int dwmci_send_cmd_common(struct dwmci_host *host, struct mmc_cmd *cmd,
struct mmc_data *data, void *cur_idmac)
{
int ret, flags = 0, i;
u32 retry = 100000;
u32 mask;
struct bounce_buffer bbstate;
dwmci_wait_while_busy(host, cmd);
dwmci_writel(host, DWMCI_RINTSTS, DWMCI_INTMSK_ALL);
if (data) {
if (host->fifo_mode) {
dwmci_writel(host, DWMCI_BLKSIZ, data->blocksize);
dwmci_writel(host, DWMCI_BYTCNT,
data->blocksize * data->blocks);
dwmci_wait_reset(host, DWMCI_CTRL_FIFO_RESET);
} else {
if (data->flags == MMC_DATA_READ) {
ret = bounce_buffer_start(&bbstate,
(void*)data->dest,
data->blocksize *
data->blocks, GEN_BB_WRITE);
} else {
ret = bounce_buffer_start(&bbstate,
(void*)data->src,
data->blocksize *
data->blocks, GEN_BB_READ);
}
if (ret)
return ret;
dwmci_prepare_data(host, data, cur_idmac,
bbstate.bounce_buffer);
}
}
dwmci_writel(host, DWMCI_CMDARG, cmd->cmdarg);
if (data)
flags = dwmci_set_transfer_mode(host, data);
if ((cmd->resp_type & MMC_RSP_136) && (cmd->resp_type & MMC_RSP_BUSY))
return -EBUSY;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
flags |= DWMCI_CMD_ABORT_STOP;
else
flags |= DWMCI_CMD_PRV_DAT_WAIT;
if (cmd->resp_type & MMC_RSP_PRESENT) {
flags |= DWMCI_CMD_RESP_EXP;
if (cmd->resp_type & MMC_RSP_136)
flags |= DWMCI_CMD_RESP_LENGTH;
}
if (cmd->resp_type & MMC_RSP_CRC)
flags |= DWMCI_CMD_CHECK_CRC;
flags |= (cmd->cmdidx | DWMCI_CMD_START | DWMCI_CMD_USE_HOLD_REG);
debug("Sending CMD%d\n",cmd->cmdidx);
dwmci_writel(host, DWMCI_CMD, flags);
for (i = 0; i < retry; i++) {
mask = dwmci_readl(host, DWMCI_RINTSTS);
if (mask & DWMCI_INTMSK_CDONE) {
if (!data)
dwmci_writel(host, DWMCI_RINTSTS, mask);
break;
}
}
if (i == retry) {
debug("%s: Timeout.\n", __func__);
return -ETIMEDOUT;
}
if (mask & DWMCI_INTMSK_RTO) {
/*
* Timeout here is not necessarily fatal. (e)MMC cards
* will splat here when they receive CMD55 as they do
* not support this command and that is exactly the way
* to tell them apart from SD cards. Thus, this output
* below shall be debug(). eMMC cards also do not favor
* CMD8, please keep that in mind.
*/
debug("%s: Response Timeout.\n", __func__);
return -ETIMEDOUT;
} else if (mask & DWMCI_INTMSK_RE) {
debug("%s: Response Error.\n", __func__);
return -EIO;
} else if ((cmd->resp_type & MMC_RSP_CRC) &&
(mask & DWMCI_INTMSK_RCRC)) {
debug("%s: Response CRC Error.\n", __func__);
return -EIO;
}
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
cmd->response[0] = dwmci_readl(host, DWMCI_RESP3);
cmd->response[1] = dwmci_readl(host, DWMCI_RESP2);
cmd->response[2] = dwmci_readl(host, DWMCI_RESP1);
cmd->response[3] = dwmci_readl(host, DWMCI_RESP0);
} else {
cmd->response[0] = dwmci_readl(host, DWMCI_RESP0);
}
}
if (data) {
ret = dwmci_data_transfer(host, data);
if (!host->fifo_mode)
ret = dwmci_dma_transfer(host, data->flags, &bbstate);
}
udelay(100);
return ret;
}
#ifdef CONFIG_DM_MMC
static int dwmci_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
#else
static int dwmci_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
#endif
struct dwmci_host *host = mmc->priv;
const size_t buf_size = data ? DIV_ROUND_UP(data->blocks, 8) : 0;
if (host->dma_64bit_address) {
ALLOC_CACHE_ALIGN_BUFFER(struct dwmci_idmac64, idmac, buf_size);
return dwmci_send_cmd_common(host, cmd, data, idmac);
} else {
ALLOC_CACHE_ALIGN_BUFFER(struct dwmci_idmac32, idmac, buf_size);
return dwmci_send_cmd_common(host, cmd, data, idmac);
}
}
static int dwmci_control_clken(struct dwmci_host *host, bool on)
{
const u32 val = on ? DWMCI_CLKEN_ENABLE | DWMCI_CLKEN_LOW_PWR : 0;
const u32 cmd_only_clk = DWMCI_CMD_PRV_DAT_WAIT | DWMCI_CMD_UPD_CLK;
int timeout = 10000;
u32 status;
dwmci_writel(host, DWMCI_CLKENA, val);
/* Inform CIU */
dwmci_writel(host, DWMCI_CMD, DWMCI_CMD_START | cmd_only_clk);
do {
status = dwmci_readl(host, DWMCI_CMD);
if (timeout-- < 0) {
debug("%s: Timeout!\n", __func__);
return -ETIMEDOUT;
}
} while (status & DWMCI_CMD_START);
return 0;
}
/*
* Update the clock divider.
*
* To prevent a clock glitch keep the clock stopped during the update of
* clock divider and clock source.
*/
static int dwmci_update_div(struct dwmci_host *host, u32 div)
{
int ret;
/* Disable clock */
ret = dwmci_control_clken(host, false);
if (ret)
return ret;
/* Set clock to desired speed */
dwmci_writel(host, DWMCI_CLKDIV, div);
dwmci_writel(host, DWMCI_CLKSRC, 0);
/* Enable clock */
return dwmci_control_clken(host, true);
}
static int dwmci_setup_bus(struct dwmci_host *host, u32 freq)
{
u32 div;
unsigned long sclk;
int ret;
if ((freq == host->clock) || (freq == 0))
return 0;
/*
* If host->get_mmc_clk isn't defined,
* then assume that host->bus_hz is source clock value.
* host->bus_hz should be set by user.
*/
if (host->get_mmc_clk)
sclk = host->get_mmc_clk(host, freq);
else if (host->bus_hz)
sclk = host->bus_hz;
else {
debug("%s: Didn't get source clock value.\n", __func__);
return -EINVAL;
}
if (sclk == freq)
div = 0; /* bypass mode */
else
div = DIV_ROUND_UP(sclk, 2 * freq);
ret = dwmci_update_div(host, div);
if (ret)
return ret;
host->clock = freq;
return 0;
}
#ifdef CONFIG_DM_MMC
static int dwmci_set_ios(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
#else
static int dwmci_set_ios(struct mmc *mmc)
{
#endif
struct dwmci_host *host = (struct dwmci_host *)mmc->priv;
u32 ctype, regs;
debug("Buswidth = %d, clock: %d\n", mmc->bus_width, mmc->clock);
dwmci_setup_bus(host, mmc->clock);
switch (mmc->bus_width) {
case 8:
ctype = DWMCI_CTYPE_8BIT;
break;
case 4:
ctype = DWMCI_CTYPE_4BIT;
break;
default:
ctype = DWMCI_CTYPE_1BIT;
break;
}
dwmci_writel(host, DWMCI_CTYPE, ctype);
regs = dwmci_readl(host, DWMCI_UHS_REG);
if (mmc->ddr_mode)
regs |= DWMCI_DDR_MODE;
else
regs &= ~DWMCI_DDR_MODE;
dwmci_writel(host, DWMCI_UHS_REG, regs);
if (host->clksel) {
int ret;
ret = host->clksel(host);
if (ret)
return ret;
}
#if CONFIG_IS_ENABLED(DM_REGULATOR)
if (mmc->vqmmc_supply) {
int ret;
ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, false);
if (ret)
return ret;
if (mmc->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
regulator_set_value(mmc->vqmmc_supply, 1800000);
else
regulator_set_value(mmc->vqmmc_supply, 3300000);
ret = regulator_set_enable_if_allowed(mmc->vqmmc_supply, true);
if (ret)
return ret;
}
#endif
return 0;
}
static void dwmci_init_fifo(struct dwmci_host *host)
{
u32 fifo_thr, fifoth_val;
if (!host->fifo_depth) {
u32 fifo_size;
/*
* Automatically detect FIFO depth from FIFOTH register.
* Power-on value of RX_WMark is FIFO_DEPTH-1.
*/
fifo_size = dwmci_readl(host, DWMCI_FIFOTH);
fifo_size = ((fifo_size & RX_WMARK_MASK) >> RX_WMARK_SHIFT) + 1;
host->fifo_depth = fifo_size;
}
fifo_thr = host->fifo_depth / 2;
fifoth_val = MSIZE(0x2) | RX_WMARK(fifo_thr - 1) | TX_WMARK(fifo_thr);
dwmci_writel(host, DWMCI_FIFOTH, fifoth_val);
}
static void dwmci_init_dma(struct dwmci_host *host)
{
int addr_config;
if (host->fifo_mode)
return;
addr_config = (dwmci_readl(host, DWMCI_HCON) >> 27) & 0x1;
if (addr_config == 1) {
host->dma_64bit_address = true;
host->regs = &dwmci_idmac_regs64;
debug("%s: IDMAC supports 64-bit address mode\n", __func__);
} else {
host->dma_64bit_address = false;
host->regs = &dwmci_idmac_regs32;
debug("%s: IDMAC supports 32-bit address mode\n", __func__);
}
dwmci_writel(host, host->regs->idinten, DWMCI_IDINTEN_MASK);
}
static int dwmci_init(struct mmc *mmc)
{
struct dwmci_host *host = mmc->priv;
if (host->board_init)
host->board_init(host);
dwmci_writel(host, DWMCI_PWREN, 1);
if (!dwmci_wait_reset(host, DWMCI_RESET_ALL)) {
debug("%s[%d] Fail-reset!!\n", __func__, __LINE__);
return -EIO;
}
/* Enumerate at 400KHz */
dwmci_setup_bus(host, mmc->cfg->f_min);
dwmci_writel(host, DWMCI_RINTSTS, 0xFFFFFFFF);
dwmci_writel(host, DWMCI_INTMASK, 0);
dwmci_writel(host, DWMCI_TMOUT, 0xFFFFFFFF);
dwmci_writel(host, DWMCI_BMOD, 1);
dwmci_init_fifo(host);
dwmci_init_dma(host);
dwmci_writel(host, DWMCI_CLKENA, 0);
dwmci_writel(host, DWMCI_CLKSRC, 0);
return 0;
}
#ifdef CONFIG_DM_MMC
int dwmci_probe(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
return dwmci_init(mmc);
}
const struct dm_mmc_ops dm_dwmci_ops = {
.send_cmd = dwmci_send_cmd,
.set_ios = dwmci_set_ios,
};
#else
static const struct mmc_ops dwmci_ops = {
.send_cmd = dwmci_send_cmd,
.set_ios = dwmci_set_ios,
.init = dwmci_init,
};
#endif
void dwmci_setup_cfg(struct mmc_config *cfg, struct dwmci_host *host,
u32 max_clk, u32 min_clk)
{
cfg->name = host->name;
#ifndef CONFIG_DM_MMC
cfg->ops = &dwmci_ops;
#endif
cfg->f_min = min_clk;
cfg->f_max = max_clk;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
cfg->host_caps = host->caps;
if (host->buswidth == 8) {
cfg->host_caps |= MMC_MODE_8BIT;
cfg->host_caps &= ~MMC_MODE_4BIT;
} else {
cfg->host_caps |= MMC_MODE_4BIT;
cfg->host_caps &= ~MMC_MODE_8BIT;
}
cfg->host_caps |= MMC_MODE_HS | MMC_MODE_HS_52MHz;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
}
#ifdef CONFIG_BLK
int dwmci_bind(struct udevice *dev, struct mmc *mmc, struct mmc_config *cfg)
{
return mmc_bind(dev, mmc, cfg);
}
#else
int add_dwmci(struct dwmci_host *host, u32 max_clk, u32 min_clk)
{
dwmci_setup_cfg(&host->cfg, host, max_clk, min_clk);
host->mmc = mmc_create(&host->cfg, host);
if (host->mmc == NULL)
return -1;
return 0;
}
#endif