| /* |
| * Copyright (c) Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| /* *************************************************************** |
| * Tuning parameters |
| *****************************************************************/ |
| /*! |
| * HEAPMODE : |
| * Select how default decompression function ZSTD_decompress() allocates its context, |
| * on stack (0), or into heap (1, default; requires malloc()). |
| * Note that functions with explicit context such as ZSTD_decompressDCtx() are unaffected. |
| */ |
| #ifndef ZSTD_HEAPMODE |
| # define ZSTD_HEAPMODE 1 |
| #endif |
| |
| /*! |
| * LEGACY_SUPPORT : |
| * if set to 1+, ZSTD_decompress() can decode older formats (v0.1+) |
| */ |
| |
| /*! |
| * MAXWINDOWSIZE_DEFAULT : |
| * maximum window size accepted by DStream __by default__. |
| * Frames requiring more memory will be rejected. |
| * It's possible to set a different limit using ZSTD_DCtx_setMaxWindowSize(). |
| */ |
| #ifndef ZSTD_MAXWINDOWSIZE_DEFAULT |
| # define ZSTD_MAXWINDOWSIZE_DEFAULT (((U32)1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) + 1) |
| #endif |
| |
| /*! |
| * NO_FORWARD_PROGRESS_MAX : |
| * maximum allowed nb of calls to ZSTD_decompressStream() |
| * without any forward progress |
| * (defined as: no byte read from input, and no byte flushed to output) |
| * before triggering an error. |
| */ |
| #ifndef ZSTD_NO_FORWARD_PROGRESS_MAX |
| # define ZSTD_NO_FORWARD_PROGRESS_MAX 16 |
| #endif |
| |
| /*-******************************************************* |
| * Dependencies |
| *********************************************************/ |
| #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */ |
| #include "../common/mem.h" /* low level memory routines */ |
| #define FSE_STATIC_LINKING_ONLY |
| #include "../common/fse.h" |
| #define HUF_STATIC_LINKING_ONLY |
| #include "../common/huf.h" |
| #include <linux/xxhash.h> /* xxh64_reset, xxh64_update, xxh64_digest, XXH64 */ |
| #include "../common/zstd_internal.h" /* blockProperties_t */ |
| #include "zstd_decompress_internal.h" /* ZSTD_DCtx */ |
| #include "zstd_ddict.h" /* ZSTD_DDictDictContent */ |
| #include "zstd_decompress_block.h" /* ZSTD_decompressBlock_internal */ |
| |
| /* *********************************** |
| * Multiple DDicts Hashset internals * |
| *************************************/ |
| |
| #define DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT 4 |
| #define DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT 3 /* These two constants represent SIZE_MULT/COUNT_MULT load factor without using a float. |
| * Currently, that means a 0.75 load factor. |
| * So, if count * COUNT_MULT / size * SIZE_MULT != 0, then we've exceeded |
| * the load factor of the ddict hash set. |
| */ |
| |
| #define DDICT_HASHSET_TABLE_BASE_SIZE 64 |
| #define DDICT_HASHSET_RESIZE_FACTOR 2 |
| |
| /* Hash function to determine starting position of dict insertion within the table |
| * Returns an index between [0, hashSet->ddictPtrTableSize] |
| */ |
| static size_t ZSTD_DDictHashSet_getIndex(const ZSTD_DDictHashSet* hashSet, U32 dictID) { |
| const U64 hash = xxh64(&dictID, sizeof(U32), 0); |
| /* DDict ptr table size is a multiple of 2, use size - 1 as mask to get index within [0, hashSet->ddictPtrTableSize) */ |
| return hash & (hashSet->ddictPtrTableSize - 1); |
| } |
| |
| /* Adds DDict to a hashset without resizing it. |
| * If inserting a DDict with a dictID that already exists in the set, replaces the one in the set. |
| * Returns 0 if successful, or a zstd error code if something went wrong. |
| */ |
| static size_t ZSTD_DDictHashSet_emplaceDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict) { |
| const U32 dictID = ZSTD_getDictID_fromDDict(ddict); |
| size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); |
| const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; |
| RETURN_ERROR_IF(hashSet->ddictPtrCount == hashSet->ddictPtrTableSize, GENERIC, "Hash set is full!"); |
| DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); |
| while (hashSet->ddictPtrTable[idx] != NULL) { |
| /* Replace existing ddict if inserting ddict with same dictID */ |
| if (ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]) == dictID) { |
| DEBUGLOG(4, "DictID already exists, replacing rather than adding"); |
| hashSet->ddictPtrTable[idx] = ddict; |
| return 0; |
| } |
| idx &= idxRangeMask; |
| idx++; |
| } |
| DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); |
| hashSet->ddictPtrTable[idx] = ddict; |
| hashSet->ddictPtrCount++; |
| return 0; |
| } |
| |
| /* Expands hash table by factor of DDICT_HASHSET_RESIZE_FACTOR and |
| * rehashes all values, allocates new table, frees old table. |
| * Returns 0 on success, otherwise a zstd error code. |
| */ |
| static size_t ZSTD_DDictHashSet_expand(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { |
| size_t newTableSize = hashSet->ddictPtrTableSize * DDICT_HASHSET_RESIZE_FACTOR; |
| const ZSTD_DDict** newTable = (const ZSTD_DDict**)ZSTD_customCalloc(sizeof(ZSTD_DDict*) * newTableSize, customMem); |
| const ZSTD_DDict** oldTable = hashSet->ddictPtrTable; |
| size_t oldTableSize = hashSet->ddictPtrTableSize; |
| size_t i; |
| |
| DEBUGLOG(4, "Expanding DDict hash table! Old size: %zu new size: %zu", oldTableSize, newTableSize); |
| RETURN_ERROR_IF(!newTable, memory_allocation, "Expanded hashset allocation failed!"); |
| hashSet->ddictPtrTable = newTable; |
| hashSet->ddictPtrTableSize = newTableSize; |
| hashSet->ddictPtrCount = 0; |
| for (i = 0; i < oldTableSize; ++i) { |
| if (oldTable[i] != NULL) { |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, oldTable[i]), ""); |
| } |
| } |
| ZSTD_customFree((void*)oldTable, customMem); |
| DEBUGLOG(4, "Finished re-hash"); |
| return 0; |
| } |
| |
| /* Fetches a DDict with the given dictID |
| * Returns the ZSTD_DDict* with the requested dictID. If it doesn't exist, then returns NULL. |
| */ |
| static const ZSTD_DDict* ZSTD_DDictHashSet_getDDict(ZSTD_DDictHashSet* hashSet, U32 dictID) { |
| size_t idx = ZSTD_DDictHashSet_getIndex(hashSet, dictID); |
| const size_t idxRangeMask = hashSet->ddictPtrTableSize - 1; |
| DEBUGLOG(4, "Hashed index: for dictID: %u is %zu", dictID, idx); |
| for (;;) { |
| size_t currDictID = ZSTD_getDictID_fromDDict(hashSet->ddictPtrTable[idx]); |
| if (currDictID == dictID || currDictID == 0) { |
| /* currDictID == 0 implies a NULL ddict entry */ |
| break; |
| } else { |
| idx &= idxRangeMask; /* Goes to start of table when we reach the end */ |
| idx++; |
| } |
| } |
| DEBUGLOG(4, "Final idx after probing for dictID %u is: %zu", dictID, idx); |
| return hashSet->ddictPtrTable[idx]; |
| } |
| |
| /* Allocates space for and returns a ddict hash set |
| * The hash set's ZSTD_DDict* table has all values automatically set to NULL to begin with. |
| * Returns NULL if allocation failed. |
| */ |
| static ZSTD_DDictHashSet* ZSTD_createDDictHashSet(ZSTD_customMem customMem) { |
| ZSTD_DDictHashSet* ret = (ZSTD_DDictHashSet*)ZSTD_customMalloc(sizeof(ZSTD_DDictHashSet), customMem); |
| DEBUGLOG(4, "Allocating new hash set"); |
| if (!ret) |
| return NULL; |
| ret->ddictPtrTable = (const ZSTD_DDict**)ZSTD_customCalloc(DDICT_HASHSET_TABLE_BASE_SIZE * sizeof(ZSTD_DDict*), customMem); |
| if (!ret->ddictPtrTable) { |
| ZSTD_customFree(ret, customMem); |
| return NULL; |
| } |
| ret->ddictPtrTableSize = DDICT_HASHSET_TABLE_BASE_SIZE; |
| ret->ddictPtrCount = 0; |
| return ret; |
| } |
| |
| /* Frees the table of ZSTD_DDict* within a hashset, then frees the hashset itself. |
| * Note: The ZSTD_DDict* within the table are NOT freed. |
| */ |
| static void ZSTD_freeDDictHashSet(ZSTD_DDictHashSet* hashSet, ZSTD_customMem customMem) { |
| DEBUGLOG(4, "Freeing ddict hash set"); |
| if (hashSet && hashSet->ddictPtrTable) { |
| ZSTD_customFree((void*)hashSet->ddictPtrTable, customMem); |
| } |
| if (hashSet) { |
| ZSTD_customFree(hashSet, customMem); |
| } |
| } |
| |
| /* Public function: Adds a DDict into the ZSTD_DDictHashSet, possibly triggering a resize of the hash set. |
| * Returns 0 on success, or a ZSTD error. |
| */ |
| static size_t ZSTD_DDictHashSet_addDDict(ZSTD_DDictHashSet* hashSet, const ZSTD_DDict* ddict, ZSTD_customMem customMem) { |
| DEBUGLOG(4, "Adding dict ID: %u to hashset with - Count: %zu Tablesize: %zu", ZSTD_getDictID_fromDDict(ddict), hashSet->ddictPtrCount, hashSet->ddictPtrTableSize); |
| if (hashSet->ddictPtrCount * DDICT_HASHSET_MAX_LOAD_FACTOR_COUNT_MULT / hashSet->ddictPtrTableSize * DDICT_HASHSET_MAX_LOAD_FACTOR_SIZE_MULT != 0) { |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_expand(hashSet, customMem), ""); |
| } |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_emplaceDDict(hashSet, ddict), ""); |
| return 0; |
| } |
| |
| /*-************************************************************* |
| * Context management |
| ***************************************************************/ |
| size_t ZSTD_sizeof_DCtx (const ZSTD_DCtx* dctx) |
| { |
| if (dctx==NULL) return 0; /* support sizeof NULL */ |
| return sizeof(*dctx) |
| + ZSTD_sizeof_DDict(dctx->ddictLocal) |
| + dctx->inBuffSize + dctx->outBuffSize; |
| } |
| |
| size_t ZSTD_estimateDCtxSize(void) { return sizeof(ZSTD_DCtx); } |
| |
| static size_t ZSTD_startingInputLength(ZSTD_format_e format) |
| { |
| size_t const startingInputLength = ZSTD_FRAMEHEADERSIZE_PREFIX(format); |
| /* only supports formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless */ |
| assert( (format == ZSTD_f_zstd1) || (format == ZSTD_f_zstd1_magicless) ); |
| return startingInputLength; |
| } |
| |
| static void ZSTD_DCtx_resetParameters(ZSTD_DCtx* dctx) |
| { |
| assert(dctx->streamStage == zdss_init); |
| dctx->format = ZSTD_f_zstd1; |
| dctx->maxWindowSize = ZSTD_MAXWINDOWSIZE_DEFAULT; |
| dctx->outBufferMode = ZSTD_bm_buffered; |
| dctx->forceIgnoreChecksum = ZSTD_d_validateChecksum; |
| dctx->refMultipleDDicts = ZSTD_rmd_refSingleDDict; |
| } |
| |
| static void ZSTD_initDCtx_internal(ZSTD_DCtx* dctx) |
| { |
| dctx->staticSize = 0; |
| dctx->ddict = NULL; |
| dctx->ddictLocal = NULL; |
| dctx->dictEnd = NULL; |
| dctx->ddictIsCold = 0; |
| dctx->dictUses = ZSTD_dont_use; |
| dctx->inBuff = NULL; |
| dctx->inBuffSize = 0; |
| dctx->outBuffSize = 0; |
| dctx->streamStage = zdss_init; |
| dctx->noForwardProgress = 0; |
| dctx->oversizedDuration = 0; |
| #if DYNAMIC_BMI2 |
| dctx->bmi2 = ZSTD_cpuSupportsBmi2(); |
| #endif |
| dctx->ddictSet = NULL; |
| ZSTD_DCtx_resetParameters(dctx); |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| dctx->dictContentEndForFuzzing = NULL; |
| #endif |
| } |
| |
| ZSTD_DCtx* ZSTD_initStaticDCtx(void *workspace, size_t workspaceSize) |
| { |
| ZSTD_DCtx* const dctx = (ZSTD_DCtx*) workspace; |
| |
| if ((size_t)workspace & 7) return NULL; /* 8-aligned */ |
| if (workspaceSize < sizeof(ZSTD_DCtx)) return NULL; /* minimum size */ |
| |
| ZSTD_initDCtx_internal(dctx); |
| dctx->staticSize = workspaceSize; |
| dctx->inBuff = (char*)(dctx+1); |
| return dctx; |
| } |
| |
| static ZSTD_DCtx* ZSTD_createDCtx_internal(ZSTD_customMem customMem) { |
| if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL; |
| |
| { ZSTD_DCtx* const dctx = (ZSTD_DCtx*)ZSTD_customMalloc(sizeof(*dctx), customMem); |
| if (!dctx) return NULL; |
| dctx->customMem = customMem; |
| ZSTD_initDCtx_internal(dctx); |
| return dctx; |
| } |
| } |
| |
| ZSTD_DCtx* ZSTD_createDCtx_advanced(ZSTD_customMem customMem) |
| { |
| return ZSTD_createDCtx_internal(customMem); |
| } |
| |
| ZSTD_DCtx* ZSTD_createDCtx(void) |
| { |
| DEBUGLOG(3, "ZSTD_createDCtx"); |
| return ZSTD_createDCtx_internal(ZSTD_defaultCMem); |
| } |
| |
| static void ZSTD_clearDict(ZSTD_DCtx* dctx) |
| { |
| ZSTD_freeDDict(dctx->ddictLocal); |
| dctx->ddictLocal = NULL; |
| dctx->ddict = NULL; |
| dctx->dictUses = ZSTD_dont_use; |
| } |
| |
| size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx) |
| { |
| if (dctx==NULL) return 0; /* support free on NULL */ |
| RETURN_ERROR_IF(dctx->staticSize, memory_allocation, "not compatible with static DCtx"); |
| { ZSTD_customMem const cMem = dctx->customMem; |
| ZSTD_clearDict(dctx); |
| ZSTD_customFree(dctx->inBuff, cMem); |
| dctx->inBuff = NULL; |
| if (dctx->ddictSet) { |
| ZSTD_freeDDictHashSet(dctx->ddictSet, cMem); |
| dctx->ddictSet = NULL; |
| } |
| ZSTD_customFree(dctx, cMem); |
| return 0; |
| } |
| } |
| |
| /* no longer useful */ |
| void ZSTD_copyDCtx(ZSTD_DCtx* dstDCtx, const ZSTD_DCtx* srcDCtx) |
| { |
| size_t const toCopy = (size_t)((char*)(&dstDCtx->inBuff) - (char*)dstDCtx); |
| ZSTD_memcpy(dstDCtx, srcDCtx, toCopy); /* no need to copy workspace */ |
| } |
| |
| /* Given a dctx with a digested frame params, re-selects the correct ZSTD_DDict based on |
| * the requested dict ID from the frame. If there exists a reference to the correct ZSTD_DDict, then |
| * accordingly sets the ddict to be used to decompress the frame. |
| * |
| * If no DDict is found, then no action is taken, and the ZSTD_DCtx::ddict remains as-is. |
| * |
| * ZSTD_d_refMultipleDDicts must be enabled for this function to be called. |
| */ |
| static void ZSTD_DCtx_selectFrameDDict(ZSTD_DCtx* dctx) { |
| assert(dctx->refMultipleDDicts && dctx->ddictSet); |
| DEBUGLOG(4, "Adjusting DDict based on requested dict ID from frame"); |
| if (dctx->ddict) { |
| const ZSTD_DDict* frameDDict = ZSTD_DDictHashSet_getDDict(dctx->ddictSet, dctx->fParams.dictID); |
| if (frameDDict) { |
| DEBUGLOG(4, "DDict found!"); |
| ZSTD_clearDict(dctx); |
| dctx->dictID = dctx->fParams.dictID; |
| dctx->ddict = frameDDict; |
| dctx->dictUses = ZSTD_use_indefinitely; |
| } |
| } |
| } |
| |
| /*-************************************************************* |
| * Frame header decoding |
| ***************************************************************/ |
| |
| /*! ZSTD_isFrame() : |
| * Tells if the content of `buffer` starts with a valid Frame Identifier. |
| * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. |
| * Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. |
| * Note 3 : Skippable Frame Identifiers are considered valid. */ |
| unsigned ZSTD_isFrame(const void* buffer, size_t size) |
| { |
| if (size < ZSTD_FRAMEIDSIZE) return 0; |
| { U32 const magic = MEM_readLE32(buffer); |
| if (magic == ZSTD_MAGICNUMBER) return 1; |
| if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; |
| } |
| return 0; |
| } |
| |
| /*! ZSTD_isSkippableFrame() : |
| * Tells if the content of `buffer` starts with a valid Frame Identifier for a skippable frame. |
| * Note : Frame Identifier is 4 bytes. If `size < 4`, @return will always be 0. |
| */ |
| unsigned ZSTD_isSkippableFrame(const void* buffer, size_t size) |
| { |
| if (size < ZSTD_FRAMEIDSIZE) return 0; |
| { U32 const magic = MEM_readLE32(buffer); |
| if ((magic & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) return 1; |
| } |
| return 0; |
| } |
| |
| /* ZSTD_frameHeaderSize_internal() : |
| * srcSize must be large enough to reach header size fields. |
| * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless. |
| * @return : size of the Frame Header |
| * or an error code, which can be tested with ZSTD_isError() */ |
| static size_t ZSTD_frameHeaderSize_internal(const void* src, size_t srcSize, ZSTD_format_e format) |
| { |
| size_t const minInputSize = ZSTD_startingInputLength(format); |
| RETURN_ERROR_IF(srcSize < minInputSize, srcSize_wrong, ""); |
| |
| { BYTE const fhd = ((const BYTE*)src)[minInputSize-1]; |
| U32 const dictID= fhd & 3; |
| U32 const singleSegment = (fhd >> 5) & 1; |
| U32 const fcsId = fhd >> 6; |
| return minInputSize + !singleSegment |
| + ZSTD_did_fieldSize[dictID] + ZSTD_fcs_fieldSize[fcsId] |
| + (singleSegment && !fcsId); |
| } |
| } |
| |
| /* ZSTD_frameHeaderSize() : |
| * srcSize must be >= ZSTD_frameHeaderSize_prefix. |
| * @return : size of the Frame Header, |
| * or an error code (if srcSize is too small) */ |
| size_t ZSTD_frameHeaderSize(const void* src, size_t srcSize) |
| { |
| return ZSTD_frameHeaderSize_internal(src, srcSize, ZSTD_f_zstd1); |
| } |
| |
| /* ZSTD_getFrameHeader_advanced() : |
| * decode Frame Header, or require larger `srcSize`. |
| * note : only works for formats ZSTD_f_zstd1 and ZSTD_f_zstd1_magicless |
| * @return : 0, `zfhPtr` is correctly filled, |
| * >0, `srcSize` is too small, value is wanted `srcSize` amount, |
| * or an error code, which can be tested using ZSTD_isError() */ |
| size_t ZSTD_getFrameHeader_advanced(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize, ZSTD_format_e format) |
| { |
| const BYTE* ip = (const BYTE*)src; |
| size_t const minInputSize = ZSTD_startingInputLength(format); |
| |
| ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); /* not strictly necessary, but static analyzer do not understand that zfhPtr is only going to be read only if return value is zero, since they are 2 different signals */ |
| if (srcSize < minInputSize) return minInputSize; |
| RETURN_ERROR_IF(src==NULL, GENERIC, "invalid parameter"); |
| |
| if ( (format != ZSTD_f_zstd1_magicless) |
| && (MEM_readLE32(src) != ZSTD_MAGICNUMBER) ) { |
| if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| /* skippable frame */ |
| if (srcSize < ZSTD_SKIPPABLEHEADERSIZE) |
| return ZSTD_SKIPPABLEHEADERSIZE; /* magic number + frame length */ |
| ZSTD_memset(zfhPtr, 0, sizeof(*zfhPtr)); |
| zfhPtr->frameContentSize = MEM_readLE32((const char *)src + ZSTD_FRAMEIDSIZE); |
| zfhPtr->frameType = ZSTD_skippableFrame; |
| return 0; |
| } |
| RETURN_ERROR(prefix_unknown, ""); |
| } |
| |
| /* ensure there is enough `srcSize` to fully read/decode frame header */ |
| { size_t const fhsize = ZSTD_frameHeaderSize_internal(src, srcSize, format); |
| if (srcSize < fhsize) return fhsize; |
| zfhPtr->headerSize = (U32)fhsize; |
| } |
| |
| { BYTE const fhdByte = ip[minInputSize-1]; |
| size_t pos = minInputSize; |
| U32 const dictIDSizeCode = fhdByte&3; |
| U32 const checksumFlag = (fhdByte>>2)&1; |
| U32 const singleSegment = (fhdByte>>5)&1; |
| U32 const fcsID = fhdByte>>6; |
| U64 windowSize = 0; |
| U32 dictID = 0; |
| U64 frameContentSize = ZSTD_CONTENTSIZE_UNKNOWN; |
| RETURN_ERROR_IF((fhdByte & 0x08) != 0, frameParameter_unsupported, |
| "reserved bits, must be zero"); |
| |
| if (!singleSegment) { |
| BYTE const wlByte = ip[pos++]; |
| U32 const windowLog = (wlByte >> 3) + ZSTD_WINDOWLOG_ABSOLUTEMIN; |
| RETURN_ERROR_IF(windowLog > ZSTD_WINDOWLOG_MAX, frameParameter_windowTooLarge, ""); |
| windowSize = (1ULL << windowLog); |
| windowSize += (windowSize >> 3) * (wlByte&7); |
| } |
| switch(dictIDSizeCode) |
| { |
| default: |
| assert(0); /* impossible */ |
| ZSTD_FALLTHROUGH; |
| case 0 : break; |
| case 1 : dictID = ip[pos]; pos++; break; |
| case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; |
| case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; |
| } |
| switch(fcsID) |
| { |
| default: |
| assert(0); /* impossible */ |
| ZSTD_FALLTHROUGH; |
| case 0 : if (singleSegment) frameContentSize = ip[pos]; break; |
| case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; |
| case 2 : frameContentSize = MEM_readLE32(ip+pos); break; |
| case 3 : frameContentSize = MEM_readLE64(ip+pos); break; |
| } |
| if (singleSegment) windowSize = frameContentSize; |
| |
| zfhPtr->frameType = ZSTD_frame; |
| zfhPtr->frameContentSize = frameContentSize; |
| zfhPtr->windowSize = windowSize; |
| zfhPtr->blockSizeMax = (unsigned) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); |
| zfhPtr->dictID = dictID; |
| zfhPtr->checksumFlag = checksumFlag; |
| } |
| return 0; |
| } |
| |
| /* ZSTD_getFrameHeader() : |
| * decode Frame Header, or require larger `srcSize`. |
| * note : this function does not consume input, it only reads it. |
| * @return : 0, `zfhPtr` is correctly filled, |
| * >0, `srcSize` is too small, value is wanted `srcSize` amount, |
| * or an error code, which can be tested using ZSTD_isError() */ |
| size_t ZSTD_getFrameHeader(ZSTD_frameHeader* zfhPtr, const void* src, size_t srcSize) |
| { |
| return ZSTD_getFrameHeader_advanced(zfhPtr, src, srcSize, ZSTD_f_zstd1); |
| } |
| |
| /* ZSTD_getFrameContentSize() : |
| * compatible with legacy mode |
| * @return : decompressed size of the single frame pointed to be `src` if known, otherwise |
| * - ZSTD_CONTENTSIZE_UNKNOWN if the size cannot be determined |
| * - ZSTD_CONTENTSIZE_ERROR if an error occurred (e.g. invalid magic number, srcSize too small) */ |
| unsigned long long ZSTD_getFrameContentSize(const void *src, size_t srcSize) |
| { |
| { ZSTD_frameHeader zfh; |
| if (ZSTD_getFrameHeader(&zfh, src, srcSize) != 0) |
| return ZSTD_CONTENTSIZE_ERROR; |
| if (zfh.frameType == ZSTD_skippableFrame) { |
| return 0; |
| } else { |
| return zfh.frameContentSize; |
| } } |
| } |
| |
| static size_t readSkippableFrameSize(void const* src, size_t srcSize) |
| { |
| size_t const skippableHeaderSize = ZSTD_SKIPPABLEHEADERSIZE; |
| U32 sizeU32; |
| |
| RETURN_ERROR_IF(srcSize < ZSTD_SKIPPABLEHEADERSIZE, srcSize_wrong, ""); |
| |
| sizeU32 = MEM_readLE32((BYTE const*)src + ZSTD_FRAMEIDSIZE); |
| RETURN_ERROR_IF((U32)(sizeU32 + ZSTD_SKIPPABLEHEADERSIZE) < sizeU32, |
| frameParameter_unsupported, ""); |
| { |
| size_t const skippableSize = skippableHeaderSize + sizeU32; |
| RETURN_ERROR_IF(skippableSize > srcSize, srcSize_wrong, ""); |
| return skippableSize; |
| } |
| } |
| |
| /*! ZSTD_readSkippableFrame() : |
| * Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer. |
| * |
| * The parameter magicVariant will receive the magicVariant that was supplied when the frame was written, |
| * i.e. magicNumber - ZSTD_MAGIC_SKIPPABLE_START. This can be NULL if the caller is not interested |
| * in the magicVariant. |
| * |
| * Returns an error if destination buffer is not large enough, or if the frame is not skippable. |
| * |
| * @return : number of bytes written or a ZSTD error. |
| */ |
| ZSTDLIB_API size_t ZSTD_readSkippableFrame(void* dst, size_t dstCapacity, unsigned* magicVariant, |
| const void* src, size_t srcSize) |
| { |
| U32 const magicNumber = MEM_readLE32(src); |
| size_t skippableFrameSize = readSkippableFrameSize(src, srcSize); |
| size_t skippableContentSize = skippableFrameSize - ZSTD_SKIPPABLEHEADERSIZE; |
| |
| /* check input validity */ |
| RETURN_ERROR_IF(!ZSTD_isSkippableFrame(src, srcSize), frameParameter_unsupported, ""); |
| RETURN_ERROR_IF(skippableFrameSize < ZSTD_SKIPPABLEHEADERSIZE || skippableFrameSize > srcSize, srcSize_wrong, ""); |
| RETURN_ERROR_IF(skippableContentSize > dstCapacity, dstSize_tooSmall, ""); |
| |
| /* deliver payload */ |
| if (skippableContentSize > 0 && dst != NULL) |
| ZSTD_memcpy(dst, (const BYTE *)src + ZSTD_SKIPPABLEHEADERSIZE, skippableContentSize); |
| if (magicVariant != NULL) |
| *magicVariant = magicNumber - ZSTD_MAGIC_SKIPPABLE_START; |
| return skippableContentSize; |
| } |
| |
| /* ZSTD_findDecompressedSize() : |
| * compatible with legacy mode |
| * `srcSize` must be the exact length of some number of ZSTD compressed and/or |
| * skippable frames |
| * @return : decompressed size of the frames contained */ |
| unsigned long long ZSTD_findDecompressedSize(const void* src, size_t srcSize) |
| { |
| unsigned long long totalDstSize = 0; |
| |
| while (srcSize >= ZSTD_startingInputLength(ZSTD_f_zstd1)) { |
| U32 const magicNumber = MEM_readLE32(src); |
| |
| if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| size_t const skippableSize = readSkippableFrameSize(src, srcSize); |
| if (ZSTD_isError(skippableSize)) { |
| return ZSTD_CONTENTSIZE_ERROR; |
| } |
| assert(skippableSize <= srcSize); |
| |
| src = (const BYTE *)src + skippableSize; |
| srcSize -= skippableSize; |
| continue; |
| } |
| |
| { unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); |
| if (ret >= ZSTD_CONTENTSIZE_ERROR) return ret; |
| |
| /* check for overflow */ |
| if (totalDstSize + ret < totalDstSize) return ZSTD_CONTENTSIZE_ERROR; |
| totalDstSize += ret; |
| } |
| { size_t const frameSrcSize = ZSTD_findFrameCompressedSize(src, srcSize); |
| if (ZSTD_isError(frameSrcSize)) { |
| return ZSTD_CONTENTSIZE_ERROR; |
| } |
| |
| src = (const BYTE *)src + frameSrcSize; |
| srcSize -= frameSrcSize; |
| } |
| } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ |
| |
| if (srcSize) return ZSTD_CONTENTSIZE_ERROR; |
| |
| return totalDstSize; |
| } |
| |
| /* ZSTD_getDecompressedSize() : |
| * compatible with legacy mode |
| * @return : decompressed size if known, 0 otherwise |
| note : 0 can mean any of the following : |
| - frame content is empty |
| - decompressed size field is not present in frame header |
| - frame header unknown / not supported |
| - frame header not complete (`srcSize` too small) */ |
| unsigned long long ZSTD_getDecompressedSize(const void* src, size_t srcSize) |
| { |
| unsigned long long const ret = ZSTD_getFrameContentSize(src, srcSize); |
| ZSTD_STATIC_ASSERT(ZSTD_CONTENTSIZE_ERROR < ZSTD_CONTENTSIZE_UNKNOWN); |
| return (ret >= ZSTD_CONTENTSIZE_ERROR) ? 0 : ret; |
| } |
| |
| /* ZSTD_decodeFrameHeader() : |
| * `headerSize` must be the size provided by ZSTD_frameHeaderSize(). |
| * If multiple DDict references are enabled, also will choose the correct DDict to use. |
| * @return : 0 if success, or an error code, which can be tested using ZSTD_isError() */ |
| static size_t ZSTD_decodeFrameHeader(ZSTD_DCtx* dctx, const void* src, size_t headerSize) |
| { |
| size_t const result = ZSTD_getFrameHeader_advanced(&(dctx->fParams), src, headerSize, dctx->format); |
| if (ZSTD_isError(result)) return result; /* invalid header */ |
| RETURN_ERROR_IF(result>0, srcSize_wrong, "headerSize too small"); |
| |
| /* Reference DDict requested by frame if dctx references multiple ddicts */ |
| if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts && dctx->ddictSet) { |
| ZSTD_DCtx_selectFrameDDict(dctx); |
| } |
| |
| #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| /* Skip the dictID check in fuzzing mode, because it makes the search |
| * harder. |
| */ |
| RETURN_ERROR_IF(dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID), |
| dictionary_wrong, ""); |
| #endif |
| dctx->validateChecksum = (dctx->fParams.checksumFlag && !dctx->forceIgnoreChecksum) ? 1 : 0; |
| if (dctx->validateChecksum) xxh64_reset(&dctx->xxhState, 0); |
| dctx->processedCSize += headerSize; |
| return 0; |
| } |
| |
| static ZSTD_frameSizeInfo ZSTD_errorFrameSizeInfo(size_t ret) |
| { |
| ZSTD_frameSizeInfo frameSizeInfo; |
| frameSizeInfo.compressedSize = ret; |
| frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR; |
| return frameSizeInfo; |
| } |
| |
| static ZSTD_frameSizeInfo ZSTD_findFrameSizeInfo(const void* src, size_t srcSize) |
| { |
| ZSTD_frameSizeInfo frameSizeInfo; |
| ZSTD_memset(&frameSizeInfo, 0, sizeof(ZSTD_frameSizeInfo)); |
| |
| if ((srcSize >= ZSTD_SKIPPABLEHEADERSIZE) |
| && (MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| frameSizeInfo.compressedSize = readSkippableFrameSize(src, srcSize); |
| assert(ZSTD_isError(frameSizeInfo.compressedSize) || |
| frameSizeInfo.compressedSize <= srcSize); |
| return frameSizeInfo; |
| } else { |
| const BYTE* ip = (const BYTE*)src; |
| const BYTE* const ipstart = ip; |
| size_t remainingSize = srcSize; |
| size_t nbBlocks = 0; |
| ZSTD_frameHeader zfh; |
| |
| /* Extract Frame Header */ |
| { size_t const ret = ZSTD_getFrameHeader(&zfh, src, srcSize); |
| if (ZSTD_isError(ret)) |
| return ZSTD_errorFrameSizeInfo(ret); |
| if (ret > 0) |
| return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); |
| } |
| |
| ip += zfh.headerSize; |
| remainingSize -= zfh.headerSize; |
| |
| /* Iterate over each block */ |
| while (1) { |
| blockProperties_t blockProperties; |
| size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties); |
| if (ZSTD_isError(cBlockSize)) |
| return ZSTD_errorFrameSizeInfo(cBlockSize); |
| |
| if (ZSTD_blockHeaderSize + cBlockSize > remainingSize) |
| return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); |
| |
| ip += ZSTD_blockHeaderSize + cBlockSize; |
| remainingSize -= ZSTD_blockHeaderSize + cBlockSize; |
| nbBlocks++; |
| |
| if (blockProperties.lastBlock) break; |
| } |
| |
| /* Final frame content checksum */ |
| if (zfh.checksumFlag) { |
| if (remainingSize < 4) |
| return ZSTD_errorFrameSizeInfo(ERROR(srcSize_wrong)); |
| ip += 4; |
| } |
| |
| frameSizeInfo.compressedSize = (size_t)(ip - ipstart); |
| frameSizeInfo.decompressedBound = (zfh.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) |
| ? zfh.frameContentSize |
| : nbBlocks * zfh.blockSizeMax; |
| return frameSizeInfo; |
| } |
| } |
| |
| /* ZSTD_findFrameCompressedSize() : |
| * compatible with legacy mode |
| * `src` must point to the start of a ZSTD frame, ZSTD legacy frame, or skippable frame |
| * `srcSize` must be at least as large as the frame contained |
| * @return : the compressed size of the frame starting at `src` */ |
| size_t ZSTD_findFrameCompressedSize(const void *src, size_t srcSize) |
| { |
| ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); |
| return frameSizeInfo.compressedSize; |
| } |
| |
| /* ZSTD_decompressBound() : |
| * compatible with legacy mode |
| * `src` must point to the start of a ZSTD frame or a skippeable frame |
| * `srcSize` must be at least as large as the frame contained |
| * @return : the maximum decompressed size of the compressed source |
| */ |
| unsigned long long ZSTD_decompressBound(const void* src, size_t srcSize) |
| { |
| unsigned long long bound = 0; |
| /* Iterate over each frame */ |
| while (srcSize > 0) { |
| ZSTD_frameSizeInfo const frameSizeInfo = ZSTD_findFrameSizeInfo(src, srcSize); |
| size_t const compressedSize = frameSizeInfo.compressedSize; |
| unsigned long long const decompressedBound = frameSizeInfo.decompressedBound; |
| if (ZSTD_isError(compressedSize) || decompressedBound == ZSTD_CONTENTSIZE_ERROR) |
| return ZSTD_CONTENTSIZE_ERROR; |
| assert(srcSize >= compressedSize); |
| src = (const BYTE*)src + compressedSize; |
| srcSize -= compressedSize; |
| bound += decompressedBound; |
| } |
| return bound; |
| } |
| |
| /*-************************************************************* |
| * Frame decoding |
| ***************************************************************/ |
| |
| /* ZSTD_insertBlock() : |
| * insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ |
| size_t ZSTD_insertBlock(ZSTD_DCtx* dctx, const void* blockStart, size_t blockSize) |
| { |
| DEBUGLOG(5, "ZSTD_insertBlock: %u bytes", (unsigned)blockSize); |
| ZSTD_checkContinuity(dctx, blockStart, blockSize); |
| dctx->previousDstEnd = (const char*)blockStart + blockSize; |
| return blockSize; |
| } |
| |
| static size_t ZSTD_copyRawBlock(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize) |
| { |
| DEBUGLOG(5, "ZSTD_copyRawBlock"); |
| RETURN_ERROR_IF(srcSize > dstCapacity, dstSize_tooSmall, ""); |
| if (dst == NULL) { |
| if (srcSize == 0) return 0; |
| RETURN_ERROR(dstBuffer_null, ""); |
| } |
| ZSTD_memcpy(dst, src, srcSize); |
| return srcSize; |
| } |
| |
| static size_t ZSTD_setRleBlock(void* dst, size_t dstCapacity, |
| BYTE b, |
| size_t regenSize) |
| { |
| RETURN_ERROR_IF(regenSize > dstCapacity, dstSize_tooSmall, ""); |
| if (dst == NULL) { |
| if (regenSize == 0) return 0; |
| RETURN_ERROR(dstBuffer_null, ""); |
| } |
| ZSTD_memset(dst, b, regenSize); |
| return regenSize; |
| } |
| |
| static void ZSTD_DCtx_trace_end(ZSTD_DCtx const* dctx, U64 uncompressedSize, U64 compressedSize, unsigned streaming) |
| { |
| (void)dctx; |
| (void)uncompressedSize; |
| (void)compressedSize; |
| (void)streaming; |
| } |
| |
| /*! ZSTD_decompressFrame() : |
| * @dctx must be properly initialized |
| * will update *srcPtr and *srcSizePtr, |
| * to make *srcPtr progress by one frame. */ |
| static size_t ZSTD_decompressFrame(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void** srcPtr, size_t *srcSizePtr) |
| { |
| const BYTE* const istart = (const BYTE*)(*srcPtr); |
| const BYTE* ip = istart; |
| BYTE* const ostart = (BYTE*)dst; |
| BYTE* const oend = dstCapacity != 0 ? ostart + dstCapacity : ostart; |
| BYTE* op = ostart; |
| size_t remainingSrcSize = *srcSizePtr; |
| |
| DEBUGLOG(4, "ZSTD_decompressFrame (srcSize:%i)", (int)*srcSizePtr); |
| |
| /* check */ |
| RETURN_ERROR_IF( |
| remainingSrcSize < ZSTD_FRAMEHEADERSIZE_MIN(dctx->format)+ZSTD_blockHeaderSize, |
| srcSize_wrong, ""); |
| |
| /* Frame Header */ |
| { size_t const frameHeaderSize = ZSTD_frameHeaderSize_internal( |
| ip, ZSTD_FRAMEHEADERSIZE_PREFIX(dctx->format), dctx->format); |
| if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize; |
| RETURN_ERROR_IF(remainingSrcSize < frameHeaderSize+ZSTD_blockHeaderSize, |
| srcSize_wrong, ""); |
| FORWARD_IF_ERROR( ZSTD_decodeFrameHeader(dctx, ip, frameHeaderSize) , ""); |
| ip += frameHeaderSize; remainingSrcSize -= frameHeaderSize; |
| } |
| |
| /* Loop on each block */ |
| while (1) { |
| size_t decodedSize; |
| blockProperties_t blockProperties; |
| size_t const cBlockSize = ZSTD_getcBlockSize(ip, remainingSrcSize, &blockProperties); |
| if (ZSTD_isError(cBlockSize)) return cBlockSize; |
| |
| ip += ZSTD_blockHeaderSize; |
| remainingSrcSize -= ZSTD_blockHeaderSize; |
| RETURN_ERROR_IF(cBlockSize > remainingSrcSize, srcSize_wrong, ""); |
| |
| switch(blockProperties.blockType) |
| { |
| case bt_compressed: |
| decodedSize = ZSTD_decompressBlock_internal(dctx, op, (size_t)(oend-op), ip, cBlockSize, /* frame */ 1, not_streaming); |
| break; |
| case bt_raw : |
| decodedSize = ZSTD_copyRawBlock(op, (size_t)(oend-op), ip, cBlockSize); |
| break; |
| case bt_rle : |
| decodedSize = ZSTD_setRleBlock(op, (size_t)(oend-op), *ip, blockProperties.origSize); |
| break; |
| case bt_reserved : |
| default: |
| RETURN_ERROR(corruption_detected, "invalid block type"); |
| } |
| |
| if (ZSTD_isError(decodedSize)) return decodedSize; |
| if (dctx->validateChecksum) |
| xxh64_update(&dctx->xxhState, op, decodedSize); |
| if (decodedSize != 0) |
| op += decodedSize; |
| assert(ip != NULL); |
| ip += cBlockSize; |
| remainingSrcSize -= cBlockSize; |
| if (blockProperties.lastBlock) break; |
| } |
| |
| if (dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN) { |
| RETURN_ERROR_IF((U64)(op-ostart) != dctx->fParams.frameContentSize, |
| corruption_detected, ""); |
| } |
| if (dctx->fParams.checksumFlag) { /* Frame content checksum verification */ |
| RETURN_ERROR_IF(remainingSrcSize<4, checksum_wrong, ""); |
| if (!dctx->forceIgnoreChecksum) { |
| U32 const checkCalc = (U32)xxh64_digest(&dctx->xxhState); |
| U32 checkRead; |
| checkRead = MEM_readLE32(ip); |
| RETURN_ERROR_IF(checkRead != checkCalc, checksum_wrong, ""); |
| } |
| ip += 4; |
| remainingSrcSize -= 4; |
| } |
| ZSTD_DCtx_trace_end(dctx, (U64)(op-ostart), (U64)(ip-istart), /* streaming */ 0); |
| /* Allow caller to get size read */ |
| *srcPtr = ip; |
| *srcSizePtr = remainingSrcSize; |
| return (size_t)(op-ostart); |
| } |
| |
| static size_t ZSTD_decompressMultiFrame(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict, size_t dictSize, |
| const ZSTD_DDict* ddict) |
| { |
| void* const dststart = dst; |
| int moreThan1Frame = 0; |
| |
| DEBUGLOG(5, "ZSTD_decompressMultiFrame"); |
| assert(dict==NULL || ddict==NULL); /* either dict or ddict set, not both */ |
| |
| if (ddict) { |
| dict = ZSTD_DDict_dictContent(ddict); |
| dictSize = ZSTD_DDict_dictSize(ddict); |
| } |
| |
| while (srcSize >= ZSTD_startingInputLength(dctx->format)) { |
| |
| { U32 const magicNumber = MEM_readLE32(src); |
| DEBUGLOG(4, "reading magic number %08X (expecting %08X)", |
| (unsigned)magicNumber, ZSTD_MAGICNUMBER); |
| if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { |
| size_t const skippableSize = readSkippableFrameSize(src, srcSize); |
| FORWARD_IF_ERROR(skippableSize, "readSkippableFrameSize failed"); |
| assert(skippableSize <= srcSize); |
| |
| src = (const BYTE *)src + skippableSize; |
| srcSize -= skippableSize; |
| continue; |
| } } |
| |
| if (ddict) { |
| /* we were called from ZSTD_decompress_usingDDict */ |
| FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(dctx, ddict), ""); |
| } else { |
| /* this will initialize correctly with no dict if dict == NULL, so |
| * use this in all cases but ddict */ |
| FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDict(dctx, dict, dictSize), ""); |
| } |
| ZSTD_checkContinuity(dctx, dst, dstCapacity); |
| |
| { const size_t res = ZSTD_decompressFrame(dctx, dst, dstCapacity, |
| &src, &srcSize); |
| RETURN_ERROR_IF( |
| (ZSTD_getErrorCode(res) == ZSTD_error_prefix_unknown) |
| && (moreThan1Frame==1), |
| srcSize_wrong, |
| "At least one frame successfully completed, " |
| "but following bytes are garbage: " |
| "it's more likely to be a srcSize error, " |
| "specifying more input bytes than size of frame(s). " |
| "Note: one could be unlucky, it might be a corruption error instead, " |
| "happening right at the place where we expect zstd magic bytes. " |
| "But this is _much_ less likely than a srcSize field error."); |
| if (ZSTD_isError(res)) return res; |
| assert(res <= dstCapacity); |
| if (res != 0) |
| dst = (BYTE*)dst + res; |
| dstCapacity -= res; |
| } |
| moreThan1Frame = 1; |
| } /* while (srcSize >= ZSTD_frameHeaderSize_prefix) */ |
| |
| RETURN_ERROR_IF(srcSize, srcSize_wrong, "input not entirely consumed"); |
| |
| return (size_t)((BYTE*)dst - (BYTE*)dststart); |
| } |
| |
| size_t ZSTD_decompress_usingDict(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const void* dict, size_t dictSize) |
| { |
| return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, dict, dictSize, NULL); |
| } |
| |
| static ZSTD_DDict const* ZSTD_getDDict(ZSTD_DCtx* dctx) |
| { |
| switch (dctx->dictUses) { |
| default: |
| assert(0 /* Impossible */); |
| ZSTD_FALLTHROUGH; |
| case ZSTD_dont_use: |
| ZSTD_clearDict(dctx); |
| return NULL; |
| case ZSTD_use_indefinitely: |
| return dctx->ddict; |
| case ZSTD_use_once: |
| dctx->dictUses = ZSTD_dont_use; |
| return dctx->ddict; |
| } |
| } |
| |
| size_t ZSTD_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| return ZSTD_decompress_usingDDict(dctx, dst, dstCapacity, src, srcSize, ZSTD_getDDict(dctx)); |
| } |
| |
| size_t ZSTD_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE>=1) |
| size_t regenSize; |
| ZSTD_DCtx* const dctx = ZSTD_createDCtx_internal(ZSTD_defaultCMem); |
| RETURN_ERROR_IF(dctx==NULL, memory_allocation, "NULL pointer!"); |
| regenSize = ZSTD_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); |
| ZSTD_freeDCtx(dctx); |
| return regenSize; |
| #else /* stack mode */ |
| ZSTD_DCtx dctx; |
| ZSTD_initDCtx_internal(&dctx); |
| return ZSTD_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); |
| #endif |
| } |
| |
| /*-************************************** |
| * Advanced Streaming Decompression API |
| * Bufferless and synchronous |
| ****************************************/ |
| size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx) { return dctx->expected; } |
| |
| /* |
| * Similar to ZSTD_nextSrcSizeToDecompress(), but when a block input can be streamed, |
| * we allow taking a partial block as the input. Currently only raw uncompressed blocks can |
| * be streamed. |
| * |
| * For blocks that can be streamed, this allows us to reduce the latency until we produce |
| * output, and avoid copying the input. |
| * |
| * @param inputSize - The total amount of input that the caller currently has. |
| */ |
| static size_t ZSTD_nextSrcSizeToDecompressWithInputSize(ZSTD_DCtx* dctx, size_t inputSize) { |
| if (!(dctx->stage == ZSTDds_decompressBlock || dctx->stage == ZSTDds_decompressLastBlock)) |
| return dctx->expected; |
| if (dctx->bType != bt_raw) |
| return dctx->expected; |
| return BOUNDED(1, inputSize, dctx->expected); |
| } |
| |
| ZSTD_nextInputType_e ZSTD_nextInputType(ZSTD_DCtx* dctx) { |
| switch(dctx->stage) |
| { |
| default: /* should not happen */ |
| assert(0); |
| ZSTD_FALLTHROUGH; |
| case ZSTDds_getFrameHeaderSize: |
| ZSTD_FALLTHROUGH; |
| case ZSTDds_decodeFrameHeader: |
| return ZSTDnit_frameHeader; |
| case ZSTDds_decodeBlockHeader: |
| return ZSTDnit_blockHeader; |
| case ZSTDds_decompressBlock: |
| return ZSTDnit_block; |
| case ZSTDds_decompressLastBlock: |
| return ZSTDnit_lastBlock; |
| case ZSTDds_checkChecksum: |
| return ZSTDnit_checksum; |
| case ZSTDds_decodeSkippableHeader: |
| ZSTD_FALLTHROUGH; |
| case ZSTDds_skipFrame: |
| return ZSTDnit_skippableFrame; |
| } |
| } |
| |
| static int ZSTD_isSkipFrame(ZSTD_DCtx* dctx) { return dctx->stage == ZSTDds_skipFrame; } |
| |
| /* ZSTD_decompressContinue() : |
| * srcSize : must be the exact nb of bytes expected (see ZSTD_nextSrcSizeToDecompress()) |
| * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) |
| * or an error code, which can be tested using ZSTD_isError() */ |
| size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) |
| { |
| DEBUGLOG(5, "ZSTD_decompressContinue (srcSize:%u)", (unsigned)srcSize); |
| /* Sanity check */ |
| RETURN_ERROR_IF(srcSize != ZSTD_nextSrcSizeToDecompressWithInputSize(dctx, srcSize), srcSize_wrong, "not allowed"); |
| ZSTD_checkContinuity(dctx, dst, dstCapacity); |
| |
| dctx->processedCSize += srcSize; |
| |
| switch (dctx->stage) |
| { |
| case ZSTDds_getFrameHeaderSize : |
| assert(src != NULL); |
| if (dctx->format == ZSTD_f_zstd1) { /* allows header */ |
| assert(srcSize >= ZSTD_FRAMEIDSIZE); /* to read skippable magic number */ |
| if ((MEM_readLE32(src) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ |
| ZSTD_memcpy(dctx->headerBuffer, src, srcSize); |
| dctx->expected = ZSTD_SKIPPABLEHEADERSIZE - srcSize; /* remaining to load to get full skippable frame header */ |
| dctx->stage = ZSTDds_decodeSkippableHeader; |
| return 0; |
| } } |
| dctx->headerSize = ZSTD_frameHeaderSize_internal(src, srcSize, dctx->format); |
| if (ZSTD_isError(dctx->headerSize)) return dctx->headerSize; |
| ZSTD_memcpy(dctx->headerBuffer, src, srcSize); |
| dctx->expected = dctx->headerSize - srcSize; |
| dctx->stage = ZSTDds_decodeFrameHeader; |
| return 0; |
| |
| case ZSTDds_decodeFrameHeader: |
| assert(src != NULL); |
| ZSTD_memcpy(dctx->headerBuffer + (dctx->headerSize - srcSize), src, srcSize); |
| FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize), ""); |
| dctx->expected = ZSTD_blockHeaderSize; |
| dctx->stage = ZSTDds_decodeBlockHeader; |
| return 0; |
| |
| case ZSTDds_decodeBlockHeader: |
| { blockProperties_t bp; |
| size_t const cBlockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp); |
| if (ZSTD_isError(cBlockSize)) return cBlockSize; |
| RETURN_ERROR_IF(cBlockSize > dctx->fParams.blockSizeMax, corruption_detected, "Block Size Exceeds Maximum"); |
| dctx->expected = cBlockSize; |
| dctx->bType = bp.blockType; |
| dctx->rleSize = bp.origSize; |
| if (cBlockSize) { |
| dctx->stage = bp.lastBlock ? ZSTDds_decompressLastBlock : ZSTDds_decompressBlock; |
| return 0; |
| } |
| /* empty block */ |
| if (bp.lastBlock) { |
| if (dctx->fParams.checksumFlag) { |
| dctx->expected = 4; |
| dctx->stage = ZSTDds_checkChecksum; |
| } else { |
| dctx->expected = 0; /* end of frame */ |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| } |
| } else { |
| dctx->expected = ZSTD_blockHeaderSize; /* jump to next header */ |
| dctx->stage = ZSTDds_decodeBlockHeader; |
| } |
| return 0; |
| } |
| |
| case ZSTDds_decompressLastBlock: |
| case ZSTDds_decompressBlock: |
| DEBUGLOG(5, "ZSTD_decompressContinue: case ZSTDds_decompressBlock"); |
| { size_t rSize; |
| switch(dctx->bType) |
| { |
| case bt_compressed: |
| DEBUGLOG(5, "ZSTD_decompressContinue: case bt_compressed"); |
| rSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 1, is_streaming); |
| dctx->expected = 0; /* Streaming not supported */ |
| break; |
| case bt_raw : |
| assert(srcSize <= dctx->expected); |
| rSize = ZSTD_copyRawBlock(dst, dstCapacity, src, srcSize); |
| FORWARD_IF_ERROR(rSize, "ZSTD_copyRawBlock failed"); |
| assert(rSize == srcSize); |
| dctx->expected -= rSize; |
| break; |
| case bt_rle : |
| rSize = ZSTD_setRleBlock(dst, dstCapacity, *(const BYTE*)src, dctx->rleSize); |
| dctx->expected = 0; /* Streaming not supported */ |
| break; |
| case bt_reserved : /* should never happen */ |
| default: |
| RETURN_ERROR(corruption_detected, "invalid block type"); |
| } |
| FORWARD_IF_ERROR(rSize, ""); |
| RETURN_ERROR_IF(rSize > dctx->fParams.blockSizeMax, corruption_detected, "Decompressed Block Size Exceeds Maximum"); |
| DEBUGLOG(5, "ZSTD_decompressContinue: decoded size from block : %u", (unsigned)rSize); |
| dctx->decodedSize += rSize; |
| if (dctx->validateChecksum) xxh64_update(&dctx->xxhState, dst, rSize); |
| dctx->previousDstEnd = (char*)dst + rSize; |
| |
| /* Stay on the same stage until we are finished streaming the block. */ |
| if (dctx->expected > 0) { |
| return rSize; |
| } |
| |
| if (dctx->stage == ZSTDds_decompressLastBlock) { /* end of frame */ |
| DEBUGLOG(4, "ZSTD_decompressContinue: decoded size from frame : %u", (unsigned)dctx->decodedSize); |
| RETURN_ERROR_IF( |
| dctx->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN |
| && dctx->decodedSize != dctx->fParams.frameContentSize, |
| corruption_detected, ""); |
| if (dctx->fParams.checksumFlag) { /* another round for frame checksum */ |
| dctx->expected = 4; |
| dctx->stage = ZSTDds_checkChecksum; |
| } else { |
| ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); |
| dctx->expected = 0; /* ends here */ |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| } |
| } else { |
| dctx->stage = ZSTDds_decodeBlockHeader; |
| dctx->expected = ZSTD_blockHeaderSize; |
| } |
| return rSize; |
| } |
| |
| case ZSTDds_checkChecksum: |
| assert(srcSize == 4); /* guaranteed by dctx->expected */ |
| { |
| if (dctx->validateChecksum) { |
| U32 const h32 = (U32)xxh64_digest(&dctx->xxhState); |
| U32 const check32 = MEM_readLE32(src); |
| DEBUGLOG(4, "ZSTD_decompressContinue: checksum : calculated %08X :: %08X read", (unsigned)h32, (unsigned)check32); |
| RETURN_ERROR_IF(check32 != h32, checksum_wrong, ""); |
| } |
| ZSTD_DCtx_trace_end(dctx, dctx->decodedSize, dctx->processedCSize, /* streaming */ 1); |
| dctx->expected = 0; |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| return 0; |
| } |
| |
| case ZSTDds_decodeSkippableHeader: |
| assert(src != NULL); |
| assert(srcSize <= ZSTD_SKIPPABLEHEADERSIZE); |
| ZSTD_memcpy(dctx->headerBuffer + (ZSTD_SKIPPABLEHEADERSIZE - srcSize), src, srcSize); /* complete skippable header */ |
| dctx->expected = MEM_readLE32(dctx->headerBuffer + ZSTD_FRAMEIDSIZE); /* note : dctx->expected can grow seriously large, beyond local buffer size */ |
| dctx->stage = ZSTDds_skipFrame; |
| return 0; |
| |
| case ZSTDds_skipFrame: |
| dctx->expected = 0; |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| return 0; |
| |
| default: |
| assert(0); /* impossible */ |
| RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */ |
| } |
| } |
| |
| static size_t ZSTD_refDictContent(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| dctx->dictEnd = dctx->previousDstEnd; |
| dctx->virtualStart = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart)); |
| dctx->prefixStart = dict; |
| dctx->previousDstEnd = (const char*)dict + dictSize; |
| #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION |
| dctx->dictContentBeginForFuzzing = dctx->prefixStart; |
| dctx->dictContentEndForFuzzing = dctx->previousDstEnd; |
| #endif |
| return 0; |
| } |
| |
| /*! ZSTD_loadDEntropy() : |
| * dict : must point at beginning of a valid zstd dictionary. |
| * @return : size of entropy tables read */ |
| size_t |
| ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy, |
| const void* const dict, size_t const dictSize) |
| { |
| const BYTE* dictPtr = (const BYTE*)dict; |
| const BYTE* const dictEnd = dictPtr + dictSize; |
| |
| RETURN_ERROR_IF(dictSize <= 8, dictionary_corrupted, "dict is too small"); |
| assert(MEM_readLE32(dict) == ZSTD_MAGIC_DICTIONARY); /* dict must be valid */ |
| dictPtr += 8; /* skip header = magic + dictID */ |
| |
| ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, OFTable) == offsetof(ZSTD_entropyDTables_t, LLTable) + sizeof(entropy->LLTable)); |
| ZSTD_STATIC_ASSERT(offsetof(ZSTD_entropyDTables_t, MLTable) == offsetof(ZSTD_entropyDTables_t, OFTable) + sizeof(entropy->OFTable)); |
| ZSTD_STATIC_ASSERT(sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable) >= HUF_DECOMPRESS_WORKSPACE_SIZE); |
| { void* const workspace = &entropy->LLTable; /* use fse tables as temporary workspace; implies fse tables are grouped together */ |
| size_t const workspaceSize = sizeof(entropy->LLTable) + sizeof(entropy->OFTable) + sizeof(entropy->MLTable); |
| #ifdef HUF_FORCE_DECOMPRESS_X1 |
| /* in minimal huffman, we always use X1 variants */ |
| size_t const hSize = HUF_readDTableX1_wksp(entropy->hufTable, |
| dictPtr, dictEnd - dictPtr, |
| workspace, workspaceSize); |
| #else |
| size_t const hSize = HUF_readDTableX2_wksp(entropy->hufTable, |
| dictPtr, (size_t)(dictEnd - dictPtr), |
| workspace, workspaceSize); |
| #endif |
| RETURN_ERROR_IF(HUF_isError(hSize), dictionary_corrupted, ""); |
| dictPtr += hSize; |
| } |
| |
| { short offcodeNCount[MaxOff+1]; |
| unsigned offcodeMaxValue = MaxOff, offcodeLog; |
| size_t const offcodeHeaderSize = FSE_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, (size_t)(dictEnd-dictPtr)); |
| RETURN_ERROR_IF(FSE_isError(offcodeHeaderSize), dictionary_corrupted, ""); |
| RETURN_ERROR_IF(offcodeMaxValue > MaxOff, dictionary_corrupted, ""); |
| RETURN_ERROR_IF(offcodeLog > OffFSELog, dictionary_corrupted, ""); |
| ZSTD_buildFSETable( entropy->OFTable, |
| offcodeNCount, offcodeMaxValue, |
| OF_base, OF_bits, |
| offcodeLog, |
| entropy->workspace, sizeof(entropy->workspace), |
| /* bmi2 */0); |
| dictPtr += offcodeHeaderSize; |
| } |
| |
| { short matchlengthNCount[MaxML+1]; |
| unsigned matchlengthMaxValue = MaxML, matchlengthLog; |
| size_t const matchlengthHeaderSize = FSE_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); |
| RETURN_ERROR_IF(FSE_isError(matchlengthHeaderSize), dictionary_corrupted, ""); |
| RETURN_ERROR_IF(matchlengthMaxValue > MaxML, dictionary_corrupted, ""); |
| RETURN_ERROR_IF(matchlengthLog > MLFSELog, dictionary_corrupted, ""); |
| ZSTD_buildFSETable( entropy->MLTable, |
| matchlengthNCount, matchlengthMaxValue, |
| ML_base, ML_bits, |
| matchlengthLog, |
| entropy->workspace, sizeof(entropy->workspace), |
| /* bmi2 */ 0); |
| dictPtr += matchlengthHeaderSize; |
| } |
| |
| { short litlengthNCount[MaxLL+1]; |
| unsigned litlengthMaxValue = MaxLL, litlengthLog; |
| size_t const litlengthHeaderSize = FSE_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, (size_t)(dictEnd-dictPtr)); |
| RETURN_ERROR_IF(FSE_isError(litlengthHeaderSize), dictionary_corrupted, ""); |
| RETURN_ERROR_IF(litlengthMaxValue > MaxLL, dictionary_corrupted, ""); |
| RETURN_ERROR_IF(litlengthLog > LLFSELog, dictionary_corrupted, ""); |
| ZSTD_buildFSETable( entropy->LLTable, |
| litlengthNCount, litlengthMaxValue, |
| LL_base, LL_bits, |
| litlengthLog, |
| entropy->workspace, sizeof(entropy->workspace), |
| /* bmi2 */ 0); |
| dictPtr += litlengthHeaderSize; |
| } |
| |
| RETURN_ERROR_IF(dictPtr+12 > dictEnd, dictionary_corrupted, ""); |
| { int i; |
| size_t const dictContentSize = (size_t)(dictEnd - (dictPtr+12)); |
| for (i=0; i<3; i++) { |
| U32 const rep = MEM_readLE32(dictPtr); dictPtr += 4; |
| RETURN_ERROR_IF(rep==0 || rep > dictContentSize, |
| dictionary_corrupted, ""); |
| entropy->rep[i] = rep; |
| } } |
| |
| return (size_t)(dictPtr - (const BYTE*)dict); |
| } |
| |
| static size_t ZSTD_decompress_insertDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| if (dictSize < 8) return ZSTD_refDictContent(dctx, dict, dictSize); |
| { U32 const magic = MEM_readLE32(dict); |
| if (magic != ZSTD_MAGIC_DICTIONARY) { |
| return ZSTD_refDictContent(dctx, dict, dictSize); /* pure content mode */ |
| } } |
| dctx->dictID = MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); |
| |
| /* load entropy tables */ |
| { size_t const eSize = ZSTD_loadDEntropy(&dctx->entropy, dict, dictSize); |
| RETURN_ERROR_IF(ZSTD_isError(eSize), dictionary_corrupted, ""); |
| dict = (const char*)dict + eSize; |
| dictSize -= eSize; |
| } |
| dctx->litEntropy = dctx->fseEntropy = 1; |
| |
| /* reference dictionary content */ |
| return ZSTD_refDictContent(dctx, dict, dictSize); |
| } |
| |
| size_t ZSTD_decompressBegin(ZSTD_DCtx* dctx) |
| { |
| assert(dctx != NULL); |
| dctx->expected = ZSTD_startingInputLength(dctx->format); /* dctx->format must be properly set */ |
| dctx->stage = ZSTDds_getFrameHeaderSize; |
| dctx->processedCSize = 0; |
| dctx->decodedSize = 0; |
| dctx->previousDstEnd = NULL; |
| dctx->prefixStart = NULL; |
| dctx->virtualStart = NULL; |
| dctx->dictEnd = NULL; |
| dctx->entropy.hufTable[0] = (HUF_DTable)((HufLog)*0x1000001); /* cover both little and big endian */ |
| dctx->litEntropy = dctx->fseEntropy = 0; |
| dctx->dictID = 0; |
| dctx->bType = bt_reserved; |
| ZSTD_STATIC_ASSERT(sizeof(dctx->entropy.rep) == sizeof(repStartValue)); |
| ZSTD_memcpy(dctx->entropy.rep, repStartValue, sizeof(repStartValue)); /* initial repcodes */ |
| dctx->LLTptr = dctx->entropy.LLTable; |
| dctx->MLTptr = dctx->entropy.MLTable; |
| dctx->OFTptr = dctx->entropy.OFTable; |
| dctx->HUFptr = dctx->entropy.hufTable; |
| return 0; |
| } |
| |
| size_t ZSTD_decompressBegin_usingDict(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); |
| if (dict && dictSize) |
| RETURN_ERROR_IF( |
| ZSTD_isError(ZSTD_decompress_insertDictionary(dctx, dict, dictSize)), |
| dictionary_corrupted, ""); |
| return 0; |
| } |
| |
| /* ====== ZSTD_DDict ====== */ |
| |
| size_t ZSTD_decompressBegin_usingDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) |
| { |
| DEBUGLOG(4, "ZSTD_decompressBegin_usingDDict"); |
| assert(dctx != NULL); |
| if (ddict) { |
| const char* const dictStart = (const char*)ZSTD_DDict_dictContent(ddict); |
| size_t const dictSize = ZSTD_DDict_dictSize(ddict); |
| const void* const dictEnd = dictStart + dictSize; |
| dctx->ddictIsCold = (dctx->dictEnd != dictEnd); |
| DEBUGLOG(4, "DDict is %s", |
| dctx->ddictIsCold ? "~cold~" : "hot!"); |
| } |
| FORWARD_IF_ERROR( ZSTD_decompressBegin(dctx) , ""); |
| if (ddict) { /* NULL ddict is equivalent to no dictionary */ |
| ZSTD_copyDDictParameters(dctx, ddict); |
| } |
| return 0; |
| } |
| |
| /*! ZSTD_getDictID_fromDict() : |
| * Provides the dictID stored within dictionary. |
| * if @return == 0, the dictionary is not conformant with Zstandard specification. |
| * It can still be loaded, but as a content-only dictionary. */ |
| unsigned ZSTD_getDictID_fromDict(const void* dict, size_t dictSize) |
| { |
| if (dictSize < 8) return 0; |
| if (MEM_readLE32(dict) != ZSTD_MAGIC_DICTIONARY) return 0; |
| return MEM_readLE32((const char*)dict + ZSTD_FRAMEIDSIZE); |
| } |
| |
| /*! ZSTD_getDictID_fromFrame() : |
| * Provides the dictID required to decompress frame stored within `src`. |
| * If @return == 0, the dictID could not be decoded. |
| * This could for one of the following reasons : |
| * - The frame does not require a dictionary (most common case). |
| * - The frame was built with dictID intentionally removed. |
| * Needed dictionary is a hidden information. |
| * Note : this use case also happens when using a non-conformant dictionary. |
| * - `srcSize` is too small, and as a result, frame header could not be decoded. |
| * Note : possible if `srcSize < ZSTD_FRAMEHEADERSIZE_MAX`. |
| * - This is not a Zstandard frame. |
| * When identifying the exact failure cause, it's possible to use |
| * ZSTD_getFrameHeader(), which will provide a more precise error code. */ |
| unsigned ZSTD_getDictID_fromFrame(const void* src, size_t srcSize) |
| { |
| ZSTD_frameHeader zfp = { 0, 0, 0, ZSTD_frame, 0, 0, 0 }; |
| size_t const hError = ZSTD_getFrameHeader(&zfp, src, srcSize); |
| if (ZSTD_isError(hError)) return 0; |
| return zfp.dictID; |
| } |
| |
| /*! ZSTD_decompress_usingDDict() : |
| * Decompression using a pre-digested Dictionary |
| * Use dictionary without significant overhead. */ |
| size_t ZSTD_decompress_usingDDict(ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize, |
| const ZSTD_DDict* ddict) |
| { |
| /* pass content and size in case legacy frames are encountered */ |
| return ZSTD_decompressMultiFrame(dctx, dst, dstCapacity, src, srcSize, |
| NULL, 0, |
| ddict); |
| } |
| |
| /*===================================== |
| * Streaming decompression |
| *====================================*/ |
| |
| ZSTD_DStream* ZSTD_createDStream(void) |
| { |
| DEBUGLOG(3, "ZSTD_createDStream"); |
| return ZSTD_createDCtx_internal(ZSTD_defaultCMem); |
| } |
| |
| ZSTD_DStream* ZSTD_initStaticDStream(void *workspace, size_t workspaceSize) |
| { |
| return ZSTD_initStaticDCtx(workspace, workspaceSize); |
| } |
| |
| ZSTD_DStream* ZSTD_createDStream_advanced(ZSTD_customMem customMem) |
| { |
| return ZSTD_createDCtx_internal(customMem); |
| } |
| |
| size_t ZSTD_freeDStream(ZSTD_DStream* zds) |
| { |
| return ZSTD_freeDCtx(zds); |
| } |
| |
| /* *** Initialization *** */ |
| |
| size_t ZSTD_DStreamInSize(void) { return ZSTD_BLOCKSIZE_MAX + ZSTD_blockHeaderSize; } |
| size_t ZSTD_DStreamOutSize(void) { return ZSTD_BLOCKSIZE_MAX; } |
| |
| size_t ZSTD_DCtx_loadDictionary_advanced(ZSTD_DCtx* dctx, |
| const void* dict, size_t dictSize, |
| ZSTD_dictLoadMethod_e dictLoadMethod, |
| ZSTD_dictContentType_e dictContentType) |
| { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| ZSTD_clearDict(dctx); |
| if (dict && dictSize != 0) { |
| dctx->ddictLocal = ZSTD_createDDict_advanced(dict, dictSize, dictLoadMethod, dictContentType, dctx->customMem); |
| RETURN_ERROR_IF(dctx->ddictLocal == NULL, memory_allocation, "NULL pointer!"); |
| dctx->ddict = dctx->ddictLocal; |
| dctx->dictUses = ZSTD_use_indefinitely; |
| } |
| return 0; |
| } |
| |
| size_t ZSTD_DCtx_loadDictionary_byReference(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto); |
| } |
| |
| size_t ZSTD_DCtx_loadDictionary(ZSTD_DCtx* dctx, const void* dict, size_t dictSize) |
| { |
| return ZSTD_DCtx_loadDictionary_advanced(dctx, dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto); |
| } |
| |
| size_t ZSTD_DCtx_refPrefix_advanced(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize, ZSTD_dictContentType_e dictContentType) |
| { |
| FORWARD_IF_ERROR(ZSTD_DCtx_loadDictionary_advanced(dctx, prefix, prefixSize, ZSTD_dlm_byRef, dictContentType), ""); |
| dctx->dictUses = ZSTD_use_once; |
| return 0; |
| } |
| |
| size_t ZSTD_DCtx_refPrefix(ZSTD_DCtx* dctx, const void* prefix, size_t prefixSize) |
| { |
| return ZSTD_DCtx_refPrefix_advanced(dctx, prefix, prefixSize, ZSTD_dct_rawContent); |
| } |
| |
| /* ZSTD_initDStream_usingDict() : |
| * return : expected size, aka ZSTD_startingInputLength(). |
| * this function cannot fail */ |
| size_t ZSTD_initDStream_usingDict(ZSTD_DStream* zds, const void* dict, size_t dictSize) |
| { |
| DEBUGLOG(4, "ZSTD_initDStream_usingDict"); |
| FORWARD_IF_ERROR( ZSTD_DCtx_reset(zds, ZSTD_reset_session_only) , ""); |
| FORWARD_IF_ERROR( ZSTD_DCtx_loadDictionary(zds, dict, dictSize) , ""); |
| return ZSTD_startingInputLength(zds->format); |
| } |
| |
| /* note : this variant can't fail */ |
| size_t ZSTD_initDStream(ZSTD_DStream* zds) |
| { |
| DEBUGLOG(4, "ZSTD_initDStream"); |
| return ZSTD_initDStream_usingDDict(zds, NULL); |
| } |
| |
| /* ZSTD_initDStream_usingDDict() : |
| * ddict will just be referenced, and must outlive decompression session |
| * this function cannot fail */ |
| size_t ZSTD_initDStream_usingDDict(ZSTD_DStream* dctx, const ZSTD_DDict* ddict) |
| { |
| FORWARD_IF_ERROR( ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only) , ""); |
| FORWARD_IF_ERROR( ZSTD_DCtx_refDDict(dctx, ddict) , ""); |
| return ZSTD_startingInputLength(dctx->format); |
| } |
| |
| /* ZSTD_resetDStream() : |
| * return : expected size, aka ZSTD_startingInputLength(). |
| * this function cannot fail */ |
| size_t ZSTD_resetDStream(ZSTD_DStream* dctx) |
| { |
| FORWARD_IF_ERROR(ZSTD_DCtx_reset(dctx, ZSTD_reset_session_only), ""); |
| return ZSTD_startingInputLength(dctx->format); |
| } |
| |
| size_t ZSTD_DCtx_refDDict(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict) |
| { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| ZSTD_clearDict(dctx); |
| if (ddict) { |
| dctx->ddict = ddict; |
| dctx->dictUses = ZSTD_use_indefinitely; |
| if (dctx->refMultipleDDicts == ZSTD_rmd_refMultipleDDicts) { |
| if (dctx->ddictSet == NULL) { |
| dctx->ddictSet = ZSTD_createDDictHashSet(dctx->customMem); |
| if (!dctx->ddictSet) { |
| RETURN_ERROR(memory_allocation, "Failed to allocate memory for hash set!"); |
| } |
| } |
| assert(!dctx->staticSize); /* Impossible: ddictSet cannot have been allocated if static dctx */ |
| FORWARD_IF_ERROR(ZSTD_DDictHashSet_addDDict(dctx->ddictSet, ddict, dctx->customMem), ""); |
| } |
| } |
| return 0; |
| } |
| |
| /* ZSTD_DCtx_setMaxWindowSize() : |
| * note : no direct equivalence in ZSTD_DCtx_setParameter, |
| * since this version sets windowSize, and the other sets windowLog */ |
| size_t ZSTD_DCtx_setMaxWindowSize(ZSTD_DCtx* dctx, size_t maxWindowSize) |
| { |
| ZSTD_bounds const bounds = ZSTD_dParam_getBounds(ZSTD_d_windowLogMax); |
| size_t const min = (size_t)1 << bounds.lowerBound; |
| size_t const max = (size_t)1 << bounds.upperBound; |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| RETURN_ERROR_IF(maxWindowSize < min, parameter_outOfBound, ""); |
| RETURN_ERROR_IF(maxWindowSize > max, parameter_outOfBound, ""); |
| dctx->maxWindowSize = maxWindowSize; |
| return 0; |
| } |
| |
| size_t ZSTD_DCtx_setFormat(ZSTD_DCtx* dctx, ZSTD_format_e format) |
| { |
| return ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, (int)format); |
| } |
| |
| ZSTD_bounds ZSTD_dParam_getBounds(ZSTD_dParameter dParam) |
| { |
| ZSTD_bounds bounds = { 0, 0, 0 }; |
| switch(dParam) { |
| case ZSTD_d_windowLogMax: |
| bounds.lowerBound = ZSTD_WINDOWLOG_ABSOLUTEMIN; |
| bounds.upperBound = ZSTD_WINDOWLOG_MAX; |
| return bounds; |
| case ZSTD_d_format: |
| bounds.lowerBound = (int)ZSTD_f_zstd1; |
| bounds.upperBound = (int)ZSTD_f_zstd1_magicless; |
| ZSTD_STATIC_ASSERT(ZSTD_f_zstd1 < ZSTD_f_zstd1_magicless); |
| return bounds; |
| case ZSTD_d_stableOutBuffer: |
| bounds.lowerBound = (int)ZSTD_bm_buffered; |
| bounds.upperBound = (int)ZSTD_bm_stable; |
| return bounds; |
| case ZSTD_d_forceIgnoreChecksum: |
| bounds.lowerBound = (int)ZSTD_d_validateChecksum; |
| bounds.upperBound = (int)ZSTD_d_ignoreChecksum; |
| return bounds; |
| case ZSTD_d_refMultipleDDicts: |
| bounds.lowerBound = (int)ZSTD_rmd_refSingleDDict; |
| bounds.upperBound = (int)ZSTD_rmd_refMultipleDDicts; |
| return bounds; |
| default:; |
| } |
| bounds.error = ERROR(parameter_unsupported); |
| return bounds; |
| } |
| |
| /* ZSTD_dParam_withinBounds: |
| * @return 1 if value is within dParam bounds, |
| * 0 otherwise */ |
| static int ZSTD_dParam_withinBounds(ZSTD_dParameter dParam, int value) |
| { |
| ZSTD_bounds const bounds = ZSTD_dParam_getBounds(dParam); |
| if (ZSTD_isError(bounds.error)) return 0; |
| if (value < bounds.lowerBound) return 0; |
| if (value > bounds.upperBound) return 0; |
| return 1; |
| } |
| |
| #define CHECK_DBOUNDS(p,v) { \ |
| RETURN_ERROR_IF(!ZSTD_dParam_withinBounds(p, v), parameter_outOfBound, ""); \ |
| } |
| |
| size_t ZSTD_DCtx_getParameter(ZSTD_DCtx* dctx, ZSTD_dParameter param, int* value) |
| { |
| switch (param) { |
| case ZSTD_d_windowLogMax: |
| *value = (int)ZSTD_highbit32((U32)dctx->maxWindowSize); |
| return 0; |
| case ZSTD_d_format: |
| *value = (int)dctx->format; |
| return 0; |
| case ZSTD_d_stableOutBuffer: |
| *value = (int)dctx->outBufferMode; |
| return 0; |
| case ZSTD_d_forceIgnoreChecksum: |
| *value = (int)dctx->forceIgnoreChecksum; |
| return 0; |
| case ZSTD_d_refMultipleDDicts: |
| *value = (int)dctx->refMultipleDDicts; |
| return 0; |
| default:; |
| } |
| RETURN_ERROR(parameter_unsupported, ""); |
| } |
| |
| size_t ZSTD_DCtx_setParameter(ZSTD_DCtx* dctx, ZSTD_dParameter dParam, int value) |
| { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| switch(dParam) { |
| case ZSTD_d_windowLogMax: |
| if (value == 0) value = ZSTD_WINDOWLOG_LIMIT_DEFAULT; |
| CHECK_DBOUNDS(ZSTD_d_windowLogMax, value); |
| dctx->maxWindowSize = ((size_t)1) << value; |
| return 0; |
| case ZSTD_d_format: |
| CHECK_DBOUNDS(ZSTD_d_format, value); |
| dctx->format = (ZSTD_format_e)value; |
| return 0; |
| case ZSTD_d_stableOutBuffer: |
| CHECK_DBOUNDS(ZSTD_d_stableOutBuffer, value); |
| dctx->outBufferMode = (ZSTD_bufferMode_e)value; |
| return 0; |
| case ZSTD_d_forceIgnoreChecksum: |
| CHECK_DBOUNDS(ZSTD_d_forceIgnoreChecksum, value); |
| dctx->forceIgnoreChecksum = (ZSTD_forceIgnoreChecksum_e)value; |
| return 0; |
| case ZSTD_d_refMultipleDDicts: |
| CHECK_DBOUNDS(ZSTD_d_refMultipleDDicts, value); |
| if (dctx->staticSize != 0) { |
| RETURN_ERROR(parameter_unsupported, "Static dctx does not support multiple DDicts!"); |
| } |
| dctx->refMultipleDDicts = (ZSTD_refMultipleDDicts_e)value; |
| return 0; |
| default:; |
| } |
| RETURN_ERROR(parameter_unsupported, ""); |
| } |
| |
| size_t ZSTD_DCtx_reset(ZSTD_DCtx* dctx, ZSTD_ResetDirective reset) |
| { |
| if ( (reset == ZSTD_reset_session_only) |
| || (reset == ZSTD_reset_session_and_parameters) ) { |
| dctx->streamStage = zdss_init; |
| dctx->noForwardProgress = 0; |
| } |
| if ( (reset == ZSTD_reset_parameters) |
| || (reset == ZSTD_reset_session_and_parameters) ) { |
| RETURN_ERROR_IF(dctx->streamStage != zdss_init, stage_wrong, ""); |
| ZSTD_clearDict(dctx); |
| ZSTD_DCtx_resetParameters(dctx); |
| } |
| return 0; |
| } |
| |
| size_t ZSTD_sizeof_DStream(const ZSTD_DStream* dctx) |
| { |
| return ZSTD_sizeof_DCtx(dctx); |
| } |
| |
| size_t ZSTD_decodingBufferSize_min(unsigned long long windowSize, unsigned long long frameContentSize) |
| { |
| size_t const blockSize = (size_t) MIN(windowSize, ZSTD_BLOCKSIZE_MAX); |
| /* space is needed to store the litbuffer after the output of a given block without stomping the extDict of a previous run, as well as to cover both windows against wildcopy*/ |
| unsigned long long const neededRBSize = windowSize + blockSize + ZSTD_BLOCKSIZE_MAX + (WILDCOPY_OVERLENGTH * 2); |
| unsigned long long const neededSize = MIN(frameContentSize, neededRBSize); |
| size_t const minRBSize = (size_t) neededSize; |
| RETURN_ERROR_IF((unsigned long long)minRBSize != neededSize, |
| frameParameter_windowTooLarge, ""); |
| return minRBSize; |
| } |
| |
| size_t ZSTD_estimateDStreamSize(size_t windowSize) |
| { |
| size_t const blockSize = MIN(windowSize, ZSTD_BLOCKSIZE_MAX); |
| size_t const inBuffSize = blockSize; /* no block can be larger */ |
| size_t const outBuffSize = ZSTD_decodingBufferSize_min(windowSize, ZSTD_CONTENTSIZE_UNKNOWN); |
| return ZSTD_estimateDCtxSize() + inBuffSize + outBuffSize; |
| } |
| |
| size_t ZSTD_estimateDStreamSize_fromFrame(const void* src, size_t srcSize) |
| { |
| U32 const windowSizeMax = 1U << ZSTD_WINDOWLOG_MAX; /* note : should be user-selectable, but requires an additional parameter (or a dctx) */ |
| ZSTD_frameHeader zfh; |
| size_t const err = ZSTD_getFrameHeader(&zfh, src, srcSize); |
| if (ZSTD_isError(err)) return err; |
| RETURN_ERROR_IF(err>0, srcSize_wrong, ""); |
| RETURN_ERROR_IF(zfh.windowSize > windowSizeMax, |
| frameParameter_windowTooLarge, ""); |
| return ZSTD_estimateDStreamSize((size_t)zfh.windowSize); |
| } |
| |
| /* ***** Decompression ***** */ |
| |
| static int ZSTD_DCtx_isOverflow(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) |
| { |
| return (zds->inBuffSize + zds->outBuffSize) >= (neededInBuffSize + neededOutBuffSize) * ZSTD_WORKSPACETOOLARGE_FACTOR; |
| } |
| |
| static void ZSTD_DCtx_updateOversizedDuration(ZSTD_DStream* zds, size_t const neededInBuffSize, size_t const neededOutBuffSize) |
| { |
| if (ZSTD_DCtx_isOverflow(zds, neededInBuffSize, neededOutBuffSize)) |
| zds->oversizedDuration++; |
| else |
| zds->oversizedDuration = 0; |
| } |
| |
| static int ZSTD_DCtx_isOversizedTooLong(ZSTD_DStream* zds) |
| { |
| return zds->oversizedDuration >= ZSTD_WORKSPACETOOLARGE_MAXDURATION; |
| } |
| |
| /* Checks that the output buffer hasn't changed if ZSTD_obm_stable is used. */ |
| static size_t ZSTD_checkOutBuffer(ZSTD_DStream const* zds, ZSTD_outBuffer const* output) |
| { |
| ZSTD_outBuffer const expect = zds->expectedOutBuffer; |
| /* No requirement when ZSTD_obm_stable is not enabled. */ |
| if (zds->outBufferMode != ZSTD_bm_stable) |
| return 0; |
| /* Any buffer is allowed in zdss_init, this must be the same for every other call until |
| * the context is reset. |
| */ |
| if (zds->streamStage == zdss_init) |
| return 0; |
| /* The buffer must match our expectation exactly. */ |
| if (expect.dst == output->dst && expect.pos == output->pos && expect.size == output->size) |
| return 0; |
| RETURN_ERROR(dstBuffer_wrong, "ZSTD_d_stableOutBuffer enabled but output differs!"); |
| } |
| |
| /* Calls ZSTD_decompressContinue() with the right parameters for ZSTD_decompressStream() |
| * and updates the stage and the output buffer state. This call is extracted so it can be |
| * used both when reading directly from the ZSTD_inBuffer, and in buffered input mode. |
| * NOTE: You must break after calling this function since the streamStage is modified. |
| */ |
| static size_t ZSTD_decompressContinueStream( |
| ZSTD_DStream* zds, char** op, char* oend, |
| void const* src, size_t srcSize) { |
| int const isSkipFrame = ZSTD_isSkipFrame(zds); |
| if (zds->outBufferMode == ZSTD_bm_buffered) { |
| size_t const dstSize = isSkipFrame ? 0 : zds->outBuffSize - zds->outStart; |
| size_t const decodedSize = ZSTD_decompressContinue(zds, |
| zds->outBuff + zds->outStart, dstSize, src, srcSize); |
| FORWARD_IF_ERROR(decodedSize, ""); |
| if (!decodedSize && !isSkipFrame) { |
| zds->streamStage = zdss_read; |
| } else { |
| zds->outEnd = zds->outStart + decodedSize; |
| zds->streamStage = zdss_flush; |
| } |
| } else { |
| /* Write directly into the output buffer */ |
| size_t const dstSize = isSkipFrame ? 0 : (size_t)(oend - *op); |
| size_t const decodedSize = ZSTD_decompressContinue(zds, *op, dstSize, src, srcSize); |
| FORWARD_IF_ERROR(decodedSize, ""); |
| *op += decodedSize; |
| /* Flushing is not needed. */ |
| zds->streamStage = zdss_read; |
| assert(*op <= oend); |
| assert(zds->outBufferMode == ZSTD_bm_stable); |
| } |
| return 0; |
| } |
| |
| size_t ZSTD_decompressStream(ZSTD_DStream* zds, ZSTD_outBuffer* output, ZSTD_inBuffer* input) |
| { |
| const char* const src = (const char*)input->src; |
| const char* const istart = input->pos != 0 ? src + input->pos : src; |
| const char* const iend = input->size != 0 ? src + input->size : src; |
| const char* ip = istart; |
| char* const dst = (char*)output->dst; |
| char* const ostart = output->pos != 0 ? dst + output->pos : dst; |
| char* const oend = output->size != 0 ? dst + output->size : dst; |
| char* op = ostart; |
| U32 someMoreWork = 1; |
| |
| DEBUGLOG(5, "ZSTD_decompressStream"); |
| RETURN_ERROR_IF( |
| input->pos > input->size, |
| srcSize_wrong, |
| "forbidden. in: pos: %u vs size: %u", |
| (U32)input->pos, (U32)input->size); |
| RETURN_ERROR_IF( |
| output->pos > output->size, |
| dstSize_tooSmall, |
| "forbidden. out: pos: %u vs size: %u", |
| (U32)output->pos, (U32)output->size); |
| DEBUGLOG(5, "input size : %u", (U32)(input->size - input->pos)); |
| FORWARD_IF_ERROR(ZSTD_checkOutBuffer(zds, output), ""); |
| |
| while (someMoreWork) { |
| switch(zds->streamStage) |
| { |
| case zdss_init : |
| DEBUGLOG(5, "stage zdss_init => transparent reset "); |
| zds->streamStage = zdss_loadHeader; |
| zds->lhSize = zds->inPos = zds->outStart = zds->outEnd = 0; |
| zds->hostageByte = 0; |
| zds->expectedOutBuffer = *output; |
| ZSTD_FALLTHROUGH; |
| |
| case zdss_loadHeader : |
| DEBUGLOG(5, "stage zdss_loadHeader (srcSize : %u)", (U32)(iend - ip)); |
| { size_t const hSize = ZSTD_getFrameHeader_advanced(&zds->fParams, zds->headerBuffer, zds->lhSize, zds->format); |
| if (zds->refMultipleDDicts && zds->ddictSet) { |
| ZSTD_DCtx_selectFrameDDict(zds); |
| } |
| DEBUGLOG(5, "header size : %u", (U32)hSize); |
| if (ZSTD_isError(hSize)) { |
| return hSize; /* error */ |
| } |
| if (hSize != 0) { /* need more input */ |
| size_t const toLoad = hSize - zds->lhSize; /* if hSize!=0, hSize > zds->lhSize */ |
| size_t const remainingInput = (size_t)(iend-ip); |
| assert(iend >= ip); |
| if (toLoad > remainingInput) { /* not enough input to load full header */ |
| if (remainingInput > 0) { |
| ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, remainingInput); |
| zds->lhSize += remainingInput; |
| } |
| input->pos = input->size; |
| return (MAX((size_t)ZSTD_FRAMEHEADERSIZE_MIN(zds->format), hSize) - zds->lhSize) + ZSTD_blockHeaderSize; /* remaining header bytes + next block header */ |
| } |
| assert(ip != NULL); |
| ZSTD_memcpy(zds->headerBuffer + zds->lhSize, ip, toLoad); zds->lhSize = hSize; ip += toLoad; |
| break; |
| } } |
| |
| /* check for single-pass mode opportunity */ |
| if (zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN |
| && zds->fParams.frameType != ZSTD_skippableFrame |
| && (U64)(size_t)(oend-op) >= zds->fParams.frameContentSize) { |
| size_t const cSize = ZSTD_findFrameCompressedSize(istart, (size_t)(iend-istart)); |
| if (cSize <= (size_t)(iend-istart)) { |
| /* shortcut : using single-pass mode */ |
| size_t const decompressedSize = ZSTD_decompress_usingDDict(zds, op, (size_t)(oend-op), istart, cSize, ZSTD_getDDict(zds)); |
| if (ZSTD_isError(decompressedSize)) return decompressedSize; |
| DEBUGLOG(4, "shortcut to single-pass ZSTD_decompress_usingDDict()") |
| ip = istart + cSize; |
| op += decompressedSize; |
| zds->expected = 0; |
| zds->streamStage = zdss_init; |
| someMoreWork = 0; |
| break; |
| } } |
| |
| /* Check output buffer is large enough for ZSTD_odm_stable. */ |
| if (zds->outBufferMode == ZSTD_bm_stable |
| && zds->fParams.frameType != ZSTD_skippableFrame |
| && zds->fParams.frameContentSize != ZSTD_CONTENTSIZE_UNKNOWN |
| && (U64)(size_t)(oend-op) < zds->fParams.frameContentSize) { |
| RETURN_ERROR(dstSize_tooSmall, "ZSTD_obm_stable passed but ZSTD_outBuffer is too small"); |
| } |
| |
| /* Consume header (see ZSTDds_decodeFrameHeader) */ |
| DEBUGLOG(4, "Consume header"); |
| FORWARD_IF_ERROR(ZSTD_decompressBegin_usingDDict(zds, ZSTD_getDDict(zds)), ""); |
| |
| if ((MEM_readLE32(zds->headerBuffer) & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { /* skippable frame */ |
| zds->expected = MEM_readLE32(zds->headerBuffer + ZSTD_FRAMEIDSIZE); |
| zds->stage = ZSTDds_skipFrame; |
| } else { |
| FORWARD_IF_ERROR(ZSTD_decodeFrameHeader(zds, zds->headerBuffer, zds->lhSize), ""); |
| zds->expected = ZSTD_blockHeaderSize; |
| zds->stage = ZSTDds_decodeBlockHeader; |
| } |
| |
| /* control buffer memory usage */ |
| DEBUGLOG(4, "Control max memory usage (%u KB <= max %u KB)", |
| (U32)(zds->fParams.windowSize >>10), |
| (U32)(zds->maxWindowSize >> 10) ); |
| zds->fParams.windowSize = MAX(zds->fParams.windowSize, 1U << ZSTD_WINDOWLOG_ABSOLUTEMIN); |
| RETURN_ERROR_IF(zds->fParams.windowSize > zds->maxWindowSize, |
| frameParameter_windowTooLarge, ""); |
| |
| /* Adapt buffer sizes to frame header instructions */ |
| { size_t const neededInBuffSize = MAX(zds->fParams.blockSizeMax, 4 /* frame checksum */); |
| size_t const neededOutBuffSize = zds->outBufferMode == ZSTD_bm_buffered |
| ? ZSTD_decodingBufferSize_min(zds->fParams.windowSize, zds->fParams.frameContentSize) |
| : 0; |
| |
| ZSTD_DCtx_updateOversizedDuration(zds, neededInBuffSize, neededOutBuffSize); |
| |
| { int const tooSmall = (zds->inBuffSize < neededInBuffSize) || (zds->outBuffSize < neededOutBuffSize); |
| int const tooLarge = ZSTD_DCtx_isOversizedTooLong(zds); |
| |
| if (tooSmall || tooLarge) { |
| size_t const bufferSize = neededInBuffSize + neededOutBuffSize; |
| DEBUGLOG(4, "inBuff : from %u to %u", |
| (U32)zds->inBuffSize, (U32)neededInBuffSize); |
| DEBUGLOG(4, "outBuff : from %u to %u", |
| (U32)zds->outBuffSize, (U32)neededOutBuffSize); |
| if (zds->staticSize) { /* static DCtx */ |
| DEBUGLOG(4, "staticSize : %u", (U32)zds->staticSize); |
| assert(zds->staticSize >= sizeof(ZSTD_DCtx)); /* controlled at init */ |
| RETURN_ERROR_IF( |
| bufferSize > zds->staticSize - sizeof(ZSTD_DCtx), |
| memory_allocation, ""); |
| } else { |
| ZSTD_customFree(zds->inBuff, zds->customMem); |
| zds->inBuffSize = 0; |
| zds->outBuffSize = 0; |
| zds->inBuff = (char*)ZSTD_customMalloc(bufferSize, zds->customMem); |
| RETURN_ERROR_IF(zds->inBuff == NULL, memory_allocation, ""); |
| } |
| zds->inBuffSize = neededInBuffSize; |
| zds->outBuff = zds->inBuff + zds->inBuffSize; |
| zds->outBuffSize = neededOutBuffSize; |
| } } } |
| zds->streamStage = zdss_read; |
| ZSTD_FALLTHROUGH; |
| |
| case zdss_read: |
| DEBUGLOG(5, "stage zdss_read"); |
| { size_t const neededInSize = ZSTD_nextSrcSizeToDecompressWithInputSize(zds, (size_t)(iend - ip)); |
| DEBUGLOG(5, "neededInSize = %u", (U32)neededInSize); |
| if (neededInSize==0) { /* end of frame */ |
| zds->streamStage = zdss_init; |
| someMoreWork = 0; |
| break; |
| } |
| if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ |
| FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, ip, neededInSize), ""); |
| ip += neededInSize; |
| /* Function modifies the stage so we must break */ |
| break; |
| } } |
| if (ip==iend) { someMoreWork = 0; break; } /* no more input */ |
| zds->streamStage = zdss_load; |
| ZSTD_FALLTHROUGH; |
| |
| case zdss_load: |
| { size_t const neededInSize = ZSTD_nextSrcSizeToDecompress(zds); |
| size_t const toLoad = neededInSize - zds->inPos; |
| int const isSkipFrame = ZSTD_isSkipFrame(zds); |
| size_t loadedSize; |
| /* At this point we shouldn't be decompressing a block that we can stream. */ |
| assert(neededInSize == ZSTD_nextSrcSizeToDecompressWithInputSize(zds, iend - ip)); |
| if (isSkipFrame) { |
| loadedSize = MIN(toLoad, (size_t)(iend-ip)); |
| } else { |
| RETURN_ERROR_IF(toLoad > zds->inBuffSize - zds->inPos, |
| corruption_detected, |
| "should never happen"); |
| loadedSize = ZSTD_limitCopy(zds->inBuff + zds->inPos, toLoad, ip, (size_t)(iend-ip)); |
| } |
| ip += loadedSize; |
| zds->inPos += loadedSize; |
| if (loadedSize < toLoad) { someMoreWork = 0; break; } /* not enough input, wait for more */ |
| |
| /* decode loaded input */ |
| zds->inPos = 0; /* input is consumed */ |
| FORWARD_IF_ERROR(ZSTD_decompressContinueStream(zds, &op, oend, zds->inBuff, neededInSize), ""); |
| /* Function modifies the stage so we must break */ |
| break; |
| } |
| case zdss_flush: |
| { size_t const toFlushSize = zds->outEnd - zds->outStart; |
| size_t const flushedSize = ZSTD_limitCopy(op, (size_t)(oend-op), zds->outBuff + zds->outStart, toFlushSize); |
| op += flushedSize; |
| zds->outStart += flushedSize; |
| if (flushedSize == toFlushSize) { /* flush completed */ |
| zds->streamStage = zdss_read; |
| if ( (zds->outBuffSize < zds->fParams.frameContentSize) |
| && (zds->outStart + zds->fParams.blockSizeMax > zds->outBuffSize) ) { |
| DEBUGLOG(5, "restart filling outBuff from beginning (left:%i, needed:%u)", |
| (int)(zds->outBuffSize - zds->outStart), |
| (U32)zds->fParams.blockSizeMax); |
| zds->outStart = zds->outEnd = 0; |
| } |
| break; |
| } } |
| /* cannot complete flush */ |
| someMoreWork = 0; |
| break; |
| |
| default: |
| assert(0); /* impossible */ |
| RETURN_ERROR(GENERIC, "impossible to reach"); /* some compiler require default to do something */ |
| } } |
| |
| /* result */ |
| input->pos = (size_t)(ip - (const char*)(input->src)); |
| output->pos = (size_t)(op - (char*)(output->dst)); |
| |
| /* Update the expected output buffer for ZSTD_obm_stable. */ |
| zds->expectedOutBuffer = *output; |
| |
| if ((ip==istart) && (op==ostart)) { /* no forward progress */ |
| zds->noForwardProgress ++; |
| if (zds->noForwardProgress >= ZSTD_NO_FORWARD_PROGRESS_MAX) { |
| RETURN_ERROR_IF(op==oend, dstSize_tooSmall, ""); |
| RETURN_ERROR_IF(ip==iend, srcSize_wrong, ""); |
| assert(0); |
| } |
| } else { |
| zds->noForwardProgress = 0; |
| } |
| { size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zds); |
| if (!nextSrcSizeHint) { /* frame fully decoded */ |
| if (zds->outEnd == zds->outStart) { /* output fully flushed */ |
| if (zds->hostageByte) { |
| if (input->pos >= input->size) { |
| /* can't release hostage (not present) */ |
| zds->streamStage = zdss_read; |
| return 1; |
| } |
| input->pos++; /* release hostage */ |
| } /* zds->hostageByte */ |
| return 0; |
| } /* zds->outEnd == zds->outStart */ |
| if (!zds->hostageByte) { /* output not fully flushed; keep last byte as hostage; will be released when all output is flushed */ |
| input->pos--; /* note : pos > 0, otherwise, impossible to finish reading last block */ |
| zds->hostageByte=1; |
| } |
| return 1; |
| } /* nextSrcSizeHint==0 */ |
| nextSrcSizeHint += ZSTD_blockHeaderSize * (ZSTD_nextInputType(zds) == ZSTDnit_block); /* preload header of next block */ |
| assert(zds->inPos <= nextSrcSizeHint); |
| nextSrcSizeHint -= zds->inPos; /* part already loaded*/ |
| return nextSrcSizeHint; |
| } |
| } |
| |
| size_t ZSTD_decompressStream_simpleArgs ( |
| ZSTD_DCtx* dctx, |
| void* dst, size_t dstCapacity, size_t* dstPos, |
| const void* src, size_t srcSize, size_t* srcPos) |
| { |
| ZSTD_outBuffer output = { dst, dstCapacity, *dstPos }; |
| ZSTD_inBuffer input = { src, srcSize, *srcPos }; |
| /* ZSTD_compress_generic() will check validity of dstPos and srcPos */ |
| size_t const cErr = ZSTD_decompressStream(dctx, &output, &input); |
| *dstPos = output.pos; |
| *srcPos = input.pos; |
| return cErr; |
| } |