| /* |
| * Copyright (C) 2016 The Android Open Source Project |
| * |
| * SPDX-License-Identifier: (MIT or BSD-3-Clause) |
| */ |
| |
| /* Implementation of RSA signature verification which uses a pre-processed |
| * key for computation. The code extends libmincrypt RSA verification code to |
| * support multiple RSA key lengths and hash digest algorithms. |
| */ |
| |
| #include "avb_rsa.h" |
| #include "avb_sha.h" |
| #include "avb_util.h" |
| #include "avb_vbmeta_image.h" |
| |
| typedef struct IAvbKey { |
| unsigned int len; /* Length of n[] in number of uint32_t */ |
| uint32_t n0inv; /* -1 / n[0] mod 2^32 */ |
| uint32_t* n; /* modulus as array (host-byte order) */ |
| uint32_t* rr; /* R^2 as array (host-byte order) */ |
| } IAvbKey; |
| |
| static IAvbKey* iavb_parse_key_data(const uint8_t* data, size_t length) { |
| AvbRSAPublicKeyHeader h; |
| IAvbKey* key = NULL; |
| size_t expected_length; |
| unsigned int i; |
| const uint8_t* n; |
| const uint8_t* rr; |
| |
| if (!avb_rsa_public_key_header_validate_and_byteswap( |
| (const AvbRSAPublicKeyHeader*)data, &h)) { |
| avb_error("Invalid key.\n"); |
| goto fail; |
| } |
| |
| if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 || |
| h.key_num_bits == 8192)) { |
| avb_error("Unexpected key length.\n"); |
| goto fail; |
| } |
| |
| expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8; |
| if (length != expected_length) { |
| avb_error("Key does not match expected length.\n"); |
| goto fail; |
| } |
| |
| n = data + sizeof(AvbRSAPublicKeyHeader); |
| rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8; |
| |
| /* Store n and rr following the key header so we only have to do one |
| * allocation. |
| */ |
| key = (IAvbKey*)(avb_malloc(sizeof(IAvbKey) + 2 * h.key_num_bits / 8)); |
| if (key == NULL) { |
| goto fail; |
| } |
| |
| key->len = h.key_num_bits / 32; |
| key->n0inv = h.n0inv; |
| key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(IAvbKey) bytes. */ |
| key->rr = key->n + key->len; |
| |
| /* Crypto-code below (modpowF4() and friends) expects the key in |
| * little-endian format (rather than the format we're storing the |
| * key in), so convert it. |
| */ |
| for (i = 0; i < key->len; i++) { |
| key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]); |
| key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]); |
| } |
| return key; |
| |
| fail: |
| if (key != NULL) { |
| avb_free(key); |
| } |
| return NULL; |
| } |
| |
| static void iavb_free_parsed_key(IAvbKey* key) { |
| avb_free(key); |
| } |
| |
| /* a[] -= mod */ |
| static void subM(const IAvbKey* key, uint32_t* a) { |
| int64_t A = 0; |
| uint32_t i; |
| for (i = 0; i < key->len; ++i) { |
| A += (uint64_t)a[i] - key->n[i]; |
| a[i] = (uint32_t)A; |
| A >>= 32; |
| } |
| } |
| |
| /* return a[] >= mod */ |
| static int geM(const IAvbKey* key, uint32_t* a) { |
| uint32_t i; |
| for (i = key->len; i;) { |
| --i; |
| if (a[i] < key->n[i]) { |
| return 0; |
| } |
| if (a[i] > key->n[i]) { |
| return 1; |
| } |
| } |
| return 1; /* equal */ |
| } |
| |
| /* montgomery c[] += a * b[] / R % mod */ |
| static void montMulAdd(const IAvbKey* key, |
| uint32_t* c, |
| const uint32_t a, |
| const uint32_t* b) { |
| uint64_t A = (uint64_t)a * b[0] + c[0]; |
| uint32_t d0 = (uint32_t)A * key->n0inv; |
| uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; |
| uint32_t i; |
| |
| for (i = 1; i < key->len; ++i) { |
| A = (A >> 32) + (uint64_t)a * b[i] + c[i]; |
| B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; |
| c[i - 1] = (uint32_t)B; |
| } |
| |
| A = (A >> 32) + (B >> 32); |
| |
| c[i - 1] = (uint32_t)A; |
| |
| if (A >> 32) { |
| subM(key, c); |
| } |
| } |
| |
| /* montgomery c[] = a[] * b[] / R % mod */ |
| static void montMul(const IAvbKey* key, uint32_t* c, uint32_t* a, uint32_t* b) { |
| uint32_t i; |
| for (i = 0; i < key->len; ++i) { |
| c[i] = 0; |
| } |
| for (i = 0; i < key->len; ++i) { |
| montMulAdd(key, c, a[i], b); |
| } |
| } |
| |
| /* In-place public exponentiation. (65537} |
| * Input and output big-endian byte array in inout. |
| */ |
| static void modpowF4(const IAvbKey* key, uint8_t* inout) { |
| uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); |
| uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); |
| uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); |
| if (a == NULL || aR == NULL || aaR == NULL) { |
| goto out; |
| } |
| |
| uint32_t* aaa = aaR; /* Re-use location. */ |
| int i; |
| |
| /* Convert from big endian byte array to little endian word array. */ |
| for (i = 0; i < (int)key->len; ++i) { |
| uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) | |
| (inout[((key->len - 1 - i) * 4) + 1] << 16) | |
| (inout[((key->len - 1 - i) * 4) + 2] << 8) | |
| (inout[((key->len - 1 - i) * 4) + 3] << 0); |
| a[i] = tmp; |
| } |
| |
| montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ |
| for (i = 0; i < 16; i += 2) { |
| montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ |
| montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */ |
| } |
| montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */ |
| |
| /* Make sure aaa < mod; aaa is at most 1x mod too large. */ |
| if (geM(key, aaa)) { |
| subM(key, aaa); |
| } |
| |
| /* Convert to bigendian byte array */ |
| for (i = (int)key->len - 1; i >= 0; --i) { |
| uint32_t tmp = aaa[i]; |
| *inout++ = (uint8_t)(tmp >> 24); |
| *inout++ = (uint8_t)(tmp >> 16); |
| *inout++ = (uint8_t)(tmp >> 8); |
| *inout++ = (uint8_t)(tmp >> 0); |
| } |
| |
| out: |
| if (a != NULL) { |
| avb_free(a); |
| } |
| if (aR != NULL) { |
| avb_free(aR); |
| } |
| if (aaR != NULL) { |
| avb_free(aaR); |
| } |
| } |
| |
| /* Verify a RSA PKCS1.5 signature against an expected hash. |
| * Returns false on failure, true on success. |
| */ |
| bool avb_rsa_verify(const uint8_t* key, |
| size_t key_num_bytes, |
| const uint8_t* sig, |
| size_t sig_num_bytes, |
| const uint8_t* hash, |
| size_t hash_num_bytes, |
| const uint8_t* padding, |
| size_t padding_num_bytes) { |
| uint8_t* buf = NULL; |
| IAvbKey* parsed_key = NULL; |
| bool success = false; |
| |
| if (key == NULL || sig == NULL || hash == NULL || padding == NULL) { |
| avb_error("Invalid input.\n"); |
| goto out; |
| } |
| |
| parsed_key = iavb_parse_key_data(key, key_num_bytes); |
| if (parsed_key == NULL) { |
| avb_error("Error parsing key.\n"); |
| goto out; |
| } |
| |
| if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) { |
| avb_error("Signature length does not match key length.\n"); |
| goto out; |
| } |
| |
| if (padding_num_bytes != sig_num_bytes - hash_num_bytes) { |
| avb_error("Padding length does not match hash and signature lengths.\n"); |
| goto out; |
| } |
| |
| buf = (uint8_t*)avb_malloc(sig_num_bytes); |
| if (buf == NULL) { |
| avb_error("Error allocating memory.\n"); |
| goto out; |
| } |
| avb_memcpy(buf, sig, sig_num_bytes); |
| |
| modpowF4(parsed_key, buf); |
| |
| /* Check padding bytes. |
| * |
| * Even though there are probably no timing issues here, we use |
| * avb_safe_memcmp() just to be on the safe side. |
| */ |
| if (avb_safe_memcmp(buf, padding, padding_num_bytes)) { |
| avb_error("Padding check failed.\n"); |
| goto out; |
| } |
| |
| /* Check hash. */ |
| if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) { |
| avb_error("Hash check failed.\n"); |
| goto out; |
| } |
| |
| success = true; |
| |
| out: |
| if (parsed_key != NULL) { |
| iavb_free_parsed_key(parsed_key); |
| } |
| if (buf != NULL) { |
| avb_free(buf); |
| } |
| return success; |
| } |