| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Cadence NAND flash controller driver |
| * |
| * Copyright (C) 2019 Cadence |
| * |
| * Author: Piotr Sroka <piotrs@cadence.com> |
| * |
| */ |
| |
| #include <cadence-nand.h> |
| #include <clk.h> |
| #include <dm.h> |
| #include <hang.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <nand.h> |
| #include <reset.h> |
| #include <wait_bit.h> |
| #include <dm/device_compat.h> |
| #include <dm/devres.h> |
| #include <linux/bitfield.h> |
| #include <linux/bug.h> |
| #include <linux/delay.h> |
| #include <linux/dma-direction.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/ioport.h> |
| #include <linux/printk.h> |
| #include <linux/sizes.h> |
| |
| static inline struct |
| cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) |
| { |
| return container_of(chip, struct cdns_nand_chip, chip); |
| } |
| |
| static inline struct |
| cadence_nand_info *to_cadence_nand_info(struct nand_hw_control *controller) |
| { |
| return container_of(controller, struct cadence_nand_info, controller); |
| } |
| |
| static bool |
| cadence_nand_dma_buf_ok(struct cadence_nand_info *cadence, const void *buf, |
| u32 buf_len) |
| { |
| u8 data_dma_width = cadence->caps2.data_dma_width; |
| |
| return buf && |
| likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && |
| likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); |
| } |
| |
| static int cadence_nand_wait_for_value(struct cadence_nand_info *cadence, |
| u32 reg_offset, u32 timeout_us, |
| u32 mask, bool is_clear) |
| { |
| u32 val; |
| int ret; |
| |
| ret = readl_poll_sleep_timeout(cadence->reg + reg_offset, |
| val, !(val & mask) == is_clear, |
| 10, timeout_us); |
| |
| if (ret < 0) { |
| dev_err(cadence->dev, |
| "Timeout while waiting for reg %x with mask %x is clear %d\n", |
| reg_offset, mask, is_clear); |
| } |
| |
| return ret; |
| } |
| |
| static int cadence_nand_set_ecc_enable(struct cadence_nand_info *cadence, |
| bool enable) |
| { |
| u32 reg; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| reg = readl_relaxed(cadence->reg + ECC_CONFIG_0); |
| |
| if (enable) |
| reg |= ECC_CONFIG_0_ECC_EN; |
| else |
| reg &= ~ECC_CONFIG_0_ECC_EN; |
| |
| writel_relaxed(reg, cadence->reg + ECC_CONFIG_0); |
| |
| return 0; |
| } |
| |
| static void cadence_nand_set_ecc_strength(struct cadence_nand_info *cadence, |
| u8 corr_str_idx) |
| { |
| u32 reg; |
| |
| if (cadence->curr_corr_str_idx == corr_str_idx) |
| return; |
| |
| reg = readl_relaxed(cadence->reg + ECC_CONFIG_0); |
| reg &= ~ECC_CONFIG_0_CORR_STR; |
| reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); |
| writel_relaxed(reg, cadence->reg + ECC_CONFIG_0); |
| |
| cadence->curr_corr_str_idx = corr_str_idx; |
| } |
| |
| static int cadence_nand_get_ecc_strength_idx(struct cadence_nand_info *cadence, |
| u8 strength) |
| { |
| int i, corr_str_idx = -1; |
| |
| for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { |
| if (cadence->ecc_strengths[i] == strength) { |
| corr_str_idx = i; |
| break; |
| } |
| } |
| |
| return corr_str_idx; |
| } |
| |
| static int cadence_nand_set_skip_marker_val(struct cadence_nand_info *cadence, |
| u16 marker_value) |
| { |
| u32 reg; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF); |
| reg &= ~SKIP_BYTES_MARKER_VALUE; |
| reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, |
| marker_value); |
| |
| writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF); |
| |
| return 0; |
| } |
| |
| static int cadence_nand_set_skip_bytes_conf(struct cadence_nand_info *cadence, |
| u8 num_of_bytes, |
| u32 offset_value, |
| int enable) |
| { |
| u32 reg, skip_bytes_offset; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| if (!enable) { |
| num_of_bytes = 0; |
| offset_value = 0; |
| } |
| |
| reg = readl_relaxed(cadence->reg + SKIP_BYTES_CONF); |
| reg &= ~SKIP_BYTES_NUM_OF_BYTES; |
| reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, |
| num_of_bytes); |
| skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, |
| offset_value); |
| |
| writel_relaxed(reg, cadence->reg + SKIP_BYTES_CONF); |
| writel_relaxed(skip_bytes_offset, cadence->reg + SKIP_BYTES_OFFSET); |
| |
| return 0; |
| } |
| |
| /* Functions enables/disables hardware detection of erased data */ |
| static void cadence_nand_set_erase_detection(struct cadence_nand_info *cadence, |
| bool enable, |
| u8 bitflips_threshold) |
| { |
| u32 reg; |
| |
| reg = readl_relaxed(cadence->reg + ECC_CONFIG_0); |
| |
| if (enable) |
| reg |= ECC_CONFIG_0_ERASE_DET_EN; |
| else |
| reg &= ~ECC_CONFIG_0_ERASE_DET_EN; |
| |
| writel_relaxed(reg, cadence->reg + ECC_CONFIG_0); |
| writel_relaxed(bitflips_threshold, cadence->reg + ECC_CONFIG_1); |
| } |
| |
| static int cadence_nand_set_access_width16(struct cadence_nand_info *cadence, |
| bool bit_bus16) |
| { |
| u32 reg; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| reg = readl_relaxed(cadence->reg + COMMON_SET); |
| if (!bit_bus16) |
| reg &= ~COMMON_SET_DEVICE_16BIT; |
| else |
| reg |= COMMON_SET_DEVICE_16BIT; |
| writel_relaxed(reg, cadence->reg + COMMON_SET); |
| |
| return 0; |
| } |
| |
| static void |
| cadence_nand_clear_interrupt(struct cadence_nand_info *cadence, |
| struct cadence_nand_irq_status *irq_status) |
| { |
| writel_relaxed(irq_status->status, cadence->reg + INTR_STATUS); |
| writel_relaxed(irq_status->trd_status, |
| cadence->reg + TRD_COMP_INT_STATUS); |
| writel_relaxed(irq_status->trd_error, |
| cadence->reg + TRD_ERR_INT_STATUS); |
| } |
| |
| static void |
| cadence_nand_read_int_status(struct cadence_nand_info *cadence, |
| struct cadence_nand_irq_status *irq_status) |
| { |
| irq_status->status = readl_relaxed(cadence->reg + INTR_STATUS); |
| irq_status->trd_status = readl_relaxed(cadence->reg |
| + TRD_COMP_INT_STATUS); |
| irq_status->trd_error = readl_relaxed(cadence->reg |
| + TRD_ERR_INT_STATUS); |
| } |
| |
| static u32 irq_detected(struct cadence_nand_info *cadence, |
| struct cadence_nand_irq_status *irq_status) |
| { |
| cadence_nand_read_int_status(cadence, irq_status); |
| |
| return irq_status->status || irq_status->trd_status || |
| irq_status->trd_error; |
| } |
| |
| static void cadence_nand_reset_irq(struct cadence_nand_info *cadence) |
| { |
| memset(&cadence->irq_status, 0, sizeof(cadence->irq_status)); |
| memset(&cadence->irq_mask, 0, sizeof(cadence->irq_mask)); |
| } |
| |
| /* |
| * This is the interrupt service routine. It handles all interrupts |
| * sent to this device. |
| */ |
| static irqreturn_t cadence_nand_isr(struct cadence_nand_info *cadence) |
| { |
| struct cadence_nand_irq_status irq_status; |
| irqreturn_t result = IRQ_NONE; |
| |
| if (irq_detected(cadence, &irq_status)) { |
| /* Handle interrupt. */ |
| /* First acknowledge it. */ |
| cadence_nand_clear_interrupt(cadence, &irq_status); |
| /* Status in the device context for someone to read. */ |
| cadence->irq_status.status |= irq_status.status; |
| cadence->irq_status.trd_status |= irq_status.trd_status; |
| cadence->irq_status.trd_error |= irq_status.trd_error; |
| /* Tell the OS that we've handled this. */ |
| result = IRQ_HANDLED; |
| } |
| return result; |
| } |
| |
| static void cadence_nand_set_irq_mask(struct cadence_nand_info *cadence, |
| struct cadence_nand_irq_status *irq_mask) |
| { |
| writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, |
| cadence->reg + INTR_ENABLE); |
| |
| writel_relaxed(irq_mask->trd_error, |
| cadence->reg + TRD_ERR_INT_STATUS_EN); |
| } |
| |
| static void |
| cadence_nand_wait_for_irq(struct cadence_nand_info *cadence, |
| struct cadence_nand_irq_status *irq_mask, |
| struct cadence_nand_irq_status *irq_status) |
| { |
| irqreturn_t result = IRQ_NONE; |
| u32 start = get_timer(0); |
| |
| while (get_timer(start) < TIMEOUT_US) { |
| result = cadence_nand_isr(cadence); |
| |
| if (result == IRQ_HANDLED) { |
| *irq_status = cadence->irq_status; |
| break; |
| } |
| udelay(1); |
| } |
| |
| if (!result) { |
| /* Timeout error. */ |
| dev_err(cadence->dev, "timeout occurred:\n"); |
| dev_err(cadence->dev, "\tstatus = 0x%x, mask = 0x%x\n", |
| irq_status->status, irq_mask->status); |
| dev_err(cadence->dev, |
| "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", |
| irq_status->trd_status, irq_mask->trd_status); |
| dev_err(cadence->dev, |
| "\t trd_error = 0x%x, trd_error mask = 0x%x\n", |
| irq_status->trd_error, irq_mask->trd_error); |
| } |
| } |
| |
| /* Execute generic command on NAND controller. */ |
| static int cadence_nand_generic_cmd_send(struct cadence_nand_info *cadence, |
| u8 chip_nr, |
| u64 mini_ctrl_cmd) |
| { |
| u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; |
| |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); |
| mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; |
| mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| cadence_nand_reset_irq(cadence); |
| |
| writel_relaxed(mini_ctrl_cmd_l, cadence->reg + CMD_REG2); |
| writel_relaxed(mini_ctrl_cmd_h, cadence->reg + CMD_REG3); |
| |
| /* Select generic command. */ |
| reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); |
| /* Thread number. */ |
| reg |= FIELD_PREP(CMD_REG0_TN, 0); |
| |
| /* Issue command. */ |
| writel_relaxed(reg, cadence->reg + CMD_REG0); |
| cadence->buf_index = 0; |
| |
| return 0; |
| } |
| |
| /* Wait for data on slave DMA interface. */ |
| static int cadence_nand_wait_on_sdma(struct cadence_nand_info *cadence, u8 *out_sdma_trd, |
| u32 *out_sdma_size) |
| { |
| struct cadence_nand_irq_status irq_mask, irq_status; |
| |
| irq_mask.trd_status = 0; |
| irq_mask.trd_error = 0; |
| irq_mask.status = INTR_STATUS_SDMA_TRIGG |
| | INTR_STATUS_SDMA_ERR |
| | INTR_STATUS_UNSUPP_CMD; |
| |
| cadence_nand_set_irq_mask(cadence, &irq_mask); |
| cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status); |
| if (irq_status.status == 0) { |
| dev_err(cadence->dev, "Timeout while waiting for SDMA\n"); |
| return -ETIMEDOUT; |
| } |
| |
| if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { |
| *out_sdma_size = readl_relaxed(cadence->reg + SDMA_SIZE); |
| *out_sdma_trd = readl_relaxed(cadence->reg + SDMA_TRD_NUM); |
| *out_sdma_trd = |
| FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); |
| } else { |
| dev_err(cadence->dev, "SDMA error - irq_status %x\n", |
| irq_status.status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static void cadence_nand_get_caps(struct cadence_nand_info *cadence) |
| { |
| u32 reg; |
| |
| reg = readl_relaxed(cadence->reg + CTRL_FEATURES); |
| |
| cadence->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); |
| |
| if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) |
| cadence->caps2.data_dma_width = 8; |
| else |
| cadence->caps2.data_dma_width = 4; |
| |
| if (reg & CTRL_FEATURES_CONTROL_DATA) |
| cadence->caps2.data_control_supp = true; |
| |
| if (reg & (CTRL_FEATURES_NVDDR_2_3 |
| | CTRL_FEATURES_NVDDR)) |
| cadence->caps2.is_phy_type_dll = true; |
| } |
| |
| /* Prepare CDMA descriptor. */ |
| static void |
| cadence_nand_cdma_desc_prepare(struct cadence_nand_info *cadence, |
| char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, |
| dma_addr_t ctrl_data_ptr, u16 ctype) |
| { |
| struct cadence_nand_cdma_desc *cdma_desc = cadence->cdma_desc; |
| |
| memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); |
| |
| /* Set fields for one descriptor. */ |
| cdma_desc->flash_pointer = flash_ptr; |
| if (cadence->ctrl_rev >= 13) |
| cdma_desc->bank = nf_mem; |
| else |
| cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); |
| |
| cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; |
| cdma_desc->command_flags |= CDMA_CF_INT; |
| |
| cdma_desc->memory_pointer = mem_ptr; |
| cdma_desc->status = 0; |
| cdma_desc->sync_flag_pointer = 0; |
| cdma_desc->sync_arguments = 0; |
| |
| cdma_desc->command_type = ctype; |
| cdma_desc->ctrl_data_ptr = ctrl_data_ptr; |
| |
| flush_cache((dma_addr_t)cadence->cdma_desc, |
| ROUND(sizeof(struct cadence_nand_cdma_desc), |
| ARCH_DMA_MINALIGN)); |
| } |
| |
| static u8 cadence_nand_check_desc_error(struct cadence_nand_info *cadence, |
| u32 desc_status) |
| { |
| if (desc_status & CDMA_CS_ERP) |
| return STAT_ERASED; |
| |
| if (desc_status & CDMA_CS_UNCE) |
| return STAT_ECC_UNCORR; |
| |
| if (desc_status & CDMA_CS_ERR) { |
| dev_err(cadence->dev, ":CDMA desc error flag detected.\n"); |
| return STAT_FAIL; |
| } |
| |
| if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) |
| return STAT_ECC_CORR; |
| |
| return STAT_FAIL; |
| } |
| |
| static int cadence_nand_cdma_finish(struct cadence_nand_info *cadence) |
| { |
| struct cadence_nand_cdma_desc *desc_ptr = cadence->cdma_desc; |
| u8 status = STAT_BUSY; |
| |
| invalidate_dcache_range((dma_addr_t)cadence->cdma_desc, |
| (dma_addr_t)cadence->cdma_desc + |
| ROUND(sizeof(struct cadence_nand_cdma_desc), |
| ARCH_DMA_MINALIGN)); |
| |
| if (desc_ptr->status & CDMA_CS_FAIL) { |
| status = cadence_nand_check_desc_error(cadence, |
| desc_ptr->status); |
| dev_err(cadence->dev, ":CDMA error %x\n", desc_ptr->status); |
| } else if (desc_ptr->status & CDMA_CS_COMP) { |
| /* Descriptor finished with no errors. */ |
| if (desc_ptr->command_flags & CDMA_CF_CONT) { |
| dev_info(cadence->dev, "DMA unsupported flag is set"); |
| status = STAT_UNKNOWN; |
| } else { |
| /* Last descriptor. */ |
| status = STAT_OK; |
| } |
| } |
| |
| return status; |
| } |
| |
| static int cadence_nand_cdma_send(struct cadence_nand_info *cadence, |
| u8 thread) |
| { |
| u32 reg; |
| int status; |
| |
| /* Wait for thread ready. */ |
| status = cadence_nand_wait_for_value(cadence, TRD_STATUS, |
| TIMEOUT_US, |
| BIT(thread), true); |
| if (status) |
| return status; |
| |
| cadence_nand_reset_irq(cadence); |
| |
| writel_relaxed((u32)cadence->dma_cdma_desc, |
| cadence->reg + CMD_REG2); |
| writel_relaxed(0, cadence->reg + CMD_REG3); |
| |
| /* Select CDMA mode. */ |
| reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); |
| /* Thread number. */ |
| reg |= FIELD_PREP(CMD_REG0_TN, thread); |
| /* Issue command. */ |
| writel_relaxed(reg, cadence->reg + CMD_REG0); |
| |
| return 0; |
| } |
| |
| /* Send SDMA command and wait for finish. */ |
| static u32 |
| cadence_nand_cdma_send_and_wait(struct cadence_nand_info *cadence, |
| u8 thread) |
| { |
| struct cadence_nand_irq_status irq_mask, irq_status = {0}; |
| int status; |
| u32 val; |
| |
| irq_mask.trd_status = BIT(thread); |
| irq_mask.trd_error = BIT(thread); |
| irq_mask.status = INTR_STATUS_CDMA_TERR; |
| |
| cadence_nand_set_irq_mask(cadence, &irq_mask); |
| |
| status = cadence_nand_cdma_send(cadence, thread); |
| if (status) |
| return status; |
| |
| /* Make sure the descriptor processing is complete */ |
| status = readl_poll_timeout(cadence->reg + TRD_COMP_INT_STATUS, val, |
| (val & BIT(thread)), TIMEOUT_US); |
| if (status) { |
| pr_err("cmd thread completion timeout!\n"); |
| return status; |
| } |
| |
| cadence_nand_wait_for_irq(cadence, &irq_mask, &irq_status); |
| |
| if (irq_status.status == 0 && irq_status.trd_status == 0 && |
| irq_status.trd_error == 0) { |
| dev_err(cadence->dev, "CDMA command timeout\n"); |
| return -ETIMEDOUT; |
| } |
| if (irq_status.status & irq_mask.status) { |
| dev_err(cadence->dev, "CDMA command failed\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * ECC size depends on configured ECC strength and on maximum supported |
| * ECC step size. |
| */ |
| static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) |
| { |
| int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); |
| |
| return ALIGN(nbytes, 2); |
| } |
| |
| #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ |
| static int \ |
| cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ |
| int strength)\ |
| {\ |
| return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ |
| } |
| |
| CADENCE_NAND_CALC_ECC_BYTES(256) |
| CADENCE_NAND_CALC_ECC_BYTES(512) |
| CADENCE_NAND_CALC_ECC_BYTES(1024) |
| CADENCE_NAND_CALC_ECC_BYTES(2048) |
| CADENCE_NAND_CALC_ECC_BYTES(4096) |
| |
| /* Function reads BCH capabilities. */ |
| static int cadence_nand_read_bch_caps(struct cadence_nand_info *cadence) |
| { |
| struct nand_ecc_caps *ecc_caps = &cadence->ecc_caps; |
| int max_step_size = 0, nstrengths, i; |
| u32 reg; |
| |
| reg = readl_relaxed(cadence->reg + BCH_CFG_3); |
| cadence->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); |
| if (cadence->bch_metadata_size < 4) { |
| dev_err(cadence->dev, |
| "Driver needs at least 4 bytes of BCH meta data\n"); |
| return -EIO; |
| } |
| |
| reg = readl_relaxed(cadence->reg + BCH_CFG_0); |
| cadence->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); |
| cadence->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); |
| cadence->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); |
| cadence->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); |
| |
| reg = readl_relaxed(cadence->reg + BCH_CFG_1); |
| cadence->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); |
| cadence->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); |
| cadence->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); |
| cadence->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); |
| |
| reg = readl_relaxed(cadence->reg + BCH_CFG_2); |
| cadence->ecc_stepinfos[0].stepsize = |
| FIELD_GET(BCH_CFG_2_SECT_0, reg); |
| |
| cadence->ecc_stepinfos[1].stepsize = |
| FIELD_GET(BCH_CFG_2_SECT_1, reg); |
| |
| nstrengths = 0; |
| for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { |
| if (cadence->ecc_strengths[i] != 0) |
| nstrengths++; |
| } |
| |
| ecc_caps->nstepinfos = 0; |
| for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { |
| /* ECC strengths are common for all step infos. */ |
| cadence->ecc_stepinfos[i].nstrengths = nstrengths; |
| cadence->ecc_stepinfos[i].strengths = |
| cadence->ecc_strengths; |
| |
| if (cadence->ecc_stepinfos[i].stepsize != 0) |
| ecc_caps->nstepinfos++; |
| |
| if (cadence->ecc_stepinfos[i].stepsize > max_step_size) |
| max_step_size = cadence->ecc_stepinfos[i].stepsize; |
| } |
| ecc_caps->stepinfos = &cadence->ecc_stepinfos[0]; |
| |
| switch (max_step_size) { |
| case 256: |
| ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; |
| break; |
| case 512: |
| ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; |
| break; |
| case 1024: |
| ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; |
| break; |
| case 2048: |
| ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; |
| break; |
| case 4096: |
| ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; |
| break; |
| default: |
| dev_err(cadence->dev, |
| "Unsupported sector size(ecc step size) %d\n", |
| max_step_size); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /* Hardware initialization. */ |
| static int cadence_nand_hw_init(struct cadence_nand_info *cadence) |
| { |
| int status; |
| u32 reg; |
| |
| status = cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_INIT_COMP, false); |
| if (status) |
| return status; |
| |
| reg = readl_relaxed(cadence->reg + CTRL_VERSION); |
| cadence->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); |
| |
| dev_info(cadence->dev, |
| "%s: cadence nand controller version reg %x\n", |
| __func__, reg); |
| |
| /* Disable cache and multiplane. */ |
| writel_relaxed(0, cadence->reg + MULTIPLANE_CFG); |
| writel_relaxed(0, cadence->reg + CACHE_CFG); |
| |
| /* Clear all interrupts. */ |
| writel_relaxed(0xFFFFFFFF, cadence->reg + INTR_STATUS); |
| |
| cadence_nand_get_caps(cadence); |
| if (cadence_nand_read_bch_caps(cadence)) |
| return -EIO; |
| |
| /* |
| * Set IO width access to 8. |
| * It is because during SW device discovering width access |
| * is expected to be 8. |
| */ |
| status = cadence_nand_set_access_width16(cadence, false); |
| |
| return status; |
| } |
| |
| #define TT_MAIN_OOB_AREAS 2 |
| #define TT_RAW_PAGE 3 |
| #define TT_BBM 4 |
| #define TT_MAIN_OOB_AREA_EXT 5 |
| |
| /* Prepare size of data to transfer. */ |
| static void |
| cadence_nand_prepare_data_size(struct mtd_info *mtd, |
| int transfer_type) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| u32 sec_size = 0, offset = 0, sec_cnt = 1; |
| u32 last_sec_size = cdns_chip->sector_size; |
| u32 data_ctrl_size = 0; |
| u32 reg = 0; |
| |
| if (cadence->curr_trans_type == transfer_type) |
| return; |
| |
| switch (transfer_type) { |
| case TT_MAIN_OOB_AREA_EXT: |
| sec_cnt = cdns_chip->sector_count; |
| sec_size = cdns_chip->sector_size; |
| data_ctrl_size = cdns_chip->avail_oob_size; |
| break; |
| case TT_MAIN_OOB_AREAS: |
| sec_cnt = cdns_chip->sector_count; |
| last_sec_size = cdns_chip->sector_size |
| + cdns_chip->avail_oob_size; |
| sec_size = cdns_chip->sector_size; |
| break; |
| case TT_RAW_PAGE: |
| last_sec_size = mtd->writesize + mtd->oobsize; |
| break; |
| case TT_BBM: |
| offset = mtd->writesize + cdns_chip->bbm_offs; |
| last_sec_size = 8; |
| break; |
| } |
| |
| reg = 0; |
| reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); |
| reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); |
| writel_relaxed(reg, cadence->reg + TRAN_CFG_0); |
| |
| reg = 0; |
| reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); |
| reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); |
| writel_relaxed(reg, cadence->reg + TRAN_CFG_1); |
| |
| if (cadence->caps2.data_control_supp) { |
| reg = readl_relaxed(cadence->reg + CONTROL_DATA_CTRL); |
| reg &= ~CONTROL_DATA_CTRL_SIZE; |
| reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); |
| writel_relaxed(reg, cadence->reg + CONTROL_DATA_CTRL); |
| } |
| |
| cadence->curr_trans_type = transfer_type; |
| } |
| |
| static int |
| cadence_nand_cdma_transfer(struct cadence_nand_info *cadence, u8 chip_nr, |
| int page, void *buf, void *ctrl_dat, u32 buf_size, |
| u32 ctrl_dat_size, enum dma_data_direction dir, |
| bool with_ecc) |
| { |
| dma_addr_t dma_buf, dma_ctrl_dat = 0; |
| u8 thread_nr = chip_nr; |
| int status; |
| u16 ctype; |
| |
| if (dir == DMA_FROM_DEVICE) |
| ctype = CDMA_CT_RD; |
| else |
| ctype = CDMA_CT_WR; |
| |
| cadence_nand_set_ecc_enable(cadence, with_ecc); |
| |
| dma_buf = dma_map_single(buf, buf_size, dir); |
| if (dma_mapping_error(cadence->dev, dma_buf)) { |
| dev_err(cadence->dev, "Failed to map DMA buffer\n"); |
| return -EIO; |
| } |
| |
| if (ctrl_dat && ctrl_dat_size) { |
| dma_ctrl_dat = dma_map_single(ctrl_dat, |
| ctrl_dat_size, dir); |
| if (dma_mapping_error(cadence->dev, dma_ctrl_dat)) { |
| dma_unmap_single(dma_buf, |
| buf_size, dir); |
| dev_err(cadence->dev, "Failed to map DMA buffer\n"); |
| return -EIO; |
| } |
| } |
| |
| cadence_nand_cdma_desc_prepare(cadence, chip_nr, page, |
| dma_buf, dma_ctrl_dat, ctype); |
| |
| status = cadence_nand_cdma_send_and_wait(cadence, thread_nr); |
| |
| dma_unmap_single(dma_buf, |
| buf_size, dir); |
| |
| if (ctrl_dat && ctrl_dat_size) |
| dma_unmap_single(dma_ctrl_dat, |
| ctrl_dat_size, dir); |
| if (status) |
| return status; |
| |
| return cadence_nand_cdma_finish(cadence); |
| } |
| |
| static void cadence_nand_set_timings(struct cadence_nand_info *cadence, |
| struct cadence_nand_timings *t) |
| { |
| writel_relaxed(t->async_toggle_timings, |
| cadence->reg + ASYNC_TOGGLE_TIMINGS); |
| writel_relaxed(t->timings0, cadence->reg + TIMINGS0); |
| writel_relaxed(t->timings1, cadence->reg + TIMINGS1); |
| writel_relaxed(t->timings2, cadence->reg + TIMINGS2); |
| |
| if (cadence->caps2.is_phy_type_dll) |
| writel_relaxed(t->dll_phy_ctrl, cadence->reg + DLL_PHY_CTRL); |
| |
| writel_relaxed(t->phy_ctrl, cadence->reg + PHY_CTRL); |
| |
| if (cadence->caps2.is_phy_type_dll) { |
| writel_relaxed(0, cadence->reg + PHY_TSEL); |
| writel_relaxed(2, cadence->reg + PHY_DQ_TIMING); |
| writel_relaxed(t->phy_dqs_timing, |
| cadence->reg + PHY_DQS_TIMING); |
| writel_relaxed(t->phy_gate_lpbk_ctrl, |
| cadence->reg + PHY_GATE_LPBK_CTRL); |
| writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, |
| cadence->reg + PHY_DLL_MASTER_CTRL); |
| writel_relaxed(0, cadence->reg + PHY_DLL_SLAVE_CTRL); |
| } |
| } |
| |
| static int cadence_nand_select_target(struct nand_chip *chip) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| |
| if (chip == cadence->selected_chip) |
| return 0; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| cadence_nand_set_timings(cadence, &cdns_chip->timings); |
| |
| cadence_nand_set_ecc_strength(cadence, |
| cdns_chip->corr_str_idx); |
| |
| cadence_nand_set_erase_detection(cadence, true, |
| chip->ecc.strength); |
| |
| cadence->curr_trans_type = -1; |
| cadence->selected_chip = chip; |
| |
| return 0; |
| } |
| |
| static int cadence_nand_erase(struct mtd_info *mtd, int page) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| int status; |
| u8 thread_nr = cdns_chip->cs[chip->cur_cs]; |
| |
| cadence_nand_cdma_desc_prepare(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, 0, 0, |
| CDMA_CT_ERASE); |
| status = cadence_nand_cdma_send_and_wait(cadence, thread_nr); |
| if (status) { |
| dev_err(cadence->dev, "erase operation failed\n"); |
| return -EIO; |
| } |
| |
| status = cadence_nand_cdma_finish(cadence); |
| if (status) |
| return status; |
| |
| return 0; |
| } |
| |
| static int cadence_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, int oobavail) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| int ret; |
| |
| /* |
| * If .size and .strength are already set (usually by DT), |
| * check if they are supported by this controller. |
| */ |
| if (chip->ecc.size && chip->ecc.strength) |
| return nand_check_ecc_caps(chip, &cadence->ecc_caps, oobavail); |
| |
| /* |
| * We want .size and .strength closest to the chip's requirement |
| * unless NAND_ECC_MAXIMIZE is requested. |
| */ |
| if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) { |
| ret = nand_match_ecc_req(chip, &cadence->ecc_caps, oobavail); |
| if (!ret) |
| return 0; |
| } |
| |
| /* Max ECC strength is the last thing we can do */ |
| return nand_maximize_ecc(chip, &cadence->ecc_caps, oobavail); |
| } |
| |
| static int cadence_nand_read_bbm(struct mtd_info *mtd, struct nand_chip *chip, int page, u8 *buf) |
| { |
| int status; |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| |
| cadence_nand_prepare_data_size(mtd, TT_BBM); |
| |
| cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0); |
| |
| /* |
| * Read only bad block marker from offset |
| * defined by a memory manufacturer. |
| */ |
| status = cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, cadence->buf, NULL, |
| mtd->oobsize, |
| 0, DMA_FROM_DEVICE, false); |
| if (status) { |
| dev_err(cadence->dev, "read BBM failed\n"); |
| return -EIO; |
| } |
| |
| memcpy(buf + cdns_chip->bbm_offs, cadence->buf, cdns_chip->bbm_len); |
| |
| return 0; |
| } |
| |
| static int cadence_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const u8 *buf, int oob_required, int page) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| int status; |
| u16 marker_val = 0xFFFF; |
| |
| status = cadence_nand_select_target(chip); |
| if (status) |
| return status; |
| |
| cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len, |
| mtd->writesize |
| + cdns_chip->bbm_offs, |
| 1); |
| |
| if (oob_required) { |
| marker_val = *(u16 *)(chip->oob_poi |
| + cdns_chip->bbm_offs); |
| } else { |
| /* Set oob data to 0xFF. */ |
| memset(cadence->buf + mtd->writesize, 0xFF, |
| cdns_chip->avail_oob_size); |
| } |
| |
| cadence_nand_set_skip_marker_val(cadence, marker_val); |
| |
| cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT); |
| |
| if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) && |
| cadence->caps2.data_control_supp && !(chip->options & NAND_USE_BOUNCE_BUFFER)) { |
| u8 *oob; |
| |
| if (oob_required) |
| oob = chip->oob_poi; |
| else |
| oob = cadence->buf + mtd->writesize; |
| |
| status = cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, (void *)buf, oob, |
| mtd->writesize, |
| cdns_chip->avail_oob_size, |
| DMA_TO_DEVICE, true); |
| if (status) { |
| dev_err(cadence->dev, "write page failed\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| if (oob_required) { |
| /* Transfer the data to the oob area. */ |
| memcpy(cadence->buf + mtd->writesize, chip->oob_poi, |
| cdns_chip->avail_oob_size); |
| } |
| |
| memcpy(cadence->buf, buf, mtd->writesize); |
| |
| cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS); |
| |
| return cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, cadence->buf, NULL, |
| mtd->writesize |
| + cdns_chip->avail_oob_size, |
| 0, DMA_TO_DEVICE, true); |
| } |
| |
| static int cadence_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| |
| memset(cadence->buf, 0xFF, mtd->writesize); |
| |
| return cadence_nand_write_page(mtd, chip, cadence->buf, 1, page); |
| } |
| |
| static int cadence_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| const u8 *buf, int oob_required, int page) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| int writesize = mtd->writesize; |
| int oobsize = mtd->oobsize; |
| int ecc_steps = chip->ecc.steps; |
| int ecc_size = chip->ecc.size; |
| int ecc_bytes = chip->ecc.bytes; |
| void *tmp_buf = cadence->buf; |
| int oob_skip = cdns_chip->bbm_len; |
| size_t size = writesize + oobsize; |
| int i, pos, len; |
| int status; |
| |
| status = cadence_nand_select_target(chip); |
| if (status) |
| return status; |
| |
| /* |
| * Fill the buffer with 0xff first except the full page transfer. |
| * This simplifies the logic. |
| */ |
| if (!buf || !oob_required) |
| memset(tmp_buf, 0xff, size); |
| |
| cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0); |
| |
| /* Arrange the buffer for syndrome payload/ecc layout. */ |
| if (buf) { |
| for (i = 0; i < ecc_steps; i++) { |
| pos = i * (ecc_size + ecc_bytes); |
| len = ecc_size; |
| |
| if (pos >= writesize) |
| pos += oob_skip; |
| else if (pos + len > writesize) |
| len = writesize - pos; |
| |
| memcpy(tmp_buf + pos, buf, len); |
| buf += len; |
| if (len < ecc_size) { |
| len = ecc_size - len; |
| memcpy(tmp_buf + writesize + oob_skip, buf, |
| len); |
| buf += len; |
| } |
| } |
| } |
| |
| if (oob_required) { |
| const u8 *oob = chip->oob_poi; |
| u32 oob_data_offset = (cdns_chip->sector_count - 1) * |
| (cdns_chip->sector_size + chip->ecc.bytes) |
| + cdns_chip->sector_size + oob_skip; |
| |
| /* BBM at the beginning of the OOB area. */ |
| memcpy(tmp_buf + writesize, oob, oob_skip); |
| |
| /* OOB free. */ |
| memcpy(tmp_buf + oob_data_offset, oob, |
| cdns_chip->avail_oob_size); |
| oob += cdns_chip->avail_oob_size; |
| |
| /* OOB ECC. */ |
| for (i = 0; i < ecc_steps; i++) { |
| pos = ecc_size + i * (ecc_size + ecc_bytes); |
| if (i == (ecc_steps - 1)) |
| pos += cdns_chip->avail_oob_size; |
| |
| len = ecc_bytes; |
| |
| if (pos >= writesize) |
| pos += oob_skip; |
| else if (pos + len > writesize) |
| len = writesize - pos; |
| |
| memcpy(tmp_buf + pos, oob, len); |
| oob += len; |
| if (len < ecc_bytes) { |
| len = ecc_bytes - len; |
| memcpy(tmp_buf + writesize + oob_skip, oob, |
| len); |
| oob += len; |
| } |
| } |
| } |
| |
| cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE); |
| |
| return cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, cadence->buf, NULL, |
| mtd->writesize + |
| mtd->oobsize, |
| 0, DMA_TO_DEVICE, false); |
| } |
| |
| static int cadence_nand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| return cadence_nand_write_page_raw(mtd, chip, NULL, true, page); |
| } |
| |
| static int cadence_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| u8 *buf, int oob_required, int page) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| int status; |
| int ecc_err_count = 0; |
| |
| status = cadence_nand_select_target(chip); |
| if (status) |
| return status; |
| |
| cadence_nand_set_skip_bytes_conf(cadence, cdns_chip->bbm_len, |
| mtd->writesize |
| + cdns_chip->bbm_offs, 1); |
| |
| /* |
| * If data buffer can be accessed by DMA and data_control feature |
| * is supported then transfer data and oob directly. |
| */ |
| if (cadence_nand_dma_buf_ok(cadence, buf, mtd->writesize) && |
| cadence->caps2.data_control_supp && !(chip->options & NAND_USE_BOUNCE_BUFFER)) { |
| u8 *oob; |
| |
| if (oob_required) |
| oob = chip->oob_poi; |
| else |
| oob = cadence->buf + mtd->writesize; |
| |
| cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREA_EXT); |
| status = cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, buf, oob, |
| mtd->writesize, |
| cdns_chip->avail_oob_size, |
| DMA_FROM_DEVICE, true); |
| /* Otherwise use bounce buffer. */ |
| } else { |
| cadence_nand_prepare_data_size(mtd, TT_MAIN_OOB_AREAS); |
| status = cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, cadence->buf, |
| NULL, mtd->writesize |
| + cdns_chip->avail_oob_size, |
| 0, DMA_FROM_DEVICE, true); |
| |
| memcpy(buf, cadence->buf, mtd->writesize); |
| if (oob_required) |
| memcpy(chip->oob_poi, |
| cadence->buf + mtd->writesize, |
| mtd->oobsize); |
| } |
| |
| switch (status) { |
| case STAT_ECC_UNCORR: |
| mtd->ecc_stats.failed++; |
| ecc_err_count++; |
| break; |
| case STAT_ECC_CORR: |
| ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, |
| cadence->cdma_desc->status); |
| mtd->ecc_stats.corrected += ecc_err_count; |
| break; |
| case STAT_ERASED: |
| case STAT_OK: |
| break; |
| default: |
| dev_err(cadence->dev, "read page failed\n"); |
| return -EIO; |
| } |
| |
| if (oob_required) |
| if (cadence_nand_read_bbm(mtd, chip, page, chip->oob_poi)) |
| return -EIO; |
| |
| return ecc_err_count; |
| } |
| |
| static int cadence_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| |
| return cadence_nand_read_page(mtd, chip, cadence->buf, 1, page); |
| } |
| |
| static int cadence_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| u8 *buf, int oob_required, int page) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| int oob_skip = cdns_chip->bbm_len; |
| int writesize = mtd->writesize; |
| int ecc_steps = chip->ecc.steps; |
| int ecc_size = chip->ecc.size; |
| int ecc_bytes = chip->ecc.bytes; |
| void *tmp_buf = cadence->buf; |
| int i, pos, len; |
| int status; |
| |
| status = cadence_nand_select_target(chip); |
| if (status) |
| return status; |
| |
| cadence_nand_set_skip_bytes_conf(cadence, 0, 0, 0); |
| |
| cadence_nand_prepare_data_size(mtd, TT_RAW_PAGE); |
| status = cadence_nand_cdma_transfer(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| page, cadence->buf, NULL, |
| mtd->writesize |
| + mtd->oobsize, |
| 0, DMA_FROM_DEVICE, false); |
| |
| switch (status) { |
| case STAT_ERASED: |
| case STAT_OK: |
| break; |
| default: |
| dev_err(cadence->dev, "read raw page failed\n"); |
| return -EIO; |
| } |
| |
| /* Arrange the buffer for syndrome payload/ecc layout. */ |
| if (buf) { |
| for (i = 0; i < ecc_steps; i++) { |
| pos = i * (ecc_size + ecc_bytes); |
| len = ecc_size; |
| |
| if (pos >= writesize) |
| pos += oob_skip; |
| else if (pos + len > writesize) |
| len = writesize - pos; |
| |
| memcpy(buf, tmp_buf + pos, len); |
| buf += len; |
| if (len < ecc_size) { |
| len = ecc_size - len; |
| memcpy(buf, tmp_buf + writesize + oob_skip, |
| len); |
| buf += len; |
| } |
| } |
| } |
| |
| if (oob_required) { |
| u8 *oob = chip->oob_poi; |
| u32 oob_data_offset = (cdns_chip->sector_count - 1) * |
| (cdns_chip->sector_size + chip->ecc.bytes) |
| + cdns_chip->sector_size + oob_skip; |
| |
| /* OOB free. */ |
| memcpy(oob, tmp_buf + oob_data_offset, |
| cdns_chip->avail_oob_size); |
| |
| /* BBM at the beginning of the OOB area. */ |
| memcpy(oob, tmp_buf + writesize, oob_skip); |
| |
| oob += cdns_chip->avail_oob_size; |
| |
| /* OOB ECC */ |
| for (i = 0; i < ecc_steps; i++) { |
| pos = ecc_size + i * (ecc_size + ecc_bytes); |
| len = ecc_bytes; |
| |
| if (i == (ecc_steps - 1)) |
| pos += cdns_chip->avail_oob_size; |
| |
| if (pos >= writesize) |
| pos += oob_skip; |
| else if (pos + len > writesize) |
| len = writesize - pos; |
| |
| memcpy(oob, tmp_buf + pos, len); |
| oob += len; |
| if (len < ecc_bytes) { |
| len = ecc_bytes - len; |
| memcpy(oob, tmp_buf + writesize + oob_skip, |
| len); |
| oob += len; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int cadence_nand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| return cadence_nand_read_page_raw(mtd, chip, NULL, true, page); |
| } |
| |
| static void cadence_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| u8 thread_nr = 0; |
| u32 sdma_size; |
| int status; |
| int len_in_words = len >> 2; |
| |
| /* Wait until slave DMA interface is ready to data transfer. */ |
| status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size); |
| if (status) { |
| pr_err("Wait on sdma failed:%x\n", status); |
| hang(); |
| } |
| |
| if (!cadence->caps1->has_dma) { |
| readsq(cadence->io.virt, buf, len_in_words); |
| |
| if (sdma_size > len) { |
| memcpy(cadence->buf, buf + (len_in_words << 2), |
| len - (len_in_words << 2)); |
| readsl(cadence->io.virt, cadence->buf, |
| sdma_size / 4 - len_in_words); |
| } |
| } |
| } |
| |
| static void cadence_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| u8 thread_nr = 0; |
| u32 sdma_size; |
| int status; |
| int len_in_words = len >> 2; |
| |
| /* Wait until slave DMA interface is ready to data transfer. */ |
| status = cadence_nand_wait_on_sdma(cadence, &thread_nr, &sdma_size); |
| if (status) { |
| pr_err("Wait on sdma failed:%x\n", status); |
| hang(); |
| } |
| |
| if (!cadence->caps1->has_dma) { |
| writesq(cadence->io.virt, buf, len_in_words); |
| |
| if (sdma_size > len) { |
| memcpy(cadence->buf, buf + (len_in_words << 2), |
| len - (len_in_words << 2)); |
| writesl(cadence->io.virt, cadence->buf, |
| sdma_size / 4 - len_in_words); |
| } |
| } |
| } |
| |
| static int cadence_nand_cmd_opcode(struct nand_chip *chip, unsigned int op_id) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| u64 mini_ctrl_cmd = 0; |
| int ret; |
| |
| mini_ctrl_cmd |= GCMD_LAY_TWB; |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD); |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, op_id); |
| |
| ret = cadence_nand_generic_cmd_send(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| mini_ctrl_cmd); |
| |
| if (ret) |
| dev_err(cadence->dev, "send cmd %x failed\n", |
| op_id); |
| |
| return ret; |
| } |
| |
| static int cadence_nand_cmd_address(struct nand_chip *chip, |
| unsigned int naddrs, const u8 *addrs) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| u64 address = 0; |
| u64 mini_ctrl_cmd = 0; |
| int ret; |
| int i; |
| |
| mini_ctrl_cmd |= GCMD_LAY_TWB; |
| |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, |
| GCMD_LAY_INSTR_ADDR); |
| |
| for (i = 0; i < naddrs; i++) |
| address |= (u64)addrs[i] << (8 * i); |
| |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, |
| address); |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, |
| naddrs - 1); |
| |
| ret = cadence_nand_generic_cmd_send(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| mini_ctrl_cmd); |
| |
| if (ret) |
| pr_err("send address %llx failed\n", address); |
| |
| return ret; |
| } |
| |
| static int cadence_nand_cmd_data(struct nand_chip *chip, |
| unsigned int len, u8 mode) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| u64 mini_ctrl_cmd = 0; |
| int ret; |
| |
| mini_ctrl_cmd |= GCMD_LAY_TWB; |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, |
| GCMD_LAY_INSTR_DATA); |
| |
| if (mode) |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE); |
| |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); |
| mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); |
| |
| ret = cadence_nand_generic_cmd_send(cadence, |
| cdns_chip->cs[chip->cur_cs], |
| mini_ctrl_cmd); |
| |
| if (ret) { |
| pr_err("send generic data cmd failed\n"); |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static int cadence_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| int status; |
| |
| status = cadence_nand_wait_for_value(cadence, RBN_SETINGS, |
| TIMEOUT_US, |
| BIT(cdns_chip->cs[chip->cur_cs]), |
| false); |
| return status; |
| } |
| |
| static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = cdns_chip->bbm_len; |
| oobregion->length = cdns_chip->avail_oob_size |
| - cdns_chip->bbm_len; |
| |
| return 0; |
| } |
| |
| static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = cdns_chip->avail_oob_size; |
| oobregion->length = chip->ecc.total; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { |
| .rfree = cadence_nand_ooblayout_free, |
| .ecc = cadence_nand_ooblayout_ecc, |
| }; |
| |
| static int calc_cycl(u32 timing, u32 clock) |
| { |
| if (timing == 0 || clock == 0) |
| return 0; |
| |
| if ((timing % clock) > 0) |
| return timing / clock; |
| else |
| return timing / clock - 1; |
| } |
| |
| /* Calculate max data valid window. */ |
| static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, |
| u32 board_delay_skew_min, u32 ext_mode) |
| { |
| if (ext_mode == 0) |
| clk_period /= 2; |
| |
| return (trp_cnt + 1) * clk_period + trhoh_min + |
| board_delay_skew_min; |
| } |
| |
| /* Calculate data valid window. */ |
| static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, |
| u32 trea_max, u32 ext_mode) |
| { |
| if (ext_mode == 0) |
| clk_period /= 2; |
| |
| return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; |
| } |
| |
| static inline int of_get_child_count(const ofnode node) |
| { |
| return fdtdec_get_child_count(gd->fdt_blob, ofnode_to_offset(node)); |
| } |
| |
| static int cadence_setup_data_interface(struct mtd_info *mtd, int chipnr, |
| const struct nand_data_interface *conf) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(mtd_to_nand(mtd)); |
| const struct nand_sdr_timings *sdr; |
| struct cadence_nand_timings *t = &cdns_chip->timings; |
| u32 reg; |
| u32 board_delay = cadence->board_delay; |
| u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, |
| cadence->nf_clk_rate); |
| u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; |
| u32 tfeat_cnt, trhz_cnt, tvdly_cnt; |
| u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; |
| u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; |
| u32 if_skew = cadence->caps1->if_skew; |
| u32 board_delay_skew_min = board_delay - if_skew; |
| u32 board_delay_skew_max = board_delay + if_skew; |
| u32 dqs_sampl_res, phony_dqs_mod; |
| u32 tdvw, tdvw_min, tdvw_max; |
| u32 ext_rd_mode, ext_wr_mode; |
| u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; |
| u32 sampling_point; |
| |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| |
| memset(t, 0, sizeof(*t)); |
| /* Sampling point calculation. */ |
| if (cadence->caps2.is_phy_type_dll) |
| phony_dqs_mod = 2; |
| else |
| phony_dqs_mod = 1; |
| |
| dqs_sampl_res = clk_period / phony_dqs_mod; |
| |
| tdvw_min = sdr->tREA_max + board_delay_skew_max; |
| /* |
| * The idea of those calculation is to get the optimum value |
| * for tRP and tRH timings. If it is NOT possible to sample data |
| * with optimal tRP/tRH settings, the parameters will be extended. |
| * If clk_period is 50ns (the lowest value) this condition is met |
| * for SDR timing modes 1, 2, 3, 4 and 5. |
| * If clk_period is 20ns the condition is met only for SDR timing |
| * mode 5. |
| */ |
| if (sdr->tRC_min <= clk_period && |
| sdr->tRP_min <= (clk_period / 2) && |
| sdr->tREH_min <= (clk_period / 2)) { |
| /* Performance mode. */ |
| ext_rd_mode = 0; |
| tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, |
| sdr->tREA_max, ext_rd_mode); |
| tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, |
| board_delay_skew_min, |
| ext_rd_mode); |
| /* |
| * Check if data valid window and sampling point can be found |
| * and is not on the edge (ie. we have hold margin). |
| * If not extend the tRP timings. |
| */ |
| if (tdvw > 0) { |
| if (tdvw_max <= tdvw_min || |
| (tdvw_max % dqs_sampl_res) == 0) { |
| /* |
| * No valid sampling point so the RE pulse need |
| * to be widen widening by half clock cycle. |
| */ |
| ext_rd_mode = 1; |
| } |
| } else { |
| /* |
| * There is no valid window |
| * to be able to sample data the tRP need to be widen. |
| * Very safe calculations are performed here. |
| */ |
| trp_cnt = (sdr->tREA_max + board_delay_skew_max |
| + dqs_sampl_res) / clk_period; |
| ext_rd_mode = 1; |
| } |
| |
| } else { |
| /* Extended read mode. */ |
| u32 trh; |
| |
| ext_rd_mode = 1; |
| trp_cnt = calc_cycl(sdr->tRP_min, clk_period); |
| trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); |
| if (sdr->tREH_min >= trh) |
| trh_cnt = calc_cycl(sdr->tREH_min, clk_period); |
| else |
| trh_cnt = calc_cycl(trh, clk_period); |
| |
| tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, |
| sdr->tREA_max, ext_rd_mode); |
| /* |
| * Check if data valid window and sampling point can be found |
| * or if it is at the edge check if previous is valid |
| * - if not extend the tRP timings. |
| */ |
| if (tdvw > 0) { |
| tdvw_max = calc_tdvw_max(trp_cnt, clk_period, |
| sdr->tRHOH_min, |
| board_delay_skew_min, |
| ext_rd_mode); |
| |
| if ((((tdvw_max / dqs_sampl_res) |
| * dqs_sampl_res) <= tdvw_min) || |
| (((tdvw_max % dqs_sampl_res) == 0) && |
| (((tdvw_max / dqs_sampl_res - 1) |
| * dqs_sampl_res) <= tdvw_min))) { |
| /* |
| * Data valid window width is lower than |
| * sampling resolution and do not hit any |
| * sampling point to be sure the sampling point |
| * will be found the RE low pulse width will be |
| * extended by one clock cycle. |
| */ |
| trp_cnt = trp_cnt + 1; |
| } |
| } else { |
| /* |
| * There is no valid window to be able to sample data. |
| * The tRP need to be widen. |
| * Very safe calculations are performed here. |
| */ |
| trp_cnt = (sdr->tREA_max + board_delay_skew_max |
| + dqs_sampl_res) / clk_period; |
| } |
| } |
| |
| tdvw_max = calc_tdvw_max(trp_cnt, clk_period, |
| sdr->tRHOH_min, |
| board_delay_skew_min, ext_rd_mode); |
| |
| if (sdr->tWC_min <= clk_period && |
| (sdr->tWP_min + if_skew) <= (clk_period / 2) && |
| (sdr->tWH_min + if_skew) <= (clk_period / 2)) { |
| ext_wr_mode = 0; |
| } else { |
| u32 twh; |
| |
| ext_wr_mode = 1; |
| twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); |
| if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) |
| twp_cnt = calc_cycl(sdr->tALS_min + if_skew, |
| clk_period); |
| |
| twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); |
| if (sdr->tWH_min >= twh) |
| twh = sdr->tWH_min; |
| |
| twh_cnt = calc_cycl(twh + if_skew, clk_period); |
| } |
| |
| reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); |
| reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); |
| reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); |
| reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); |
| t->async_toggle_timings = reg; |
| dev_dbg(cadence->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); |
| |
| tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); |
| tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); |
| twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); |
| trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); |
| reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); |
| |
| /* |
| * If timing exceeds delay field in timing register |
| * then use maximum value. |
| */ |
| if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) |
| reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); |
| else |
| reg |= TIMINGS0_TCCS; |
| |
| reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); |
| reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); |
| t->timings0 = reg; |
| dev_dbg(cadence->dev, "TIMINGS0_SDR\t%x\n", reg); |
| |
| /* The following is related to single signal so skew is not needed. */ |
| trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); |
| trhz_cnt = trhz_cnt + 1; |
| twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); |
| /* |
| * Because of the two stage syncflop the value must be increased by 3 |
| * first value is related with sync, second value is related |
| * with output if delay. |
| */ |
| twb_cnt = twb_cnt + 3 + 5; |
| /* |
| * The following is related to the we edge of the random data input |
| * sequence so skew is not needed. |
| */ |
| tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); |
| reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); |
| reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); |
| reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); |
| t->timings1 = reg; |
| dev_dbg(cadence->dev, "TIMINGS1_SDR\t%x\n", reg); |
| |
| tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); |
| if (tfeat_cnt < twb_cnt) |
| tfeat_cnt = twb_cnt; |
| |
| tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); |
| tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); |
| |
| reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); |
| reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); |
| reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); |
| t->timings2 = reg; |
| dev_dbg(cadence->dev, "TIMINGS2_SDR\t%x\n", reg); |
| |
| if (cadence->caps2.is_phy_type_dll) { |
| reg = DLL_PHY_CTRL_DLL_RST_N; |
| if (ext_wr_mode) |
| reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; |
| if (ext_rd_mode) |
| reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; |
| |
| reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); |
| reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); |
| t->dll_phy_ctrl = reg; |
| dev_dbg(cadence->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); |
| } |
| |
| /* Sampling point calculation. */ |
| if ((tdvw_max % dqs_sampl_res) > 0) |
| sampling_point = tdvw_max / dqs_sampl_res; |
| else |
| sampling_point = (tdvw_max / dqs_sampl_res - 1); |
| |
| if (sampling_point * dqs_sampl_res > tdvw_min) { |
| dll_phy_dqs_timing = |
| FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); |
| dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; |
| phony_dqs_timing = sampling_point / phony_dqs_mod; |
| |
| if ((sampling_point % 2) > 0) { |
| dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; |
| if ((tdvw_max % dqs_sampl_res) == 0) |
| /* |
| * Calculation for sampling point at the edge |
| * of data and being odd number. |
| */ |
| phony_dqs_timing = (tdvw_max / dqs_sampl_res) |
| / phony_dqs_mod - 1; |
| |
| if (!cadence->caps2.is_phy_type_dll) |
| phony_dqs_timing--; |
| |
| } else { |
| phony_dqs_timing--; |
| } |
| rd_del_sel = phony_dqs_timing + 3; |
| } else { |
| dev_warn(cadence->dev, |
| "ERROR : cannot find valid sampling point\n"); |
| } |
| |
| reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); |
| if (cadence->caps2.is_phy_type_dll) |
| reg |= PHY_CTRL_SDR_DQS; |
| t->phy_ctrl = reg; |
| dev_dbg(cadence->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); |
| |
| if (cadence->caps2.is_phy_type_dll) { |
| dev_dbg(cadence->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); |
| dev_dbg(cadence->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); |
| dev_dbg(cadence->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", |
| dll_phy_dqs_timing); |
| t->phy_dqs_timing = dll_phy_dqs_timing; |
| |
| reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); |
| dev_dbg(cadence->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", |
| reg); |
| t->phy_gate_lpbk_ctrl = reg; |
| |
| dev_dbg(cadence->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", |
| PHY_DLL_MASTER_CTRL_BYPASS_MODE); |
| dev_dbg(cadence->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); |
| } |
| return 0; |
| } |
| |
| static int cadence_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); |
| static struct nand_ecclayout nand_oob; |
| u32 ecc_size; |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| int ret; |
| |
| if (chip->options & NAND_BUSWIDTH_16) { |
| ret = cadence_nand_set_access_width16(cadence, true); |
| if (ret) |
| return ret; |
| } |
| |
| chip->options |= NAND_USE_BOUNCE_BUFFER; |
| chip->bbt_options |= NAND_BBT_USE_FLASH; |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| chip->ecc.mode = NAND_ECC_HW_SYNDROME; |
| |
| chip->options |= NAND_NO_SUBPAGE_WRITE; |
| |
| cdns_chip->bbm_offs = chip->badblockpos; |
| cdns_chip->bbm_offs &= ~0x01; |
| /* this value should be even number */ |
| cdns_chip->bbm_len = 2; |
| |
| ret = cadence_ecc_setup(mtd, chip, mtd->oobsize - cdns_chip->bbm_len); |
| if (ret) { |
| dev_err(cadence->dev, "ECC configuration failed\n"); |
| return ret; |
| } |
| |
| dev_dbg(cadence->dev, |
| "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", |
| chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); |
| |
| /* Error correction configuration. */ |
| cdns_chip->sector_size = chip->ecc.size; |
| cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; |
| ecc_size = cdns_chip->sector_count * chip->ecc.bytes; |
| |
| cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; |
| |
| if (cdns_chip->avail_oob_size > cadence->bch_metadata_size) |
| cdns_chip->avail_oob_size = cadence->bch_metadata_size; |
| |
| if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) |
| > mtd->oobsize) |
| cdns_chip->avail_oob_size -= 4; |
| |
| ret = cadence_nand_get_ecc_strength_idx(cadence, chip->ecc.strength); |
| if (ret < 0) |
| return -EINVAL; |
| |
| cdns_chip->corr_str_idx = (u8)ret; |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| cadence_nand_set_ecc_strength(cadence, |
| cdns_chip->corr_str_idx); |
| |
| cadence_nand_set_erase_detection(cadence, true, |
| chip->ecc.strength); |
| |
| dev_dbg(cadence->dev, |
| "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", |
| chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); |
| |
| /* Override the default read operations. */ |
| chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS; |
| chip->ecc.read_page = cadence_nand_read_page; |
| chip->ecc.read_page_raw = cadence_nand_read_page_raw; |
| chip->ecc.write_page = cadence_nand_write_page; |
| chip->ecc.write_page_raw = cadence_nand_write_page_raw; |
| chip->ecc.read_oob = cadence_nand_read_oob; |
| chip->ecc.write_oob = cadence_nand_write_oob; |
| chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; |
| chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; |
| chip->erase = cadence_nand_erase; |
| |
| if ((mtd->writesize + mtd->oobsize) > cadence->buf_size) |
| cadence->buf_size = mtd->writesize + mtd->oobsize; |
| |
| mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); |
| |
| nand_oob.eccbytes = cdns_chip->chip.ecc.bytes; |
| cdns_chip->chip.ecc.layout = &nand_oob; |
| |
| return 0; |
| } |
| |
| /* Dummy implementation: we don't support multiple chips */ |
| static void cadence_nand_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| switch (chipnr) { |
| case -1: |
| case 0: |
| break; |
| |
| default: |
| WARN_ON(chipnr); |
| } |
| } |
| |
| static int cadence_nand_status(struct mtd_info *mtd, unsigned int command) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| |
| ret = cadence_nand_cmd_opcode(chip, command); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_cmd_data(chip, 1, GCMD_DIR_READ); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int cadence_nand_readid(struct mtd_info *mtd, int offset_in_page, unsigned int command) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| u8 addrs = (u8)offset_in_page; |
| int ret = 0; |
| |
| ret = cadence_nand_cmd_opcode(chip, command); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &addrs); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_cmd_data(chip, 8, GCMD_DIR_READ); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int cadence_nand_param(struct mtd_info *mtd, u8 offset_in_page, unsigned int command) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| |
| ret = cadence_nand_cmd_opcode(chip, command); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_waitfunc(mtd, chip); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_cmd_data(chip, sizeof(struct nand_jedec_params), GCMD_DIR_READ); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int cadence_nand_reset(struct mtd_info *mtd, unsigned int command) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| |
| ret = cadence_nand_cmd_opcode(chip, command); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_waitfunc(mtd, chip); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int cadence_nand_features(struct mtd_info *mtd, u8 offset_in_page, u32 command) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| int ret = 0; |
| |
| ret = cadence_nand_cmd_opcode(chip, command); |
| if (ret) |
| return ret; |
| |
| ret = cadence_nand_cmd_address(chip, ONE_CYCLE, &offset_in_page); |
| if (ret) |
| return ret; |
| |
| if (command == NAND_CMD_GET_FEATURES) |
| ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN, |
| GCMD_DIR_READ); |
| else |
| ret = cadence_nand_cmd_data(chip, ONFI_SUBFEATURE_PARAM_LEN, |
| GCMD_DIR_WRITE); |
| |
| return ret; |
| } |
| |
| static void cadence_nand_cmdfunc(struct mtd_info *mtd, unsigned int command, |
| int offset_in_page, int page) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| int ret = 0; |
| |
| cadence->cmd = command; |
| switch (command) { |
| case NAND_CMD_STATUS: |
| ret = cadence_nand_status(mtd, command); |
| break; |
| |
| case NAND_CMD_READID: |
| ret = cadence_nand_readid(mtd, offset_in_page, command); |
| break; |
| |
| case NAND_CMD_PARAM: |
| ret = cadence_nand_param(mtd, offset_in_page, command); |
| break; |
| |
| case NAND_CMD_RESET: |
| ret = cadence_nand_reset(mtd, command); |
| break; |
| |
| case NAND_CMD_SET_FEATURES: |
| case NAND_CMD_GET_FEATURES: |
| ret = cadence_nand_features(mtd, offset_in_page, command); |
| break; |
| /* |
| * ecc will override other command for read, write and erase |
| */ |
| default: |
| break; |
| } |
| |
| if (cadence->cmd == NAND_CMD_RESET) { |
| ret = cadence_nand_select_target(chip); |
| if (ret) |
| dev_err(cadence->dev, "Chip select failure after reset\n"); |
| } |
| |
| if (ret != 0) |
| printf("ERROR:%s:command:0x%x\n", __func__, cadence->cmd); |
| } |
| |
| static int cadence_nand_dev_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| |
| if (cadence_nand_wait_for_value(cadence, CTRL_STATUS, |
| TIMEOUT_US, |
| CTRL_STATUS_CTRL_BUSY, true)) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| static u8 cadence_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct cadence_nand_info *cadence = to_cadence_nand_info(chip->controller); |
| u32 size = 1; |
| u8 val; |
| |
| if (cadence->buf_index == 0) { |
| if (cadence->cmd == NAND_CMD_READID) |
| size = 8; |
| else if (cadence->cmd == NAND_CMD_PARAM) |
| size = sizeof(struct nand_jedec_params); |
| else if (cadence->cmd == NAND_CMD_GET_FEATURES) |
| size = ONFI_SUBFEATURE_PARAM_LEN; |
| |
| cadence_nand_read_buf(mtd, &cadence->buf[0], size); |
| } |
| |
| val = *(&cadence->buf[0] + cadence->buf_index); |
| cadence->buf_index++; |
| |
| return val; |
| } |
| |
| static void cadence_nand_write_byte(struct mtd_info *mtd, u8 byte) |
| { |
| cadence_nand_write_buf(mtd, &byte, 1); |
| } |
| |
| static int cadence_nand_chip_init(struct cadence_nand_info *cadence, ofnode node) |
| { |
| struct cdns_nand_chip *cdns_chip; |
| struct nand_chip *chip; |
| struct mtd_info *mtd; |
| int ret, i; |
| int nsels; |
| u32 cs; |
| |
| if (!ofnode_get_property(node, "reg", &nsels)) |
| return -ENODEV; |
| |
| nsels /= sizeof(u32); |
| if (nsels <= 0) { |
| dev_err(cadence->dev, "invalid reg property size %d\n", nsels); |
| return -EINVAL; |
| } |
| |
| cdns_chip = devm_kzalloc(cadence->dev, sizeof(*cdns_chip) + |
| (nsels * sizeof(u8)), GFP_KERNEL); |
| if (!cdns_chip) |
| return -ENODEV; |
| |
| cdns_chip->nsels = nsels; |
| for (i = 0; i < nsels; i++) { |
| /* Retrieve CS id. */ |
| ret = ofnode_read_u32_index(node, "reg", i, &cs); |
| if (ret) { |
| dev_err(cadence->dev, |
| "could not retrieve reg property: %d\n", |
| ret); |
| goto free_buf; |
| } |
| |
| if (cs >= cadence->caps2.max_banks) { |
| dev_err(cadence->dev, |
| "invalid reg value: %u (max CS = %d)\n", |
| cs, cadence->caps2.max_banks); |
| ret = -EINVAL; |
| goto free_buf; |
| } |
| |
| if (test_and_set_bit(cs, &cadence->assigned_cs)) { |
| dev_err(cadence->dev, |
| "CS %d already assigned\n", cs); |
| ret = -EINVAL; |
| goto free_buf; |
| } |
| |
| cdns_chip->cs[i] = cs; |
| } |
| |
| chip = &cdns_chip->chip; |
| chip->controller = &cadence->controller; |
| nand_set_flash_node(chip, node); |
| mtd = nand_to_mtd(chip); |
| mtd->dev->parent = cadence->dev; |
| |
| chip->options |= NAND_BUSWIDTH_AUTO; |
| chip->select_chip = cadence_nand_select_chip; |
| chip->cmdfunc = cadence_nand_cmdfunc; |
| chip->dev_ready = cadence_nand_dev_ready; |
| chip->read_byte = cadence_nand_read_byte; |
| chip->write_byte = cadence_nand_write_byte; |
| chip->waitfunc = cadence_nand_waitfunc; |
| chip->read_buf = cadence_nand_read_buf; |
| chip->write_buf = cadence_nand_write_buf; |
| chip->setup_data_interface = cadence_setup_data_interface; |
| |
| ret = nand_scan_ident(mtd, 1, NULL); |
| if (ret) { |
| dev_err(cadence->dev, "Chip identification failure\n"); |
| goto free_buf; |
| } |
| |
| ret = cadence_nand_attach_chip(chip); |
| if (ret) { |
| dev_err(cadence->dev, "Chip not able to attached\n"); |
| goto free_buf; |
| } |
| |
| ret = nand_scan_tail(mtd); |
| if (ret) { |
| dev_err(cadence->dev, "could not scan the nand chip\n"); |
| goto free_buf; |
| } |
| |
| ret = nand_register(0, mtd); |
| if (ret) { |
| dev_err(cadence->dev, "Failed to register MTD: %d\n", ret); |
| goto free_buf; |
| } |
| |
| return 0; |
| |
| free_buf: |
| devm_kfree(cadence->dev, cdns_chip); |
| return ret; |
| } |
| |
| static int cadence_nand_chips_init(struct cadence_nand_info *cadence) |
| { |
| struct udevice *dev = cadence->dev; |
| ofnode node = dev_ofnode(dev); |
| ofnode nand_node; |
| int max_cs = cadence->caps2.max_banks; |
| int nchips, ret; |
| |
| nchips = of_get_child_count(node); |
| |
| if (nchips > max_cs) { |
| dev_err(cadence->dev, |
| "too many NAND chips: %d (max = %d CS)\n", |
| nchips, max_cs); |
| return -EINVAL; |
| } |
| |
| ofnode_for_each_subnode(nand_node, node) { |
| ret = cadence_nand_chip_init(cadence, nand_node); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int cadence_nand_init(struct cadence_nand_info *cadence) |
| { |
| int ret; |
| |
| cadence->cdma_desc = dma_alloc_coherent(sizeof(*cadence->cdma_desc), |
| (unsigned long *)&cadence->dma_cdma_desc); |
| if (!cadence->cdma_desc) |
| return -ENOMEM; |
| |
| cadence->buf_size = SZ_16K; |
| cadence->buf = kmalloc(cadence->buf_size, GFP_KERNEL); |
| if (!cadence->buf) { |
| ret = -ENOMEM; |
| goto free_buf_desc; |
| } |
| |
| //Hardware initialization |
| ret = cadence_nand_hw_init(cadence); |
| if (ret) |
| goto free_buf; |
| |
| cadence->curr_corr_str_idx = 0xFF; |
| |
| ret = cadence_nand_chips_init(cadence); |
| if (ret) { |
| dev_err(cadence->dev, "Failed to register MTD: %d\n", |
| ret); |
| goto free_buf; |
| } |
| |
| kfree(cadence->buf); |
| cadence->buf = kzalloc(cadence->buf_size, GFP_KERNEL); |
| if (!cadence->buf) { |
| ret = -ENOMEM; |
| goto free_buf_desc; |
| } |
| |
| return 0; |
| |
| free_buf: |
| kfree(cadence->buf); |
| |
| free_buf_desc: |
| dma_free_coherent(cadence->cdma_desc); |
| |
| return ret; |
| } |
| |
| static const struct cadence_nand_dt_devdata cadence_nand_default = { |
| .if_skew = 0, |
| .has_dma = 0, |
| }; |
| |
| static const struct udevice_id cadence_nand_dt_ids[] = { |
| { |
| .compatible = "cdns,nand", |
| .data = (unsigned long)&cadence_nand_default |
| }, {} |
| }; |
| |
| static int cadence_nand_dt_probe(struct udevice *dev) |
| { |
| struct cadence_nand_info *cadence = dev_get_priv(dev); |
| const struct udevice_id *of_id; |
| const struct cadence_nand_dt_devdata *devdata; |
| struct resource res; |
| int ret; |
| u32 val; |
| |
| if (!dev) { |
| dev_warn(dev, "Device ptr null\n"); |
| return -EINVAL; |
| } |
| |
| of_id = &cadence_nand_dt_ids[0]; |
| devdata = (struct cadence_nand_dt_devdata *)of_id->data; |
| |
| cadence->caps1 = devdata; |
| cadence->dev = dev; |
| |
| ret = clk_get_by_index(dev, 0, &cadence->clk); |
| if (ret) |
| return ret; |
| |
| ret = clk_enable(&cadence->clk); |
| if (ret && ret != -ENOSYS && ret != -ENOMEM) { |
| dev_err(dev, "failed to enable clock\n"); |
| return ret; |
| } |
| cadence->nf_clk_rate = clk_get_rate(&cadence->clk); |
| |
| ret = reset_get_by_index(dev, 1, &cadence->softphy_reset); |
| if (ret) { |
| if (ret != -ENOMEM) |
| dev_warn(dev, "Can't get softphy_reset: %d\n", ret); |
| } else { |
| reset_deassert(&cadence->softphy_reset); |
| } |
| |
| ret = reset_get_by_index(dev, 0, &cadence->nand_reset); |
| if (ret) { |
| if (ret != -ENOMEM) |
| dev_warn(dev, "Can't get nand_reset: %d\n", ret); |
| } else { |
| reset_deassert(&cadence->nand_reset); |
| } |
| |
| ret = dev_read_resource_byname(dev, "reg", &res); |
| if (ret) |
| return ret; |
| cadence->reg = devm_ioremap(dev, res.start, resource_size(&res)); |
| |
| ret = dev_read_resource_byname(dev, "sdma", &res); |
| if (ret) |
| return ret; |
| cadence->io.dma = res.start; |
| cadence->io.virt = devm_ioremap(dev, res.start, resource_size(&res)); |
| |
| ret = ofnode_read_u32(dev_ofnode(dev->parent), |
| "cdns,board-delay-ps", &val); |
| if (ret) { |
| val = 4830; |
| dev_info(cadence->dev, |
| "missing cdns,board-delay-ps property, %d was set\n", |
| val); |
| } |
| cadence->board_delay = val; |
| |
| ret = cadence_nand_init(cadence); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| U_BOOT_DRIVER(cadence_nand_dt) = { |
| .name = "cadence-nand-dt", |
| .id = UCLASS_MTD, |
| .of_match = cadence_nand_dt_ids, |
| .probe = cadence_nand_dt_probe, |
| .priv_auto = sizeof(struct cadence_nand_info), |
| }; |
| |
| void board_nand_init(void) |
| { |
| struct udevice *dev; |
| int ret; |
| |
| ret = uclass_get_device_by_driver(UCLASS_MTD, |
| DM_DRIVER_GET(cadence_nand_dt), |
| &dev); |
| if (ret && ret != -ENODEV) |
| pr_err("Failed to initialize Cadence NAND controller. (error %d)\n", |
| ret); |
| } |