blob: 938c3b1f05d9f978c06ce7ca3cf32f9c6e108398 [file] [log] [blame]
/*
* (C) Copyright 2010
* Reinhard Meyer, EMK Elektronik, reinhard.meyer@emk-elektronik.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* this driver supports the enhanced embedded flash in the Atmel
* AT91SAM9XE devices with the following geometry:
*
* AT91SAM9XE128: 1 plane of 8 regions of 32 pages (total 256 pages)
* AT91SAM9XE256: 1 plane of 16 regions of 32 pages (total 512 pages)
* AT91SAM9XE512: 1 plane of 32 regions of 32 pages (total 1024 pages)
* (the exact geometry is read from the flash at runtime, so any
* future devices should already be covered)
*
* Regions can be write/erase protected.
* Whole (!) pages can be individually written with erase on the fly.
* Writing partial pages will corrupt the rest of the page.
*
* The flash is presented to u-boot with each region being a sector,
* having the following effects:
* Each sector can be hardware protected (protect on/off).
* Each page in a sector can be rewritten anytime.
* Since pages are erased when written, the "erase" does nothing.
* The first "CONFIG_EFLASH_PROTSECTORS" cannot be unprotected
* by u-Boot commands.
*
* Note: Redundant environment will not work in this flash since
* it does use partial page writes. Make sure the environent spans
* whole pages!
*/
/*
* optional TODOs (nice to have features):
*
* make the driver coexist with other NOR flash drivers
* (use an index into flash_info[], requires work
* in those other drivers, too)
* Make the erase command fill the sectors with 0xff
* (if the flashes grow larger in the future and
* someone puts a jffs2 into them)
* do a read-modify-write for partially programmed pages
*/
#include <common.h>
#include <asm/arch/hardware.h>
#include <asm/arch/io.h>
#include <asm/arch/at91_common.h>
#include <asm/arch/at91_eefc.h>
#include <asm/arch/at91_dbu.h>
/* checks to detect configuration errors */
#if CONFIG_SYS_MAX_FLASH_BANKS!=1
#error eflash: this driver can only handle 1 bank
#endif
/* global structure */
flash_info_t flash_info[CONFIG_SYS_MAX_FLASH_BANKS];
static u32 pagesize;
unsigned long flash_init (void)
{
at91_eefc_t *eefc = (at91_eefc_t *) 0xfffffa00;
at91_dbu_t *dbu = (at91_dbu_t *) 0xfffff200;
u32 id, size, nplanes, planesize, nlocks;
u32 addr, i, tmp=0;
debug("eflash: init\n");
flash_info[0].flash_id = FLASH_UNKNOWN;
/* check if its an AT91ARM9XE SoC */
if ((readl(&dbu->cidr) & AT91_DBU_CID_ARCH_MASK) != AT91_DBU_CID_ARCH_9XExx) {
puts("eflash: not an AT91SAM9XE\n");
return 0;
}
/* now query the eflash for its structure */
writel(AT91_EEFC_FCR_KEY | AT91_EEFC_FCR_FCMD_GETD, &eefc->fcr);
while ((readl(&eefc->fsr) & AT91_EEFC_FSR_FRDY) == 0)
;
id = readl(&eefc->frr); /* word 0 */
size = readl(&eefc->frr); /* word 1 */
pagesize = readl(&eefc->frr); /* word 2 */
nplanes = readl(&eefc->frr); /* word 3 */
planesize = readl(&eefc->frr); /* word 4 */
debug("id=%08x size=%u pagesize=%u planes=%u planesize=%u\n",
id, size, pagesize, nplanes, planesize);
for (i=1; i<nplanes; i++) {
tmp = readl(&eefc->frr); /* words 5..4+nplanes-1 */
};
nlocks = readl(&eefc->frr); /* word 4+nplanes */
debug("nlocks=%u\n", nlocks);
/* since we are going to use the lock regions as sectors, check count */
if (nlocks > CONFIG_SYS_MAX_FLASH_SECT) {
printf("eflash: number of lock regions(%u) "\
"> CONFIG_SYS_MAX_FLASH_SECT. reducing...\n",
nlocks);
nlocks = CONFIG_SYS_MAX_FLASH_SECT;
}
flash_info[0].size = size;
flash_info[0].sector_count = nlocks;
flash_info[0].flash_id = id;
addr = AT91SAM9XE_FLASH_BASE;
for (i=0; i<nlocks; i++) {
tmp = readl(&eefc->frr); /* words 4+nplanes+1.. */
flash_info[0].start[i] = addr;
flash_info[0].protect[i] = 0;
addr += tmp;
};
/* now read the protection information for all regions */
writel(AT91_EEFC_FCR_KEY | AT91_EEFC_FCR_FCMD_GLB, &eefc->fcr);
while ((readl(&eefc->fsr) & AT91_EEFC_FSR_FRDY) == 0)
;
for (i=0; i<flash_info[0].sector_count; i++) {
if (i%32 == 0)
tmp = readl(&eefc->frr);
flash_info[0].protect[i] = (tmp >> (i%32)) & 1;
#if defined(CONFIG_EFLASH_PROTSECTORS)
if (i < CONFIG_EFLASH_PROTSECTORS)
flash_info[0].protect[i] = 1;
#endif
}
return size;
}
void flash_print_info (flash_info_t *info)
{
int i;
puts("AT91SAM9XE embedded flash\n Size: ");
print_size(info->size, " in ");
printf("%d Sectors\n", info->sector_count);
printf(" Sector Start Addresses:");
for (i=0; i<info->sector_count; ++i) {
if ((i % 5) == 0)
printf("\n ");
printf(" %08lX%s",
info->start[i],
info->protect[i] ? " (RO)" : " "
);
}
printf ("\n");
return;
}
int flash_real_protect (flash_info_t *info, long sector, int prot)
{
at91_eefc_t *eefc = (at91_eefc_t *) 0xfffffa00;
u32 pagenum = (info->start[sector]-AT91SAM9XE_FLASH_BASE)/pagesize;
u32 i, tmp=0;
debug("protect sector=%ld prot=%d\n", sector, prot);
#if defined(CONFIG_EFLASH_PROTSECTORS)
if (sector < CONFIG_EFLASH_PROTSECTORS) {
if (!prot) {
printf("eflash: sector %lu cannot be unprotected\n",
sector);
}
return 1; /* return anyway, caller does not care for result */
}
#endif
if (prot) {
writel(AT91_EEFC_FCR_KEY | AT91_EEFC_FCR_FCMD_SLB |
(pagenum << AT91_EEFC_FCR_FARG_SHIFT), &eefc->fcr);
} else {
writel(AT91_EEFC_FCR_KEY | AT91_EEFC_FCR_FCMD_CLB |
(pagenum << AT91_EEFC_FCR_FARG_SHIFT), &eefc->fcr);
}
while ((readl(&eefc->fsr) & AT91_EEFC_FSR_FRDY) == 0)
;
/* now re-read the protection information for all regions */
writel(AT91_EEFC_FCR_KEY | AT91_EEFC_FCR_FCMD_GLB, &eefc->fcr);
while ((readl(&eefc->fsr) & AT91_EEFC_FSR_FRDY) == 0)
;
for (i=0; i<info->sector_count; i++) {
if (i%32 == 0)
tmp = readl(&eefc->frr);
info->protect[i] = (tmp >> (i%32)) & 1;
}
return 0;
}
static u32 erase_write_page (u32 pagenum)
{
at91_eefc_t *eefc = (at91_eefc_t *) 0xfffffa00;
debug("erase+write page=%u\n", pagenum);
/* give erase and write page command */
writel(AT91_EEFC_FCR_KEY | AT91_EEFC_FCR_FCMD_EWP |
(pagenum << AT91_EEFC_FCR_FARG_SHIFT), &eefc->fcr);
while ((readl(&eefc->fsr) & AT91_EEFC_FSR_FRDY) == 0)
;
/* return status */
return readl(&eefc->fsr)
& (AT91_EEFC_FSR_FCMDE | AT91_EEFC_FSR_FLOCKE);
}
int flash_erase (flash_info_t *info, int s_first, int s_last)
{
debug("erase first=%d last=%d\n", s_first, s_last);
puts("this flash does not need and support erasing!\n");
return 0;
}
/*
* Copy memory to flash, returns:
* 0 - OK
* 1 - write timeout
*/
int write_buff (flash_info_t *info, uchar *src, ulong addr, ulong cnt)
{
u32 pagenum;
u32 *src32, *dst32;
u32 i;
debug("write src=%08lx addr=%08lx cnt=%lx\n",
(ulong)src, addr, cnt);
/* REQUIRE addr to be on a page start, abort if not */
if (addr % pagesize) {
printf ("eflash: start %08lx is not on page start\n"\
" write aborted\n", addr);
return 1;
}
/* now start copying data */
pagenum = (addr-AT91SAM9XE_FLASH_BASE)/pagesize;
src32 = (u32 *) src;
dst32 = (u32 *) addr;
while (cnt > 0) {
i = pagesize / 4;
/* fill page buffer */
while (i--)
*dst32++ = *src32++;
/* write page */
if (erase_write_page(pagenum))
return 1;
pagenum++;
if (cnt > pagesize)
cnt -= pagesize;
else
cnt = 0;
}
return 0;
}