blob: c9614f122f9c0cff27ac1e46c8495f65271e90b8 [file] [log] [blame]
/*
* (C) Copyright 2008-2011
* Graeme Russ, <graeme.russ@gmail.com>
*
* (C) Copyright 2002
* Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Marius Groeger <mgroeger@sysgo.de>
*
* (C) Copyright 2002
* Sysgo Real-Time Solutions, GmbH <www.elinos.com>
* Alex Zuepke <azu@sysgo.de>
*
* Part of this file is adapted from coreboot
* src/arch/x86/lib/cpu.c
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <errno.h>
#include <malloc.h>
#include <asm/control_regs.h>
#include <asm/cpu.h>
#include <asm/post.h>
#include <asm/processor.h>
#include <asm/processor-flags.h>
#include <asm/interrupt.h>
#include <asm/tables.h>
#include <linux/compiler.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Constructor for a conventional segment GDT (or LDT) entry
* This is a macro so it can be used in initialisers
*/
#define GDT_ENTRY(flags, base, limit) \
((((base) & 0xff000000ULL) << (56-24)) | \
(((flags) & 0x0000f0ffULL) << 40) | \
(((limit) & 0x000f0000ULL) << (48-16)) | \
(((base) & 0x00ffffffULL) << 16) | \
(((limit) & 0x0000ffffULL)))
struct gdt_ptr {
u16 len;
u32 ptr;
} __packed;
struct cpu_device_id {
unsigned vendor;
unsigned device;
};
struct cpuinfo_x86 {
uint8_t x86; /* CPU family */
uint8_t x86_vendor; /* CPU vendor */
uint8_t x86_model;
uint8_t x86_mask;
};
/*
* List of cpu vendor strings along with their normalized
* id values.
*/
static struct {
int vendor;
const char *name;
} x86_vendors[] = {
{ X86_VENDOR_INTEL, "GenuineIntel", },
{ X86_VENDOR_CYRIX, "CyrixInstead", },
{ X86_VENDOR_AMD, "AuthenticAMD", },
{ X86_VENDOR_UMC, "UMC UMC UMC ", },
{ X86_VENDOR_NEXGEN, "NexGenDriven", },
{ X86_VENDOR_CENTAUR, "CentaurHauls", },
{ X86_VENDOR_RISE, "RiseRiseRise", },
{ X86_VENDOR_TRANSMETA, "GenuineTMx86", },
{ X86_VENDOR_TRANSMETA, "TransmetaCPU", },
{ X86_VENDOR_NSC, "Geode by NSC", },
{ X86_VENDOR_SIS, "SiS SiS SiS ", },
};
static const char *const x86_vendor_name[] = {
[X86_VENDOR_INTEL] = "Intel",
[X86_VENDOR_CYRIX] = "Cyrix",
[X86_VENDOR_AMD] = "AMD",
[X86_VENDOR_UMC] = "UMC",
[X86_VENDOR_NEXGEN] = "NexGen",
[X86_VENDOR_CENTAUR] = "Centaur",
[X86_VENDOR_RISE] = "Rise",
[X86_VENDOR_TRANSMETA] = "Transmeta",
[X86_VENDOR_NSC] = "NSC",
[X86_VENDOR_SIS] = "SiS",
};
static void load_ds(u32 segment)
{
asm volatile("movl %0, %%ds" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_es(u32 segment)
{
asm volatile("movl %0, %%es" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_fs(u32 segment)
{
asm volatile("movl %0, %%fs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_gs(u32 segment)
{
asm volatile("movl %0, %%gs" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_ss(u32 segment)
{
asm volatile("movl %0, %%ss" : : "r" (segment * X86_GDT_ENTRY_SIZE));
}
static void load_gdt(const u64 *boot_gdt, u16 num_entries)
{
struct gdt_ptr gdt;
gdt.len = (num_entries * X86_GDT_ENTRY_SIZE) - 1;
gdt.ptr = (u32)boot_gdt;
asm volatile("lgdtl %0\n" : : "m" (gdt));
}
void setup_gdt(gd_t *id, u64 *gdt_addr)
{
/* CS: code, read/execute, 4 GB, base 0 */
gdt_addr[X86_GDT_ENTRY_32BIT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff);
/* DS: data, read/write, 4 GB, base 0 */
gdt_addr[X86_GDT_ENTRY_32BIT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff);
/* FS: data, read/write, 4 GB, base (Global Data Pointer) */
id->arch.gd_addr = id;
gdt_addr[X86_GDT_ENTRY_32BIT_FS] = GDT_ENTRY(0xc093,
(ulong)&id->arch.gd_addr, 0xfffff);
/* 16-bit CS: code, read/execute, 64 kB, base 0 */
gdt_addr[X86_GDT_ENTRY_16BIT_CS] = GDT_ENTRY(0x009b, 0, 0x0ffff);
/* 16-bit DS: data, read/write, 64 kB, base 0 */
gdt_addr[X86_GDT_ENTRY_16BIT_DS] = GDT_ENTRY(0x0093, 0, 0x0ffff);
gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_CS] = GDT_ENTRY(0x809b, 0, 0xfffff);
gdt_addr[X86_GDT_ENTRY_16BIT_FLAT_DS] = GDT_ENTRY(0x8093, 0, 0xfffff);
load_gdt(gdt_addr, X86_GDT_NUM_ENTRIES);
load_ds(X86_GDT_ENTRY_32BIT_DS);
load_es(X86_GDT_ENTRY_32BIT_DS);
load_gs(X86_GDT_ENTRY_32BIT_DS);
load_ss(X86_GDT_ENTRY_32BIT_DS);
load_fs(X86_GDT_ENTRY_32BIT_FS);
}
int __weak x86_cleanup_before_linux(void)
{
#ifdef CONFIG_BOOTSTAGE_STASH
bootstage_stash((void *)CONFIG_BOOTSTAGE_STASH_ADDR,
CONFIG_BOOTSTAGE_STASH_SIZE);
#endif
return 0;
}
/*
* Cyrix CPUs without cpuid or with cpuid not yet enabled can be detected
* by the fact that they preserve the flags across the division of 5/2.
* PII and PPro exhibit this behavior too, but they have cpuid available.
*/
/*
* Perform the Cyrix 5/2 test. A Cyrix won't change
* the flags, while other 486 chips will.
*/
static inline int test_cyrix_52div(void)
{
unsigned int test;
__asm__ __volatile__(
"sahf\n\t" /* clear flags (%eax = 0x0005) */
"div %b2\n\t" /* divide 5 by 2 */
"lahf" /* store flags into %ah */
: "=a" (test)
: "0" (5), "q" (2)
: "cc");
/* AH is 0x02 on Cyrix after the divide.. */
return (unsigned char) (test >> 8) == 0x02;
}
/*
* Detect a NexGen CPU running without BIOS hypercode new enough
* to have CPUID. (Thanks to Herbert Oppmann)
*/
static int deep_magic_nexgen_probe(void)
{
int ret;
__asm__ __volatile__ (
" movw $0x5555, %%ax\n"
" xorw %%dx,%%dx\n"
" movw $2, %%cx\n"
" divw %%cx\n"
" movl $0, %%eax\n"
" jnz 1f\n"
" movl $1, %%eax\n"
"1:\n"
: "=a" (ret) : : "cx", "dx");
return ret;
}
static bool has_cpuid(void)
{
return flag_is_changeable_p(X86_EFLAGS_ID);
}
static bool has_mtrr(void)
{
return cpuid_edx(0x00000001) & (1 << 12) ? true : false;
}
static int build_vendor_name(char *vendor_name)
{
struct cpuid_result result;
result = cpuid(0x00000000);
unsigned int *name_as_ints = (unsigned int *)vendor_name;
name_as_ints[0] = result.ebx;
name_as_ints[1] = result.edx;
name_as_ints[2] = result.ecx;
return result.eax;
}
static void identify_cpu(struct cpu_device_id *cpu)
{
char vendor_name[16];
int i;
vendor_name[0] = '\0'; /* Unset */
cpu->device = 0; /* fix gcc 4.4.4 warning */
/* Find the id and vendor_name */
if (!has_cpuid()) {
/* Its a 486 if we can modify the AC flag */
if (flag_is_changeable_p(X86_EFLAGS_AC))
cpu->device = 0x00000400; /* 486 */
else
cpu->device = 0x00000300; /* 386 */
if ((cpu->device == 0x00000400) && test_cyrix_52div()) {
memcpy(vendor_name, "CyrixInstead", 13);
/* If we ever care we can enable cpuid here */
}
/* Detect NexGen with old hypercode */
else if (deep_magic_nexgen_probe())
memcpy(vendor_name, "NexGenDriven", 13);
}
if (has_cpuid()) {
int cpuid_level;
cpuid_level = build_vendor_name(vendor_name);
vendor_name[12] = '\0';
/* Intel-defined flags: level 0x00000001 */
if (cpuid_level >= 0x00000001) {
cpu->device = cpuid_eax(0x00000001);
} else {
/* Have CPUID level 0 only unheard of */
cpu->device = 0x00000400;
}
}
cpu->vendor = X86_VENDOR_UNKNOWN;
for (i = 0; i < ARRAY_SIZE(x86_vendors); i++) {
if (memcmp(vendor_name, x86_vendors[i].name, 12) == 0) {
cpu->vendor = x86_vendors[i].vendor;
break;
}
}
}
static inline void get_fms(struct cpuinfo_x86 *c, uint32_t tfms)
{
c->x86 = (tfms >> 8) & 0xf;
c->x86_model = (tfms >> 4) & 0xf;
c->x86_mask = tfms & 0xf;
if (c->x86 == 0xf)
c->x86 += (tfms >> 20) & 0xff;
if (c->x86 >= 0x6)
c->x86_model += ((tfms >> 16) & 0xF) << 4;
}
int x86_cpu_init_f(void)
{
const u32 em_rst = ~X86_CR0_EM;
const u32 mp_ne_set = X86_CR0_MP | X86_CR0_NE;
/* initialize FPU, reset EM, set MP and NE */
asm ("fninit\n" \
"movl %%cr0, %%eax\n" \
"andl %0, %%eax\n" \
"orl %1, %%eax\n" \
"movl %%eax, %%cr0\n" \
: : "i" (em_rst), "i" (mp_ne_set) : "eax");
/* identify CPU via cpuid and store the decoded info into gd->arch */
if (has_cpuid()) {
struct cpu_device_id cpu;
struct cpuinfo_x86 c;
identify_cpu(&cpu);
get_fms(&c, cpu.device);
gd->arch.x86 = c.x86;
gd->arch.x86_vendor = cpu.vendor;
gd->arch.x86_model = c.x86_model;
gd->arch.x86_mask = c.x86_mask;
gd->arch.x86_device = cpu.device;
gd->arch.has_mtrr = has_mtrr();
}
return 0;
}
void x86_enable_caches(void)
{
unsigned long cr0;
cr0 = read_cr0();
cr0 &= ~(X86_CR0_NW | X86_CR0_CD);
write_cr0(cr0);
wbinvd();
}
void enable_caches(void) __attribute__((weak, alias("x86_enable_caches")));
void x86_disable_caches(void)
{
unsigned long cr0;
cr0 = read_cr0();
cr0 |= X86_CR0_NW | X86_CR0_CD;
wbinvd();
write_cr0(cr0);
wbinvd();
}
void disable_caches(void) __attribute__((weak, alias("x86_disable_caches")));
int x86_init_cache(void)
{
enable_caches();
return 0;
}
int init_cache(void) __attribute__((weak, alias("x86_init_cache")));
int do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
printf("resetting ...\n");
/* wait 50 ms */
udelay(50000);
disable_interrupts();
reset_cpu(0);
/*NOTREACHED*/
return 0;
}
void flush_cache(unsigned long dummy1, unsigned long dummy2)
{
asm("wbinvd\n");
}
void __attribute__ ((regparm(0))) generate_gpf(void);
/* segment 0x70 is an arbitrary segment which does not exist */
asm(".globl generate_gpf\n"
".hidden generate_gpf\n"
".type generate_gpf, @function\n"
"generate_gpf:\n"
"ljmp $0x70, $0x47114711\n");
__weak void reset_cpu(ulong addr)
{
printf("Resetting using x86 Triple Fault\n");
set_vector(13, generate_gpf); /* general protection fault handler */
set_vector(8, generate_gpf); /* double fault handler */
generate_gpf(); /* start the show */
}
int dcache_status(void)
{
return !(read_cr0() & 0x40000000);
}
/* Define these functions to allow ehch-hcd to function */
void flush_dcache_range(unsigned long start, unsigned long stop)
{
}
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
}
void dcache_enable(void)
{
enable_caches();
}
void dcache_disable(void)
{
disable_caches();
}
void icache_enable(void)
{
}
void icache_disable(void)
{
}
int icache_status(void)
{
return 1;
}
void cpu_enable_paging_pae(ulong cr3)
{
__asm__ __volatile__(
/* Load the page table address */
"movl %0, %%cr3\n"
/* Enable pae */
"movl %%cr4, %%eax\n"
"orl $0x00000020, %%eax\n"
"movl %%eax, %%cr4\n"
/* Enable paging */
"movl %%cr0, %%eax\n"
"orl $0x80000000, %%eax\n"
"movl %%eax, %%cr0\n"
:
: "r" (cr3)
: "eax");
}
void cpu_disable_paging_pae(void)
{
/* Turn off paging */
__asm__ __volatile__ (
/* Disable paging */
"movl %%cr0, %%eax\n"
"andl $0x7fffffff, %%eax\n"
"movl %%eax, %%cr0\n"
/* Disable pae */
"movl %%cr4, %%eax\n"
"andl $0xffffffdf, %%eax\n"
"movl %%eax, %%cr4\n"
:
:
: "eax");
}
static bool can_detect_long_mode(void)
{
return cpuid_eax(0x80000000) > 0x80000000UL;
}
static bool has_long_mode(void)
{
return cpuid_edx(0x80000001) & (1 << 29) ? true : false;
}
int cpu_has_64bit(void)
{
return has_cpuid() && can_detect_long_mode() &&
has_long_mode();
}
const char *cpu_vendor_name(int vendor)
{
const char *name;
name = "<invalid cpu vendor>";
if ((vendor < (ARRAY_SIZE(x86_vendor_name))) &&
(x86_vendor_name[vendor] != 0))
name = x86_vendor_name[vendor];
return name;
}
char *cpu_get_name(char *name)
{
unsigned int *name_as_ints = (unsigned int *)name;
struct cpuid_result regs;
char *ptr;
int i;
/* This bit adds up to 48 bytes */
for (i = 0; i < 3; i++) {
regs = cpuid(0x80000002 + i);
name_as_ints[i * 4 + 0] = regs.eax;
name_as_ints[i * 4 + 1] = regs.ebx;
name_as_ints[i * 4 + 2] = regs.ecx;
name_as_ints[i * 4 + 3] = regs.edx;
}
name[CPU_MAX_NAME_LEN - 1] = '\0';
/* Skip leading spaces. */
ptr = name;
while (*ptr == ' ')
ptr++;
return ptr;
}
int default_print_cpuinfo(void)
{
printf("CPU: %s, vendor %s, device %xh\n",
cpu_has_64bit() ? "x86_64" : "x86",
cpu_vendor_name(gd->arch.x86_vendor), gd->arch.x86_device);
return 0;
}
#define PAGETABLE_SIZE (6 * 4096)
/**
* build_pagetable() - build a flat 4GiB page table structure for 64-bti mode
*
* @pgtable: Pointer to a 24iKB block of memory
*/
static void build_pagetable(uint32_t *pgtable)
{
uint i;
memset(pgtable, '\0', PAGETABLE_SIZE);
/* Level 4 needs a single entry */
pgtable[0] = (uint32_t)&pgtable[1024] + 7;
/* Level 3 has one 64-bit entry for each GiB of memory */
for (i = 0; i < 4; i++) {
pgtable[1024 + i * 2] = (uint32_t)&pgtable[2048] +
0x1000 * i + 7;
}
/* Level 2 has 2048 64-bit entries, each repesenting 2MiB */
for (i = 0; i < 2048; i++)
pgtable[2048 + i * 2] = 0x183 + (i << 21UL);
}
int cpu_jump_to_64bit(ulong setup_base, ulong target)
{
uint32_t *pgtable;
pgtable = memalign(4096, PAGETABLE_SIZE);
if (!pgtable)
return -ENOMEM;
build_pagetable(pgtable);
cpu_call64((ulong)pgtable, setup_base, target);
free(pgtable);
return -EFAULT;
}
void show_boot_progress(int val)
{
#if MIN_PORT80_KCLOCKS_DELAY
/*
* Scale the time counter reading to avoid using 64 bit arithmetics.
* Can't use get_timer() here becuase it could be not yet
* initialized or even implemented.
*/
if (!gd->arch.tsc_prev) {
gd->arch.tsc_base_kclocks = rdtsc() / 1000;
gd->arch.tsc_prev = 0;
} else {
uint32_t now;
do {
now = rdtsc() / 1000 - gd->arch.tsc_base_kclocks;
} while (now < (gd->arch.tsc_prev + MIN_PORT80_KCLOCKS_DELAY));
gd->arch.tsc_prev = now;
}
#endif
outb(val, POST_PORT);
}
#ifndef CONFIG_SYS_COREBOOT
int last_stage_init(void)
{
write_tables();
return 0;
}
#endif