blob: 12499a79478318dda4db74251042ffe6af85f69d [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR MIT)
/*
* Amlogic Meson Nand Flash Controller Driver
*
* Copyright (c) 2018 Amlogic, inc.
* Author: Liang Yang <liang.yang@amlogic.com>
*
* Copyright (c) 2023 SaluteDevices, Inc.
* Author: Arseniy Krasnov <avkrasnov@salutedevices.com>
*/
#include <nand.h>
#include <asm/io.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/ofnode.h>
#include <dm/uclass.h>
#include <linux/bug.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/sizes.h>
#define NFC_CMD_IDLE (0xc << 14)
#define NFC_CMD_CLE (0x5 << 14)
#define NFC_CMD_ALE (0x6 << 14)
#define NFC_CMD_DWR (0x4 << 14)
#define NFC_CMD_DRD (0x8 << 14)
#define NFC_CMD_ADL ((0 << 16) | (3 << 20))
#define NFC_CMD_ADH ((1 << 16) | (3 << 20))
#define NFC_CMD_AIL ((2 << 16) | (3 << 20))
#define NFC_CMD_AIH ((3 << 16) | (3 << 20))
#define NFC_CMD_SEED ((8 << 16) | (3 << 20))
#define NFC_CMD_M2N ((0 << 17) | (2 << 20))
#define NFC_CMD_N2M ((1 << 17) | (2 << 20))
#define NFC_CMD_RB BIT(20)
#define NFC_CMD_SCRAMBLER_ENABLE BIT(19)
#define NFC_CMD_SCRAMBLER_DISABLE 0
#define NFC_CMD_SHORTMODE_DISABLE 0
#define NFC_CMD_RB_INT BIT(14)
#define NFC_CMD_RB_INT_NO_PIN ((0xb << 10) | BIT(18) | BIT(16))
#define NFC_CMD_GET_SIZE(x) (((x) >> 22) & GENMASK(4, 0))
#define NFC_REG_CMD 0x00
#define NFC_REG_CFG 0x04
#define NFC_REG_DADR 0x08
#define NFC_REG_IADR 0x0c
#define NFC_REG_BUF 0x10
#define NFC_REG_INFO 0x14
#define NFC_REG_DC 0x18
#define NFC_REG_ADR 0x1c
#define NFC_REG_DL 0x20
#define NFC_REG_DH 0x24
#define NFC_REG_CADR 0x28
#define NFC_REG_SADR 0x2c
#define NFC_REG_PINS 0x30
#define NFC_REG_VER 0x38
#define CMDRWGEN(cmd_dir, ran, bch, short_mode, page_size, pages) \
( \
(cmd_dir) | \
(ran) | \
((bch) << 14) | \
((short_mode) << 13) | \
(((page_size) & 0x7f) << 6) | \
((pages) & 0x3f) \
)
#define GENCMDDADDRL(adl, addr) ((adl) | ((addr) & 0xffff))
#define GENCMDDADDRH(adh, addr) ((adh) | (((addr) >> 16) & 0xffff))
#define GENCMDIADDRL(ail, addr) ((ail) | ((addr) & 0xffff))
#define GENCMDIADDRH(aih, addr) ((aih) | (((addr) >> 16) & 0xffff))
#define DMA_DIR(dir) ((dir) ? NFC_CMD_N2M : NFC_CMD_M2N)
#define ECC_CHECK_RETURN_FF -1
#define NAND_CE0 (0xe << 10)
#define NAND_CE1 (0xd << 10)
#define DMA_BUSY_TIMEOUT_US 1000000
#define CMD_DRAIN_TIMEOUT_US 1000
#define ECC_POLL_TIMEOUT_US 15
#define MAX_CE_NUM 2
/* eMMC clock register, misc control */
#define CLK_SELECT_NAND BIT(31)
#define CLK_ALWAYS_ON_NAND BIT(24)
#define CLK_ENABLE_VALUE 0x245
#define DIRREAD 1
#define DIRWRITE 0
#define ECC_PARITY_BCH8_512B 14
#define ECC_COMPLETE BIT(31)
#define ECC_ERR_CNT(x) (((x) >> 24) & GENMASK(5, 0))
#define ECC_ZERO_CNT(x) (((x) >> 16) & GENMASK(5, 0))
#define ECC_UNCORRECTABLE 0x3f
#define PER_INFO_BYTE 8
#define NFC_SEND_CMD(host, cmd) \
(writel((cmd), (host)->reg_base + NFC_REG_CMD))
#define NFC_GET_CMD(host) \
(readl((host)->reg_base + NFC_REG_CMD))
#define NFC_CMDFIFO_SIZE(host) ((NFC_GET_CMD((host)) >> 22) & GENMASK(4, 0))
#define NFC_CMD_MAKE_IDLE(ce, delay) ((ce) | NFC_CMD_IDLE | ((delay) & 0x3ff))
#define NFC_CMD_MAKE_DRD(ce, size) ((ce) | NFC_CMD_DRD | (size))
#define NFC_CMD_MAKE_DWR(ce, data) ((ce) | NFC_CMD_DWR | ((data) & 0xff))
#define NFC_CMD_MAKE_CLE(ce, cmd_val) ((ce) | NFC_CMD_CLE | ((cmd_val) & 0xff))
#define NFC_CMD_MAKE_ALE(ce, addr) ((ce) | NFC_CMD_ALE | ((addr) & 0xff))
#define NAND_TWB_TIME_CYCLE 10
#define NFC_DEV_READY_TICK_MAX 5000
/* Both values are recommended by vendor, as the most
* tested with almost all SLC NAND flash. Second value
* could be calculated dynamically from timing parameters,
* but we need both values for initial start of the NAND
* controller (e.g. before NAND subsystem processes timings),
* so use hardcoded constants.
*/
#define NFC_DEFAULT_BUS_CYCLE 6
#define NFC_DEFAULT_BUS_TIMING 7
#define NFC_SEED_OFFSET 0xc2
#define NFC_SEED_MASK 0x7fff
#define DMA_ADDR_ALIGN 8
struct meson_nfc_nand_chip {
struct list_head node;
struct nand_chip nand;
u32 bch_mode;
u8 *data_buf;
__le64 *info_buf;
u32 nsels;
u8 sels[];
};
struct meson_nfc_param {
u32 chip_select;
u32 rb_select;
};
struct meson_nfc {
void __iomem *reg_base;
void __iomem *reg_clk;
struct list_head chips;
struct meson_nfc_param param;
struct udevice *dev;
dma_addr_t daddr;
dma_addr_t iaddr;
u32 data_bytes;
u32 info_bytes;
u64 assigned_cs;
};
struct meson_nand_ecc {
u32 bch;
u32 strength;
u32 size;
};
enum {
NFC_ECC_BCH8_512 = 1,
NFC_ECC_BCH8_1K,
NFC_ECC_BCH24_1K,
NFC_ECC_BCH30_1K,
NFC_ECC_BCH40_1K,
NFC_ECC_BCH50_1K,
NFC_ECC_BCH60_1K,
};
#define MESON_ECC_DATA(b, s, sz) { .bch = (b), .strength = (s), .size = (sz) }
static struct meson_nand_ecc meson_ecc[] = {
MESON_ECC_DATA(NFC_ECC_BCH8_512, 8, 512),
MESON_ECC_DATA(NFC_ECC_BCH8_1K, 8, 1024),
};
static int meson_nand_calc_ecc_bytes(int step_size, int strength)
{
int ecc_bytes;
if (step_size == 512 && strength == 8)
return ECC_PARITY_BCH8_512B;
ecc_bytes = DIV_ROUND_UP(strength * fls(step_size * 8), 8);
ecc_bytes = ALIGN(ecc_bytes, 2);
return ecc_bytes;
}
static struct meson_nfc_nand_chip *to_meson_nand(struct nand_chip *nand)
{
return container_of(nand, struct meson_nfc_nand_chip, nand);
}
static void meson_nfc_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
nfc->param.chip_select = meson_chip->sels[chip] ? NAND_CE1 : NAND_CE0;
}
static void meson_nfc_cmd_idle(struct meson_nfc *nfc, u32 time)
{
writel(NFC_CMD_MAKE_IDLE(nfc->param.chip_select, time),
nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_cmd_seed(const struct meson_nfc *nfc, u32 seed)
{
writel(NFC_CMD_SEED | (NFC_SEED_OFFSET + (seed & NFC_SEED_MASK)),
nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_cmd_access(struct nand_chip *nand, bool raw, bool dir,
int scrambler)
{
struct mtd_info *mtd = nand_to_mtd(nand);
const struct meson_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 bch = meson_chip->bch_mode, cmd;
int len = mtd->writesize, pagesize, pages;
pagesize = nand->ecc.size;
if (raw) {
len = mtd->writesize + mtd->oobsize;
cmd = len | scrambler | DMA_DIR(dir);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
return;
}
pages = len / nand->ecc.size;
cmd = CMDRWGEN(DMA_DIR(dir), scrambler, bch,
NFC_CMD_SHORTMODE_DISABLE, pagesize, pages);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_drain_cmd(struct meson_nfc *nfc)
{
/*
* Insert two commands to make sure all valid commands are finished.
*
* The Nand flash controller is designed as two stages pipleline -
* a) fetch and b) execute.
* There might be cases when the driver see command queue is empty,
* but the Nand flash controller still has two commands buffered,
* one is fetched into NFC request queue (ready to run), and another
* is actively executing. So pushing 2 "IDLE" commands guarantees that
* the pipeline is emptied.
*/
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_cmd_idle(nfc, 0);
}
static int meson_nfc_wait_cmd_finish(const struct meson_nfc *nfc,
unsigned int timeout_us)
{
u32 cmd_size = 0;
/* wait cmd fifo is empty */
return readl_relaxed_poll_timeout(nfc->reg_base + NFC_REG_CMD, cmd_size,
!NFC_CMD_GET_SIZE(cmd_size),
timeout_us);
}
static int meson_nfc_wait_dma_finish(struct meson_nfc *nfc)
{
meson_nfc_drain_cmd(nfc);
return meson_nfc_wait_cmd_finish(nfc, DMA_BUSY_TIMEOUT_US);
}
static u8 *meson_nfc_oob_ptr(struct nand_chip *nand, int i)
{
const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int len;
len = nand->ecc.size * (i + 1) + (nand->ecc.bytes + 2) * i;
return meson_chip->data_buf + len;
}
static u8 *meson_nfc_data_ptr(struct nand_chip *nand, int i)
{
const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int len, temp;
temp = nand->ecc.size + nand->ecc.bytes;
len = (temp + 2) * i;
return meson_chip->data_buf + len;
}
static void meson_nfc_get_data_oob(struct nand_chip *nand,
u8 *buf, u8 *oobbuf)
{
u8 *dsrc, *osrc;
int i, oob_len;
oob_len = nand->ecc.bytes + 2;
for (i = 0; i < nand->ecc.steps; i++) {
if (buf) {
dsrc = meson_nfc_data_ptr(nand, i);
memcpy(buf, dsrc, nand->ecc.size);
buf += nand->ecc.size;
}
if (oobbuf) {
osrc = meson_nfc_oob_ptr(nand, i);
memcpy(oobbuf, osrc, oob_len);
oobbuf += oob_len;
}
}
}
static void meson_nfc_set_data_oob(struct nand_chip *nand,
const u8 *buf, u8 *oobbuf)
{
int i, oob_len;
oob_len = nand->ecc.bytes + 2;
for (i = 0; i < nand->ecc.steps; i++) {
u8 *osrc;
if (buf) {
u8 *dsrc;
dsrc = meson_nfc_data_ptr(nand, i);
memcpy(dsrc, buf, nand->ecc.size);
buf += nand->ecc.size;
}
osrc = meson_nfc_oob_ptr(nand, i);
memcpy(osrc, oobbuf, oob_len);
oobbuf += oob_len;
}
}
static void meson_nfc_set_user_byte(struct nand_chip *nand, const u8 *oob_buf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int i, count;
for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) {
__le64 *info = &meson_chip->info_buf[i];
*info |= oob_buf[count];
*info |= oob_buf[count + 1] << 8;
}
}
static void meson_nfc_get_user_byte(struct nand_chip *nand, u8 *oob_buf)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
int i, count;
for (i = 0, count = 0; i < nand->ecc.steps; i++, count += (2 + nand->ecc.bytes)) {
const __le64 *info = &meson_chip->info_buf[i];
oob_buf[count] = *info;
oob_buf[count + 1] = *info >> 8;
}
}
static int meson_nfc_ecc_correct(struct nand_chip *nand, u32 *bitflips,
u64 *correct_bitmap)
{
struct mtd_info *mtd = nand_to_mtd(nand);
int ret = 0, i;
for (i = 0; i < nand->ecc.steps; i++) {
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
const __le64 *info = &meson_chip->info_buf[i];
if (ECC_ERR_CNT(*info) != ECC_UNCORRECTABLE) {
mtd->ecc_stats.corrected += ECC_ERR_CNT(*info);
*bitflips = max_t(u32, *bitflips, ECC_ERR_CNT(*info));
*correct_bitmap |= BIT_ULL(i);
continue;
}
if ((nand->options & NAND_NEED_SCRAMBLING) &&
ECC_ZERO_CNT(*info) < nand->ecc.strength) {
mtd->ecc_stats.corrected += ECC_ZERO_CNT(*info);
*bitflips = max_t(u32, *bitflips,
ECC_ZERO_CNT(*info));
ret = ECC_CHECK_RETURN_FF;
} else {
ret = -EBADMSG;
}
}
return ret;
}
static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
int datalen, void *infobuf, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
int ret;
u32 cmd;
nfc->daddr = dma_map_single(databuf, datalen, DMA_BIDIRECTIONAL);
ret = dma_mapping_error(nfc->dev, nfc->daddr);
if (ret)
return ret;
cmd = GENCMDDADDRL(NFC_CMD_ADL, nfc->daddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
cmd = GENCMDDADDRH(NFC_CMD_ADH, nfc->daddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
if (infobuf) {
nfc->iaddr = dma_map_single(infobuf, infolen,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(nfc->dev, nfc->iaddr);
if (ret) {
dma_unmap_single(nfc->daddr, datalen, dir);
return ret;
}
nfc->info_bytes = infolen;
cmd = GENCMDIADDRL(NFC_CMD_AIL, nfc->iaddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
cmd = GENCMDIADDRH(NFC_CMD_AIH, nfc->iaddr);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
return 0;
}
static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
int datalen, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
dma_unmap_single(nfc->daddr, datalen, dir);
if (infolen) {
dma_unmap_single(nfc->iaddr, infolen, dir);
nfc->info_bytes = 0;
}
}
static void meson_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int size)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u8 *dma_buf;
int ret;
u32 cmd;
if ((uintptr_t)buf % DMA_ADDR_ALIGN) {
unsigned long tmp_addr;
dma_buf = dma_alloc_coherent(size, &tmp_addr);
if (!dma_buf)
return;
} else {
dma_buf = buf;
}
ret = meson_nfc_dma_buffer_setup(nand, dma_buf, size, meson_chip->info_buf,
PER_INFO_BYTE, DMA_FROM_DEVICE);
if (ret) {
pr_err("Failed to setup DMA buffer %p/%p\n", dma_buf,
meson_chip->info_buf);
return;
}
cmd = NFC_CMD_N2M | size;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_drain_cmd(nfc);
meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US);
meson_nfc_dma_buffer_release(nand, size, PER_INFO_BYTE, DMA_FROM_DEVICE);
if (buf != dma_buf) {
memcpy(buf, dma_buf, size);
dma_free_coherent(dma_buf);
}
}
static void meson_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int size)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct meson_nfc *nfc = nand_get_controller_data(nand);
u8 *dma_buf;
int ret;
u32 cmd;
if ((uintptr_t)buf % DMA_ADDR_ALIGN) {
unsigned long tmp_addr;
dma_buf = dma_alloc_coherent(size, &tmp_addr);
if (!dma_buf)
return;
memcpy(dma_buf, buf, size);
} else {
dma_buf = (u8 *)buf;
}
ret = meson_nfc_dma_buffer_setup(nand, (void *)dma_buf, size, NULL,
0, DMA_TO_DEVICE);
if (ret) {
pr_err("Failed to setup DMA buffer %p\n", dma_buf);
return;
}
cmd = NFC_CMD_M2N | size;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_drain_cmd(nfc);
meson_nfc_wait_cmd_finish(nfc, CMD_DRAIN_TIMEOUT_US);
meson_nfc_dma_buffer_release(nand, size, 0, DMA_TO_DEVICE);
if (buf != dma_buf)
dma_free_coherent(dma_buf);
}
static int meson_nfc_write_page_sub(struct nand_chip *nand,
int page, bool raw)
{
const struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
int data_len, info_len;
int ret;
u32 cmd;
data_len = mtd->writesize + mtd->oobsize;
info_len = nand->ecc.steps * PER_INFO_BYTE;
ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf,
data_len, meson_chip->info_buf,
info_len, DMA_TO_DEVICE);
if (ret) {
pr_err("Failed to setup DMA buffer %p/%p\n",
meson_chip->data_buf, meson_chip->info_buf);
return ret;
}
if (nand->options & NAND_NEED_SCRAMBLING) {
meson_nfc_cmd_seed(nfc, page);
meson_nfc_cmd_access(nand, raw, DIRWRITE,
NFC_CMD_SCRAMBLER_ENABLE);
} else {
meson_nfc_cmd_access(nand, raw, DIRWRITE,
NFC_CMD_SCRAMBLER_DISABLE);
}
cmd = nfc->param.chip_select | NFC_CMD_CLE | NAND_CMD_PAGEPROG;
writel(cmd, nfc->reg_base + NFC_REG_CMD);
meson_nfc_dma_buffer_release(nand, data_len, info_len, DMA_TO_DEVICE);
return 0;
}
static int meson_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required, int page)
{
meson_nfc_set_data_oob(chip, buf, oob_required ? chip->oob_poi : NULL);
return meson_nfc_write_page_sub(chip, page, true);
}
static int meson_nfc_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
const u8 *buf, int oob_required, int page)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip);
if (buf)
memcpy(meson_chip->data_buf, buf, mtd->writesize);
memset(meson_chip->info_buf, 0, chip->ecc.steps * PER_INFO_BYTE);
if (oob_required)
meson_nfc_set_user_byte(chip, chip->oob_poi);
return meson_nfc_write_page_sub(chip, page, false);
}
static void meson_nfc_check_ecc_pages_valid(struct meson_nfc *nfc,
struct nand_chip *nand, bool raw)
{
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
__le64 *info;
u32 neccpages;
int ret;
neccpages = raw ? 1 : nand->ecc.steps;
info = &meson_chip->info_buf[neccpages - 1];
do {
udelay(ECC_POLL_TIMEOUT_US);
/* info is updated by nfc dma engine*/
rmb();
invalidate_dcache_range(nfc->iaddr, nfc->iaddr + nfc->info_bytes);
ret = *info & ECC_COMPLETE;
} while (!ret);
}
static int meson_nfc_read_page_sub(struct nand_chip *nand,
int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc *nfc = nand_get_controller_data(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 data_len, info_len;
int ret;
data_len = mtd->writesize + mtd->oobsize;
info_len = nand->ecc.steps * PER_INFO_BYTE;
ret = meson_nfc_dma_buffer_setup(nand, meson_chip->data_buf, data_len,
meson_chip->info_buf, info_len,
DMA_FROM_DEVICE);
if (ret)
return ret;
if (nand->options & NAND_NEED_SCRAMBLING) {
meson_nfc_cmd_seed(nfc, page);
meson_nfc_cmd_access(nand, raw, DIRREAD,
NFC_CMD_SCRAMBLER_ENABLE);
} else {
meson_nfc_cmd_access(nand, raw, DIRREAD,
NFC_CMD_SCRAMBLER_DISABLE);
}
meson_nfc_wait_dma_finish(nfc);
meson_nfc_check_ecc_pages_valid(nfc, nand, raw);
meson_nfc_dma_buffer_release(nand, data_len, info_len,
DMA_FROM_DEVICE);
return 0;
}
static int meson_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
int ret;
ret = meson_nfc_read_page_sub(chip, page, true);
if (ret)
return ret;
meson_nfc_get_data_oob(chip, buf, oob_required ? chip->oob_poi : NULL);
return 0;
}
static int meson_nfc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
u8 *buf, int oob_required, int page)
{
const struct meson_nfc_nand_chip *meson_chip = to_meson_nand(chip);
u64 correct_bitmap = 0;
u32 bitflips = 0;
int ret;
ret = meson_nfc_read_page_sub(chip, page, false);
if (ret)
return ret;
if (oob_required)
meson_nfc_get_user_byte(chip, chip->oob_poi);
ret = meson_nfc_ecc_correct(chip, &bitflips, &correct_bitmap);
if (ret == ECC_CHECK_RETURN_FF) {
if (buf)
memset(buf, 0xff, mtd->writesize);
if (oob_required)
memset(chip->oob_poi, 0xff, mtd->oobsize);
} else if (ret < 0) {
struct nand_ecc_ctrl *ecc;
int i;
if ((chip->options & NAND_NEED_SCRAMBLING) || !buf) {
mtd->ecc_stats.failed++;
return bitflips;
}
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
ret = meson_nfc_read_page_raw(mtd, chip, buf, 1, page);
if (ret)
return ret;
ecc = &chip->ecc;
for (i = 0; i < chip->ecc.steps ; i++) {
u8 *data = buf + i * ecc->size;
u8 *oob = chip->oob_poi + i * (ecc->bytes + 2);
if (correct_bitmap & BIT_ULL(i))
continue;
ret = nand_check_erased_ecc_chunk(data, ecc->size,
oob, ecc->bytes + 2,
NULL, 0,
ecc->strength);
if (ret < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += ret;
bitflips = max_t(u32, bitflips, ret);
}
}
} else if (buf && buf != meson_chip->data_buf) {
memcpy(buf, meson_chip->data_buf, mtd->writesize);
}
return bitflips;
}
static int meson_nfc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int ret;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
return meson_nfc_read_page_raw(mtd, chip, NULL, 1, page);
}
static int meson_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int ret;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
return meson_nfc_read_page_hwecc(mtd, chip, NULL, 1, page);
}
static int meson_nfc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
ret = meson_nfc_write_page_raw(mtd, chip, NULL, 1, page);
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
static int meson_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
int ret;
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
ret = meson_nfc_write_page_hwecc(mtd, chip, NULL, 1, page);
if (ret)
return ret;
return nand_prog_page_end_op(chip);
}
static void meson_nfc_nand_cmd_function(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
if (column != -1 || page_addr != -1) {
int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16 &&
!nand_opcode_8bits(command))
column >>= 1;
chip->cmd_ctrl(mtd, column, ctrl);
ctrl &= ~NAND_CTRL_CHANGE;
/* Only output a single addr cycle for 8bits
* opcodes.
*/
if (!nand_opcode_8bits(command))
chip->cmd_ctrl(mtd, column >> 8, ctrl);
}
if (page_addr != -1) {
chip->cmd_ctrl(mtd, page_addr, ctrl);
chip->cmd_ctrl(mtd, page_addr >> 8, NAND_NCE |
NAND_ALE);
/* One more address cycle for devices > 128MiB */
if (chip->chipsize > SZ_128M)
chip->cmd_ctrl(mtd, page_addr >> 16,
NAND_NCE | NAND_ALE);
}
switch (command) {
case NAND_CMD_READ0:
chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
fallthrough;
case NAND_CMD_PARAM:
nand_wait_ready(mtd);
nand_exit_status_op(chip);
}
}
}
static void meson_nfc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct meson_nfc *nfc = nand_get_controller_data(nand);
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
cmd = NFC_CMD_MAKE_CLE(nfc->param.chip_select, cmd);
else
cmd = NFC_CMD_MAKE_ALE(nfc->param.chip_select, cmd);
writel(cmd, nfc->reg_base + NFC_REG_CMD);
}
static void meson_nfc_wait_cmd_fifo(struct meson_nfc *nfc)
{
while ((NFC_GET_CMD(nfc) >> 22) & GENMASK(4, 0))
;
}
static u8 meson_nfc_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct meson_nfc *nfc = nand_get_controller_data(nand);
writel(NFC_CMD_MAKE_DRD(nfc->param.chip_select, 0), nfc->reg_base + NFC_REG_CMD);
meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE);
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_wait_cmd_fifo(nfc);
return readl(nfc->reg_base + NFC_REG_BUF);
}
static void meson_nfc_nand_write_byte(struct mtd_info *mtd, u8 val)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct meson_nfc *nfc = nand_get_controller_data(nand);
meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE);
writel(NFC_CMD_MAKE_DWR(nfc->param.chip_select, val), nfc->reg_base + NFC_REG_CMD);
meson_nfc_cmd_idle(nfc, NAND_TWB_TIME_CYCLE);
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_cmd_idle(nfc, 0);
meson_nfc_wait_cmd_fifo(nfc);
}
static int meson_nfc_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
unsigned int time_out_cnt = 0;
chip->select_chip(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
do {
int status;
status = (int)chip->read_byte(mtd);
if (status & NAND_STATUS_READY)
break;
} while (time_out_cnt++ < NFC_DEV_READY_TICK_MAX);
return time_out_cnt != NFC_DEV_READY_TICK_MAX;
}
static int meson_chip_buffer_init(struct nand_chip *nand)
{
const struct mtd_info *mtd = nand_to_mtd(nand);
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
u32 page_bytes, info_bytes, nsectors;
unsigned long tmp_addr;
nsectors = mtd->writesize / nand->ecc.size;
page_bytes = mtd->writesize + mtd->oobsize;
info_bytes = nsectors * PER_INFO_BYTE;
meson_chip->data_buf = dma_alloc_coherent(page_bytes, &tmp_addr);
if (!meson_chip->data_buf)
return -ENOMEM;
meson_chip->info_buf = dma_alloc_coherent(info_bytes, &tmp_addr);
if (!meson_chip->info_buf) {
dma_free_coherent(meson_chip->data_buf);
return -ENOMEM;
}
return 0;
}
static const int axg_stepinfo_strengths[] = { 8 };
static const struct nand_ecc_step_info axg_stepinfo_1024 = {
.stepsize = 1024,
.strengths = axg_stepinfo_strengths,
.nstrengths = ARRAY_SIZE(axg_stepinfo_strengths)
};
static const struct nand_ecc_step_info axg_stepinfo_512 = {
.stepsize = 512,
.strengths = axg_stepinfo_strengths,
.nstrengths = ARRAY_SIZE(axg_stepinfo_strengths)
};
static const struct nand_ecc_step_info axg_stepinfo[] = { axg_stepinfo_1024, axg_stepinfo_512 };
static const struct nand_ecc_caps meson_axg_ecc_caps = {
.stepinfos = axg_stepinfo,
.nstepinfos = ARRAY_SIZE(axg_stepinfo),
.calc_ecc_bytes = meson_nand_calc_ecc_bytes,
};
/*
* OOB layout:
*
* For ECC with 512 bytes step size:
* 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB
* 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC
* 0x20:
* 0x30:
*
* For ECC with 1024 bytes step size:
* 0x00: AA AA BB BB BB BB BB BB BB BB BB BB BB BB BB BB
* 0x10: AA AA CC CC CC CC CC CC CC CC CC CC CC CC CC CC
* 0x20: AA AA DD DD DD DD DD DD DD DD DD DD DD DD DD DD
* 0x30: AA AA EE EE EE EE EE EE EE EE EE EE EE EE EE EE
*
* AA - user bytes.
* BB, CC, DD, EE - ECC code bytes for each step.
*/
static struct nand_ecclayout nand_oob;
static void meson_nfc_init_nand_oob(struct nand_chip *nand)
{
int section_size = 2 + nand->ecc.bytes;
int i;
int k;
nand_oob.eccbytes = nand->ecc.steps * nand->ecc.bytes;
k = 0;
for (i = 0; i < nand->ecc.steps; i++) {
int j;
for (j = 0; j < nand->ecc.bytes; j++)
nand_oob.eccpos[k++] = (i * section_size) + 2 + j;
nand_oob.oobfree[i].offset = (i * section_size);
nand_oob.oobfree[i].length = 2;
}
nand_oob.oobavail = 2 * nand->ecc.steps;
nand->ecc.layout = &nand_oob;
}
static int meson_nfc_init_ecc(struct nand_chip *nand, ofnode node)
{
const struct mtd_info *mtd = nand_to_mtd(nand);
int ret;
int i;
ret = nand_check_ecc_caps(nand, &meson_axg_ecc_caps, mtd->oobsize - 2);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(meson_ecc); i++) {
if (meson_ecc[i].strength == nand->ecc.strength &&
meson_ecc[i].size == nand->ecc.size) {
struct meson_nfc_nand_chip *meson_chip = to_meson_nand(nand);
nand->ecc.steps = mtd->writesize / nand->ecc.size;
meson_chip->bch_mode = meson_ecc[i].bch;
meson_nfc_init_nand_oob(nand);
return 0;
}
}
return -EINVAL;
}
static int meson_nfc_nand_chip_init(struct udevice *dev, struct meson_nfc *nfc,
ofnode node)
{
struct meson_nfc_nand_chip *meson_chip;
struct nand_chip *nand;
struct mtd_info *mtd;
u32 cs[MAX_CE_NUM];
u32 nsels;
int ret;
int i;
if (!ofnode_get_property(node, "reg", &nsels)) {
dev_err(dev, "\"reg\" property is not found\n");
return -ENODEV;
}
nsels /= sizeof(u32);
if (nsels >= MAX_CE_NUM) {
dev_err(dev, "invalid size of CS array, max is %d\n",
MAX_CE_NUM);
return -EINVAL;
}
ret = ofnode_read_u32_array(node, "reg", cs, nsels);
if (ret < 0) {
dev_err(dev, "failed to read \"reg\" property\n");
return ret;
}
for (i = 0; i < nsels; i++) {
if (test_and_set_bit(cs[i], &nfc->assigned_cs)) {
dev_err(dev, "CS %d already assigned\n", cs[i]);
return -EINVAL;
}
}
meson_chip = malloc(sizeof(*meson_chip) + nsels * sizeof(meson_chip->sels[0]));
if (!meson_chip) {
dev_err(dev, "failed to allocate memory for chip\n");
return -ENOMEM;
}
meson_chip->nsels = nsels;
nand = &meson_chip->nand;
nand->flash_node = node;
nand_set_controller_data(nand, nfc);
/* Set the driver entry points for MTD */
nand->cmdfunc = meson_nfc_nand_cmd_function;
nand->cmd_ctrl = meson_nfc_cmd_ctrl;
nand->select_chip = meson_nfc_nand_select_chip;
nand->read_byte = meson_nfc_nand_read_byte;
nand->write_byte = meson_nfc_nand_write_byte;
nand->dev_ready = meson_nfc_dev_ready;
/* Buffer read/write routines */
nand->read_buf = meson_nfc_read_buf;
nand->write_buf = meson_nfc_write_buf;
nand->options |= NAND_NO_SUBPAGE_WRITE;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.hwctl = NULL;
nand->ecc.read_page = meson_nfc_read_page_hwecc;
nand->ecc.write_page = meson_nfc_write_page_hwecc;
nand->ecc.read_page_raw = meson_nfc_read_page_raw;
nand->ecc.write_page_raw = meson_nfc_write_page_raw;
nand->ecc.read_oob = meson_nfc_read_oob;
nand->ecc.write_oob = meson_nfc_write_oob;
nand->ecc.read_oob_raw = meson_nfc_read_oob_raw;
nand->ecc.write_oob_raw = meson_nfc_write_oob_raw;
nand->ecc.algo = NAND_ECC_BCH;
mtd = nand_to_mtd(nand);
ret = nand_scan_ident(mtd, 1, NULL);
if (ret) {
dev_err(dev, "'nand_scan_ident()' failed: %d\n", ret);
goto err_chip_free;
}
ret = meson_nfc_init_ecc(nand, node);
if (ret) {
dev_err(dev, "failed to init ECC settings: %d\n", ret);
goto err_chip_free;
}
ret = meson_chip_buffer_init(nand);
if (ret) {
dev_err(dev, "failed to init DMA buffers: %d\n", ret);
goto err_chip_free;
}
/* 'nand_scan_tail()' needs ECC parameters to be already
* set and correct.
*/
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(dev, "'nand_scan_tail()' failed: %d\n", ret);
goto err_chip_buf_free;
}
ret = nand_register(0, mtd);
if (ret) {
dev_err(dev, "'nand_register()' failed: %d\n", ret);
goto err_chip_buf_free;
}
list_add_tail(&meson_chip->node, &nfc->chips);
return 0;
err_chip_buf_free:
dma_free_coherent(meson_chip->info_buf);
dma_free_coherent(meson_chip->data_buf);
err_chip_free:
free(meson_chip);
return ret;
}
static int meson_nfc_nand_chips_init(struct udevice *dev,
struct meson_nfc *nfc)
{
ofnode parent = dev_ofnode(dev);
ofnode node;
ofnode_for_each_subnode(node, parent) {
int ret = meson_nfc_nand_chip_init(dev, nfc, node);
if (ret)
return ret;
}
return 0;
}
static void meson_nfc_clk_init(struct meson_nfc *nfc)
{
u32 bus_cycle = NFC_DEFAULT_BUS_CYCLE;
u32 bus_timing = NFC_DEFAULT_BUS_TIMING;
u32 bus_cfg_val;
writel(CLK_ALWAYS_ON_NAND | CLK_SELECT_NAND | CLK_ENABLE_VALUE, nfc->reg_clk);
writel(0, nfc->reg_base + NFC_REG_CFG);
bus_cfg_val = (((bus_cycle - 1) & 31) | ((bus_timing & 31) << 5));
writel(bus_cfg_val, nfc->reg_base + NFC_REG_CFG);
writel(BIT(31), nfc->reg_base + NFC_REG_CMD);
}
static int meson_probe(struct udevice *dev)
{
struct meson_nfc *nfc = dev_get_priv(dev);
void *addr;
int ret;
addr = dev_read_addr_ptr(dev);
if (!addr) {
dev_err(dev, "base register address not found\n");
return -EINVAL;
}
nfc->reg_base = addr;
addr = dev_read_addr_index_ptr(dev, 1);
if (!addr) {
dev_err(dev, "clk register address not found\n");
return -EINVAL;
}
nfc->reg_clk = addr;
nfc->dev = dev;
meson_nfc_clk_init(nfc);
ret = meson_nfc_nand_chips_init(dev, nfc);
if (ret) {
dev_err(nfc->dev, "failed to init chips\n");
return ret;
}
return 0;
}
static const struct udevice_id meson_nand_dt_ids[] = {
{.compatible = "amlogic,meson-axg-nfc",},
{ /* sentinel */ }
};
U_BOOT_DRIVER(meson_nand) = {
.name = "meson_nand",
.id = UCLASS_MTD,
.of_match = meson_nand_dt_ids,
.probe = meson_probe,
.priv_auto = sizeof(struct meson_nfc),
};
void board_nand_init(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MTD,
DM_DRIVER_GET(meson_nand), &dev);
if (ret && ret != -ENODEV)
pr_err("Failed to initialize: %d\n", ret);
}