| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2007-2008 |
| * Stelian Pop <stelian@popies.net> |
| * Lead Tech Design <www.leadtechdesign.com> |
| * |
| * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas |
| * |
| * Add Programmable Multibit ECC support for various AT91 SoC |
| * (C) Copyright 2012 ATMEL, Hong Xu |
| */ |
| |
| #include <common.h> |
| #include <log.h> |
| #include <system-constants.h> |
| #include <asm/gpio.h> |
| #include <asm/arch/gpio.h> |
| #include <dm/device_compat.h> |
| #include <dm/devres.h> |
| #include <linux/bitops.h> |
| #include <linux/bug.h> |
| #include <linux/delay.h> |
| #include <linux/printk.h> |
| |
| #include <malloc.h> |
| #include <nand.h> |
| #include <watchdog.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/rawnand.h> |
| |
| #ifdef CONFIG_ATMEL_NAND_HWECC |
| |
| /* Register access macros */ |
| #define ecc_readl(add, reg) \ |
| readl(add + ATMEL_ECC_##reg) |
| #define ecc_writel(add, reg, value) \ |
| writel((value), add + ATMEL_ECC_##reg) |
| |
| #include "atmel_nand_ecc.h" /* Hardware ECC registers */ |
| |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC |
| |
| struct atmel_nand_host { |
| struct pmecc_regs __iomem *pmecc; |
| struct pmecc_errloc_regs __iomem *pmerrloc; |
| void __iomem *pmecc_rom_base; |
| |
| u8 pmecc_corr_cap; |
| u16 pmecc_sector_size; |
| u32 pmecc_index_table_offset; |
| u32 pmecc_version; |
| |
| int pmecc_bytes_per_sector; |
| int pmecc_sector_number; |
| int pmecc_degree; /* Degree of remainders */ |
| int pmecc_cw_len; /* Length of codeword */ |
| |
| /* lookup table for alpha_to and index_of */ |
| void __iomem *pmecc_alpha_to; |
| void __iomem *pmecc_index_of; |
| |
| /* data for pmecc computation */ |
| int16_t *pmecc_smu; |
| int16_t *pmecc_partial_syn; |
| int16_t *pmecc_si; |
| int16_t *pmecc_lmu; /* polynomal order */ |
| int *pmecc_mu; |
| int *pmecc_dmu; |
| int *pmecc_delta; |
| }; |
| |
| static struct atmel_nand_host pmecc_host; |
| static struct nand_ecclayout atmel_pmecc_oobinfo; |
| |
| /* |
| * Return number of ecc bytes per sector according to sector size and |
| * correction capability |
| * |
| * Following table shows what at91 PMECC supported: |
| * Correction Capability Sector_512_bytes Sector_1024_bytes |
| * ===================== ================ ================= |
| * 2-bits 4-bytes 4-bytes |
| * 4-bits 7-bytes 7-bytes |
| * 8-bits 13-bytes 14-bytes |
| * 12-bits 20-bytes 21-bytes |
| * 24-bits 39-bytes 42-bytes |
| * 32-bits 52-bytes 56-bytes |
| */ |
| static int pmecc_get_ecc_bytes(int cap, int sector_size) |
| { |
| int m = 12 + sector_size / 512; |
| return (m * cap + 7) / 8; |
| } |
| |
| static void pmecc_config_ecc_layout(struct nand_ecclayout *layout, |
| int oobsize, int ecc_len) |
| { |
| int i; |
| |
| layout->eccbytes = ecc_len; |
| |
| /* ECC will occupy the last ecc_len bytes continuously */ |
| for (i = 0; i < ecc_len; i++) |
| layout->eccpos[i] = oobsize - ecc_len + i; |
| |
| layout->oobfree[0].offset = 2; |
| layout->oobfree[0].length = |
| oobsize - ecc_len - layout->oobfree[0].offset; |
| } |
| |
| static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host) |
| { |
| int table_size; |
| |
| table_size = host->pmecc_sector_size == 512 ? |
| PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024; |
| |
| /* the ALPHA lookup table is right behind the INDEX lookup table. */ |
| return host->pmecc_rom_base + host->pmecc_index_table_offset + |
| table_size * sizeof(int16_t); |
| } |
| |
| static void pmecc_data_free(struct atmel_nand_host *host) |
| { |
| free(host->pmecc_partial_syn); |
| free(host->pmecc_si); |
| free(host->pmecc_lmu); |
| free(host->pmecc_smu); |
| free(host->pmecc_mu); |
| free(host->pmecc_dmu); |
| free(host->pmecc_delta); |
| } |
| |
| static int pmecc_data_alloc(struct atmel_nand_host *host) |
| { |
| const int cap = host->pmecc_corr_cap; |
| int size; |
| |
| size = (2 * cap + 1) * sizeof(int16_t); |
| host->pmecc_partial_syn = malloc(size); |
| host->pmecc_si = malloc(size); |
| host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t)); |
| host->pmecc_smu = malloc((cap + 2) * size); |
| |
| size = (cap + 1) * sizeof(int); |
| host->pmecc_mu = malloc(size); |
| host->pmecc_dmu = malloc(size); |
| host->pmecc_delta = malloc(size); |
| |
| if (host->pmecc_partial_syn && |
| host->pmecc_si && |
| host->pmecc_lmu && |
| host->pmecc_smu && |
| host->pmecc_mu && |
| host->pmecc_dmu && |
| host->pmecc_delta) |
| return 0; |
| |
| /* error happened */ |
| pmecc_data_free(host); |
| return -ENOMEM; |
| |
| } |
| |
| static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| int i; |
| uint32_t value; |
| |
| /* Fill odd syndromes */ |
| for (i = 0; i < host->pmecc_corr_cap; i++) { |
| value = pmecc_readl(host->pmecc, rem_port[sector].rem[i / 2]); |
| if (i & 1) |
| value >>= 16; |
| value &= 0xffff; |
| host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value; |
| } |
| } |
| |
| static void pmecc_substitute(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| int16_t __iomem *alpha_to = host->pmecc_alpha_to; |
| int16_t __iomem *index_of = host->pmecc_index_of; |
| int16_t *partial_syn = host->pmecc_partial_syn; |
| const int cap = host->pmecc_corr_cap; |
| int16_t *si; |
| int i, j; |
| |
| /* si[] is a table that holds the current syndrome value, |
| * an element of that table belongs to the field |
| */ |
| si = host->pmecc_si; |
| |
| memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1)); |
| |
| /* Computation 2t syndromes based on S(x) */ |
| /* Odd syndromes */ |
| for (i = 1; i < 2 * cap; i += 2) { |
| for (j = 0; j < host->pmecc_degree; j++) { |
| if (partial_syn[i] & (0x1 << j)) |
| si[i] = readw(alpha_to + i * j) ^ si[i]; |
| } |
| } |
| /* Even syndrome = (Odd syndrome) ** 2 */ |
| for (i = 2, j = 1; j <= cap; i = ++j << 1) { |
| if (si[j] == 0) { |
| si[i] = 0; |
| } else { |
| int16_t tmp; |
| |
| tmp = readw(index_of + si[j]); |
| tmp = (tmp * 2) % host->pmecc_cw_len; |
| si[i] = readw(alpha_to + tmp); |
| } |
| } |
| } |
| |
| /* |
| * This function defines a Berlekamp iterative procedure for |
| * finding the value of the error location polynomial. |
| * The input is si[], initialize by pmecc_substitute(). |
| * The output is smu[][]. |
| * |
| * This function is written according to chip datasheet Chapter: |
| * Find the Error Location Polynomial Sigma(x) of Section: |
| * Programmable Multibit ECC Control (PMECC). |
| */ |
| static void pmecc_get_sigma(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| int16_t *lmu = host->pmecc_lmu; |
| int16_t *si = host->pmecc_si; |
| int *mu = host->pmecc_mu; |
| int *dmu = host->pmecc_dmu; /* Discrepancy */ |
| int *delta = host->pmecc_delta; /* Delta order */ |
| int cw_len = host->pmecc_cw_len; |
| const int16_t cap = host->pmecc_corr_cap; |
| const int num = 2 * cap + 1; |
| int16_t __iomem *index_of = host->pmecc_index_of; |
| int16_t __iomem *alpha_to = host->pmecc_alpha_to; |
| int i, j, k; |
| uint32_t dmu_0_count, tmp; |
| int16_t *smu = host->pmecc_smu; |
| |
| /* index of largest delta */ |
| int ro; |
| int largest; |
| int diff; |
| |
| /* Init the Sigma(x) */ |
| memset(smu, 0, sizeof(int16_t) * num * (cap + 2)); |
| |
| dmu_0_count = 0; |
| |
| /* First Row */ |
| |
| /* Mu */ |
| mu[0] = -1; |
| |
| smu[0] = 1; |
| |
| /* discrepancy set to 1 */ |
| dmu[0] = 1; |
| /* polynom order set to 0 */ |
| lmu[0] = 0; |
| /* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */ |
| delta[0] = -1; |
| |
| /* Second Row */ |
| |
| /* Mu */ |
| mu[1] = 0; |
| /* Sigma(x) set to 1 */ |
| smu[num] = 1; |
| |
| /* discrepancy set to S1 */ |
| dmu[1] = si[1]; |
| |
| /* polynom order set to 0 */ |
| lmu[1] = 0; |
| |
| /* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */ |
| delta[1] = 0; |
| |
| for (i = 1; i <= cap; i++) { |
| mu[i + 1] = i << 1; |
| /* Begin Computing Sigma (Mu+1) and L(mu) */ |
| /* check if discrepancy is set to 0 */ |
| if (dmu[i] == 0) { |
| dmu_0_count++; |
| |
| tmp = ((cap - (lmu[i] >> 1) - 1) / 2); |
| if ((cap - (lmu[i] >> 1) - 1) & 0x1) |
| tmp += 2; |
| else |
| tmp += 1; |
| |
| if (dmu_0_count == tmp) { |
| for (j = 0; j <= (lmu[i] >> 1) + 1; j++) |
| smu[(cap + 1) * num + j] = |
| smu[i * num + j]; |
| |
| lmu[cap + 1] = lmu[i]; |
| return; |
| } |
| |
| /* copy polynom */ |
| for (j = 0; j <= lmu[i] >> 1; j++) |
| smu[(i + 1) * num + j] = smu[i * num + j]; |
| |
| /* copy previous polynom order to the next */ |
| lmu[i + 1] = lmu[i]; |
| } else { |
| ro = 0; |
| largest = -1; |
| /* find largest delta with dmu != 0 */ |
| for (j = 0; j < i; j++) { |
| if ((dmu[j]) && (delta[j] > largest)) { |
| largest = delta[j]; |
| ro = j; |
| } |
| } |
| |
| /* compute difference */ |
| diff = (mu[i] - mu[ro]); |
| |
| /* Compute degree of the new smu polynomial */ |
| if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) |
| lmu[i + 1] = lmu[i]; |
| else |
| lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; |
| |
| /* Init smu[i+1] with 0 */ |
| for (k = 0; k < num; k++) |
| smu[(i + 1) * num + k] = 0; |
| |
| /* Compute smu[i+1] */ |
| for (k = 0; k <= lmu[ro] >> 1; k++) { |
| int16_t a, b, c; |
| |
| if (!(smu[ro * num + k] && dmu[i])) |
| continue; |
| a = readw(index_of + dmu[i]); |
| b = readw(index_of + dmu[ro]); |
| c = readw(index_of + smu[ro * num + k]); |
| tmp = a + (cw_len - b) + c; |
| a = readw(alpha_to + tmp % cw_len); |
| smu[(i + 1) * num + (k + diff)] = a; |
| } |
| |
| for (k = 0; k <= lmu[i] >> 1; k++) |
| smu[(i + 1) * num + k] ^= smu[i * num + k]; |
| } |
| |
| /* End Computing Sigma (Mu+1) and L(mu) */ |
| /* In either case compute delta */ |
| delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; |
| |
| /* Do not compute discrepancy for the last iteration */ |
| if (i >= cap) |
| continue; |
| |
| for (k = 0; k <= (lmu[i + 1] >> 1); k++) { |
| tmp = 2 * (i - 1); |
| if (k == 0) { |
| dmu[i + 1] = si[tmp + 3]; |
| } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { |
| int16_t a, b, c; |
| a = readw(index_of + |
| smu[(i + 1) * num + k]); |
| b = si[2 * (i - 1) + 3 - k]; |
| c = readw(index_of + b); |
| tmp = a + c; |
| tmp %= cw_len; |
| dmu[i + 1] = readw(alpha_to + tmp) ^ |
| dmu[i + 1]; |
| } |
| } |
| } |
| } |
| |
| static int pmecc_err_location(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| const int cap = host->pmecc_corr_cap; |
| const int num = 2 * cap + 1; |
| int sector_size = host->pmecc_sector_size; |
| int err_nbr = 0; /* number of error */ |
| int roots_nbr; /* number of roots */ |
| int i; |
| uint32_t val; |
| int16_t *smu = host->pmecc_smu; |
| int timeout = PMECC_MAX_TIMEOUT_US; |
| |
| pmecc_writel(host->pmerrloc, eldis, PMERRLOC_DISABLE); |
| |
| for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) { |
| pmecc_writel(host->pmerrloc, sigma[i], |
| smu[(cap + 1) * num + i]); |
| err_nbr++; |
| } |
| |
| val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1); |
| if (sector_size == 1024) |
| val |= PMERRLOC_ELCFG_SECTOR_1024; |
| |
| pmecc_writel(host->pmerrloc, elcfg, val); |
| pmecc_writel(host->pmerrloc, elen, |
| sector_size * 8 + host->pmecc_degree * cap); |
| |
| while (--timeout) { |
| if (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_CALC_DONE) |
| break; |
| schedule(); |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| dev_err(mtd->dev, |
| "Timeout to calculate PMECC error location\n"); |
| return -1; |
| } |
| |
| roots_nbr = (pmecc_readl(host->pmerrloc, elisr) & PMERRLOC_ERR_NUM_MASK) |
| >> 8; |
| /* Number of roots == degree of smu hence <= cap */ |
| if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1) |
| return err_nbr - 1; |
| |
| /* Number of roots does not match the degree of smu |
| * unable to correct error */ |
| return -1; |
| } |
| |
| static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc, |
| int sector_num, int extra_bytes, int err_nbr) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| int i = 0; |
| int byte_pos, bit_pos, sector_size, pos; |
| uint32_t tmp; |
| uint8_t err_byte; |
| |
| sector_size = host->pmecc_sector_size; |
| |
| while (err_nbr) { |
| tmp = pmecc_readl(host->pmerrloc, el[i]) - 1; |
| byte_pos = tmp / 8; |
| bit_pos = tmp % 8; |
| |
| if (byte_pos >= (sector_size + extra_bytes)) |
| BUG(); /* should never happen */ |
| |
| if (byte_pos < sector_size) { |
| err_byte = *(buf + byte_pos); |
| *(buf + byte_pos) ^= (1 << bit_pos); |
| |
| pos = sector_num * host->pmecc_sector_size + byte_pos; |
| dev_dbg(mtd->dev, |
| "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", |
| pos, bit_pos, err_byte, *(buf + byte_pos)); |
| } else { |
| /* Bit flip in OOB area */ |
| tmp = sector_num * host->pmecc_bytes_per_sector |
| + (byte_pos - sector_size); |
| err_byte = ecc[tmp]; |
| ecc[tmp] ^= (1 << bit_pos); |
| |
| pos = tmp + nand_chip->ecc.layout->eccpos[0]; |
| dev_dbg(mtd->dev, |
| "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n", |
| pos, bit_pos, err_byte, ecc[tmp]); |
| } |
| |
| i++; |
| err_nbr--; |
| } |
| |
| return; |
| } |
| |
| static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf, |
| u8 *ecc) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| int i, err_nbr; |
| u8 *buf_pos, *ecc_pos; |
| |
| for (i = 0; i < host->pmecc_sector_number; i++) { |
| err_nbr = 0; |
| if (pmecc_stat & 0x1) { |
| buf_pos = buf + i * host->pmecc_sector_size; |
| |
| pmecc_gen_syndrome(mtd, i); |
| pmecc_substitute(mtd); |
| pmecc_get_sigma(mtd); |
| |
| err_nbr = pmecc_err_location(mtd); |
| if (err_nbr >= 0) { |
| pmecc_correct_data(mtd, buf_pos, ecc, i, |
| host->pmecc_bytes_per_sector, |
| err_nbr); |
| } else if (host->pmecc_version < PMECC_VERSION_SAMA5D4) { |
| ecc_pos = ecc + i * host->pmecc_bytes_per_sector; |
| |
| err_nbr = nand_check_erased_ecc_chunk( |
| buf_pos, host->pmecc_sector_size, |
| ecc_pos, host->pmecc_bytes_per_sector, |
| NULL, 0, host->pmecc_corr_cap); |
| } |
| |
| if (err_nbr < 0) { |
| dev_err(mtd->dev, "PMECC: Too many errors\n"); |
| mtd->ecc_stats.failed++; |
| return -EBADMSG; |
| } |
| |
| mtd->ecc_stats.corrected += err_nbr; |
| } |
| pmecc_stat >>= 1; |
| } |
| |
| return 0; |
| } |
| |
| static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, |
| struct nand_chip *chip, uint8_t *buf, int oob_required, int page) |
| { |
| struct atmel_nand_host *host = nand_get_controller_data(chip); |
| int eccsize = chip->ecc.size; |
| uint8_t *oob = chip->oob_poi; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint32_t stat; |
| int timeout = PMECC_MAX_TIMEOUT_US; |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); |
| pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg)) |
| & ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE); |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); |
| |
| chip->read_buf(mtd, buf, eccsize); |
| chip->read_buf(mtd, oob, mtd->oobsize); |
| |
| while (--timeout) { |
| if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) |
| break; |
| schedule(); |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| dev_err(mtd->dev, "Timeout to read PMECC page\n"); |
| return -1; |
| } |
| |
| stat = pmecc_readl(host->pmecc, isr); |
| if (stat != 0) |
| if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0) |
| return -EBADMSG; |
| |
| return 0; |
| } |
| |
| static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, |
| struct nand_chip *chip, const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct atmel_nand_host *host = nand_get_controller_data(chip); |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| int i, j; |
| int timeout = PMECC_MAX_TIMEOUT_US; |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); |
| |
| pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) | |
| PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE); |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA); |
| |
| chip->write_buf(mtd, (u8 *)buf, mtd->writesize); |
| |
| while (--timeout) { |
| if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY)) |
| break; |
| schedule(); |
| udelay(1); |
| } |
| |
| if (!timeout) { |
| dev_err(mtd->dev, |
| "Timeout to read PMECC status, fail to write PMECC in oob\n"); |
| goto out; |
| } |
| |
| for (i = 0; i < host->pmecc_sector_number; i++) { |
| for (j = 0; j < host->pmecc_bytes_per_sector; j++) { |
| int pos; |
| |
| pos = i * host->pmecc_bytes_per_sector + j; |
| chip->oob_poi[eccpos[pos]] = |
| pmecc_readb(host->pmecc, ecc_port[i].ecc[j]); |
| } |
| } |
| chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| out: |
| return 0; |
| } |
| |
| static void atmel_pmecc_core_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct atmel_nand_host *host = nand_get_controller_data(nand_chip); |
| uint32_t val = 0; |
| struct nand_ecclayout *ecc_layout; |
| |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE); |
| |
| switch (host->pmecc_corr_cap) { |
| case 2: |
| val = PMECC_CFG_BCH_ERR2; |
| break; |
| case 4: |
| val = PMECC_CFG_BCH_ERR4; |
| break; |
| case 8: |
| val = PMECC_CFG_BCH_ERR8; |
| break; |
| case 12: |
| val = PMECC_CFG_BCH_ERR12; |
| break; |
| case 24: |
| val = PMECC_CFG_BCH_ERR24; |
| break; |
| case 32: |
| val = PMECC_CFG_BCH_ERR32; |
| break; |
| } |
| |
| if (host->pmecc_sector_size == 512) |
| val |= PMECC_CFG_SECTOR512; |
| else if (host->pmecc_sector_size == 1024) |
| val |= PMECC_CFG_SECTOR1024; |
| |
| switch (host->pmecc_sector_number) { |
| case 1: |
| val |= PMECC_CFG_PAGE_1SECTOR; |
| break; |
| case 2: |
| val |= PMECC_CFG_PAGE_2SECTORS; |
| break; |
| case 4: |
| val |= PMECC_CFG_PAGE_4SECTORS; |
| break; |
| case 8: |
| val |= PMECC_CFG_PAGE_8SECTORS; |
| break; |
| } |
| |
| val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE |
| | PMECC_CFG_AUTO_DISABLE); |
| pmecc_writel(host->pmecc, cfg, val); |
| |
| ecc_layout = nand_chip->ecc.layout; |
| pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1); |
| pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]); |
| pmecc_writel(host->pmecc, eaddr, |
| ecc_layout->eccpos[ecc_layout->eccbytes - 1]); |
| /* See datasheet about PMECC Clock Control Register */ |
| pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ); |
| pmecc_writel(host->pmecc, idr, 0xff); |
| pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE); |
| } |
| |
| #ifdef CONFIG_SYS_NAND_ONFI_DETECTION |
| /* |
| * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If |
| * pmecc_corr_cap or pmecc_sector_size is 0, then set it as |
| * ONFI ECC parameters. |
| * @host: point to an atmel_nand_host structure. |
| * if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits. |
| * if host->pmecc_sector_size is 0 then set it as the ONFI sector_size. |
| * @chip: point to an nand_chip structure. |
| * @cap: store the ONFI ECC correct bits capbility |
| * @sector_size: in how many bytes that ONFI require to correct @ecc_bits |
| * |
| * Return 0 if success. otherwise return the error code. |
| */ |
| static int pmecc_choose_ecc(struct atmel_nand_host *host, |
| struct nand_chip *chip, |
| int *cap, int *sector_size) |
| { |
| /* Get ECC requirement from ONFI parameters */ |
| *cap = *sector_size = 0; |
| if (chip->onfi_version) { |
| *cap = chip->ecc_strength_ds; |
| *sector_size = chip->ecc_step_ds; |
| pr_debug("ONFI params, minimum required ECC: %d bits in %d bytes\n", |
| *cap, *sector_size); |
| } |
| |
| if (*cap == 0 && *sector_size == 0) { |
| /* Non-ONFI compliant */ |
| dev_info(chip->mtd.dev, |
| "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes\n"); |
| *cap = 2; |
| *sector_size = 512; |
| } |
| |
| /* If head file doesn't specify then use the one in ONFI parameters */ |
| if (host->pmecc_corr_cap == 0) { |
| /* use the most fitable ecc bits (the near bigger one ) */ |
| if (*cap <= 2) |
| host->pmecc_corr_cap = 2; |
| else if (*cap <= 4) |
| host->pmecc_corr_cap = 4; |
| else if (*cap <= 8) |
| host->pmecc_corr_cap = 8; |
| else if (*cap <= 12) |
| host->pmecc_corr_cap = 12; |
| else if (*cap <= 24) |
| host->pmecc_corr_cap = 24; |
| else |
| #ifdef CONFIG_SAMA5D2 |
| host->pmecc_corr_cap = 32; |
| #else |
| host->pmecc_corr_cap = 24; |
| #endif |
| } |
| if (host->pmecc_sector_size == 0) { |
| /* use the most fitable sector size (the near smaller one ) */ |
| if (*sector_size >= 1024) |
| host->pmecc_sector_size = 1024; |
| else if (*sector_size >= 512) |
| host->pmecc_sector_size = 512; |
| else |
| return -EINVAL; |
| } |
| return 0; |
| } |
| #endif |
| |
| #if defined(NO_GALOIS_TABLE_IN_ROM) |
| static uint16_t *pmecc_galois_table; |
| static inline int deg(unsigned int poly) |
| { |
| /* polynomial degree is the most-significant bit index */ |
| return fls(poly) - 1; |
| } |
| |
| static int build_gf_tables(int mm, unsigned int poly, |
| int16_t *index_of, int16_t *alpha_to) |
| { |
| unsigned int i, x = 1; |
| const unsigned int k = 1 << deg(poly); |
| unsigned int nn = (1 << mm) - 1; |
| |
| /* primitive polynomial must be of degree m */ |
| if (k != (1u << mm)) |
| return -EINVAL; |
| |
| for (i = 0; i < nn; i++) { |
| alpha_to[i] = x; |
| index_of[x] = i; |
| if (i && (x == 1)) |
| /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ |
| return -EINVAL; |
| x <<= 1; |
| if (x & k) |
| x ^= poly; |
| } |
| |
| alpha_to[nn] = 1; |
| index_of[0] = 0; |
| |
| return 0; |
| } |
| |
| static uint16_t *create_lookup_table(int sector_size) |
| { |
| int degree = (sector_size == 512) ? |
| PMECC_GF_DIMENSION_13 : |
| PMECC_GF_DIMENSION_14; |
| unsigned int poly = (sector_size == 512) ? |
| PMECC_GF_13_PRIMITIVE_POLY : |
| PMECC_GF_14_PRIMITIVE_POLY; |
| int table_size = (sector_size == 512) ? |
| PMECC_INDEX_TABLE_SIZE_512 : |
| PMECC_INDEX_TABLE_SIZE_1024; |
| |
| int16_t *addr = kzalloc(2 * table_size * sizeof(uint16_t), GFP_KERNEL); |
| if (addr && build_gf_tables(degree, poly, addr, addr + table_size)) |
| return NULL; |
| |
| return (uint16_t *)addr; |
| } |
| #endif |
| |
| static int atmel_pmecc_nand_init_params(struct nand_chip *nand, |
| struct mtd_info *mtd) |
| { |
| struct atmel_nand_host *host; |
| int cap, sector_size; |
| |
| host = &pmecc_host; |
| nand_set_controller_data(nand, host); |
| |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.calculate = NULL; |
| nand->ecc.correct = NULL; |
| nand->ecc.hwctl = NULL; |
| |
| #ifdef CONFIG_SYS_NAND_ONFI_DETECTION |
| host->pmecc_corr_cap = host->pmecc_sector_size = 0; |
| |
| #ifdef CONFIG_PMECC_CAP |
| host->pmecc_corr_cap = CONFIG_PMECC_CAP; |
| #endif |
| #ifdef CONFIG_PMECC_SECTOR_SIZE |
| host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; |
| #endif |
| /* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or |
| * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size |
| * from ONFI. |
| */ |
| if (pmecc_choose_ecc(host, nand, &cap, §or_size)) { |
| dev_err(mtd->dev, |
| "Required ECC %d bits in %d bytes not supported!\n", |
| cap, sector_size); |
| return -EINVAL; |
| } |
| |
| if (cap > host->pmecc_corr_cap) |
| dev_info(mtd->dev, |
| "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n", |
| host->pmecc_corr_cap, cap); |
| if (sector_size < host->pmecc_sector_size) |
| dev_info(mtd->dev, |
| "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n", |
| host->pmecc_sector_size, sector_size); |
| #else /* CONFIG_SYS_NAND_ONFI_DETECTION */ |
| host->pmecc_corr_cap = CONFIG_PMECC_CAP; |
| host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE; |
| #endif |
| |
| cap = host->pmecc_corr_cap; |
| sector_size = host->pmecc_sector_size; |
| |
| /* TODO: need check whether cap & sector_size is validate */ |
| #if defined(NO_GALOIS_TABLE_IN_ROM) |
| /* |
| * As pmecc_rom_base is the begin of the gallois field table, So the |
| * index offset just set as 0. |
| */ |
| host->pmecc_index_table_offset = 0; |
| #else |
| if (host->pmecc_sector_size == 512) |
| host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512; |
| else |
| host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024; |
| #endif |
| |
| pr_debug("Initialize PMECC params, cap: %d, sector: %d\n", |
| cap, sector_size); |
| |
| host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC; |
| host->pmerrloc = (struct pmecc_errloc_regs __iomem *) |
| ATMEL_BASE_PMERRLOC; |
| #if defined(NO_GALOIS_TABLE_IN_ROM) |
| pmecc_galois_table = create_lookup_table(host->pmecc_sector_size); |
| if (!pmecc_galois_table) { |
| dev_err(mtd->dev, "out of memory\n"); |
| return -ENOMEM; |
| } |
| |
| host->pmecc_rom_base = (void __iomem *)pmecc_galois_table; |
| #else |
| host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM; |
| #endif |
| |
| /* ECC is calculated for the whole page (1 step) */ |
| nand->ecc.size = mtd->writesize; |
| |
| /* set ECC page size and oob layout */ |
| switch (mtd->writesize) { |
| case 2048: |
| case 4096: |
| case 8192: |
| host->pmecc_degree = (sector_size == 512) ? |
| PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14; |
| host->pmecc_cw_len = (1 << host->pmecc_degree) - 1; |
| host->pmecc_sector_number = mtd->writesize / sector_size; |
| host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes( |
| cap, sector_size); |
| host->pmecc_alpha_to = pmecc_get_alpha_to(host); |
| host->pmecc_index_of = host->pmecc_rom_base + |
| host->pmecc_index_table_offset; |
| |
| nand->ecc.steps = 1; |
| nand->ecc.bytes = host->pmecc_bytes_per_sector * |
| host->pmecc_sector_number; |
| |
| if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) { |
| dev_err(mtd->dev, |
| "too large eccpos entries. max support ecc.bytes is %d\n", |
| MTD_MAX_ECCPOS_ENTRIES_LARGE); |
| return -EINVAL; |
| } |
| |
| if (nand->ecc.bytes > mtd->oobsize - PMECC_OOB_RESERVED_BYTES) { |
| dev_err(mtd->dev, "No room for ECC bytes\n"); |
| return -EINVAL; |
| } |
| pmecc_config_ecc_layout(&atmel_pmecc_oobinfo, |
| mtd->oobsize, |
| nand->ecc.bytes); |
| nand->ecc.layout = &atmel_pmecc_oobinfo; |
| break; |
| case 512: |
| case 1024: |
| /* TODO */ |
| dev_err(mtd->dev, |
| "Unsupported page size for PMECC, use Software ECC\n"); |
| default: |
| /* page size not handled by HW ECC */ |
| /* switching back to soft ECC */ |
| nand->ecc.mode = NAND_ECC_SOFT; |
| nand->ecc.read_page = NULL; |
| nand->ecc.postpad = 0; |
| nand->ecc.prepad = 0; |
| nand->ecc.bytes = 0; |
| return 0; |
| } |
| |
| /* Allocate data for PMECC computation */ |
| if (pmecc_data_alloc(host)) { |
| dev_err(mtd->dev, |
| "Cannot allocate memory for PMECC computation!\n"); |
| return -ENOMEM; |
| } |
| |
| nand->options |= NAND_NO_SUBPAGE_WRITE; |
| nand->ecc.read_page = atmel_nand_pmecc_read_page; |
| nand->ecc.write_page = atmel_nand_pmecc_write_page; |
| nand->ecc.strength = cap; |
| |
| /* Check the PMECC ip version */ |
| host->pmecc_version = pmecc_readl(host->pmerrloc, version); |
| dev_dbg(mtd->dev, "PMECC IP version is: %x\n", host->pmecc_version); |
| |
| atmel_pmecc_core_init(mtd); |
| |
| return 0; |
| } |
| |
| #else |
| |
| /* oob layout for large page size |
| * bad block info is on bytes 0 and 1 |
| * the bytes have to be consecutives to avoid |
| * several NAND_CMD_RNDOUT during read |
| */ |
| static struct nand_ecclayout atmel_oobinfo_large = { |
| .eccbytes = 4, |
| .eccpos = {60, 61, 62, 63}, |
| .oobfree = { |
| {2, 58} |
| }, |
| }; |
| |
| /* oob layout for small page size |
| * bad block info is on bytes 4 and 5 |
| * the bytes have to be consecutives to avoid |
| * several NAND_CMD_RNDOUT during read |
| */ |
| static struct nand_ecclayout atmel_oobinfo_small = { |
| .eccbytes = 4, |
| .eccpos = {0, 1, 2, 3}, |
| .oobfree = { |
| {6, 10} |
| }, |
| }; |
| |
| /* |
| * Calculate HW ECC |
| * |
| * function called after a write |
| * |
| * mtd: MTD block structure |
| * dat: raw data (unused) |
| * ecc_code: buffer for ECC |
| */ |
| static int atmel_nand_calculate(struct mtd_info *mtd, |
| const u_char *dat, unsigned char *ecc_code) |
| { |
| unsigned int ecc_value; |
| |
| /* get the first 2 ECC bytes */ |
| ecc_value = ecc_readl(ATMEL_BASE_ECC, PR); |
| |
| ecc_code[0] = ecc_value & 0xFF; |
| ecc_code[1] = (ecc_value >> 8) & 0xFF; |
| |
| /* get the last 2 ECC bytes */ |
| ecc_value = ecc_readl(ATMEL_BASE_ECC, NPR) & ATMEL_ECC_NPARITY; |
| |
| ecc_code[2] = ecc_value & 0xFF; |
| ecc_code[3] = (ecc_value >> 8) & 0xFF; |
| |
| return 0; |
| } |
| |
| /* |
| * HW ECC read page function |
| * |
| * mtd: mtd info structure |
| * chip: nand chip info structure |
| * buf: buffer to store read data |
| * oob_required: caller expects OOB data read to chip->oob_poi |
| */ |
| static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| uint8_t *ecc_pos; |
| int stat; |
| |
| /* read the page */ |
| chip->read_buf(mtd, p, eccsize); |
| |
| /* move to ECC position if needed */ |
| if (eccpos[0] != 0) { |
| /* This only works on large pages |
| * because the ECC controller waits for |
| * NAND_CMD_RNDOUTSTART after the |
| * NAND_CMD_RNDOUT. |
| * anyway, for small pages, the eccpos[0] == 0 |
| */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, |
| mtd->writesize + eccpos[0], -1); |
| } |
| |
| /* the ECC controller needs to read the ECC just after the data */ |
| ecc_pos = oob + eccpos[0]; |
| chip->read_buf(mtd, ecc_pos, eccbytes); |
| |
| /* check if there's an error */ |
| stat = chip->ecc.correct(mtd, p, oob, NULL); |
| |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| |
| /* get back to oob start (end of page) */ |
| chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); |
| |
| /* read the oob */ |
| chip->read_buf(mtd, oob, mtd->oobsize); |
| |
| return 0; |
| } |
| |
| /* |
| * HW ECC Correction |
| * |
| * function called after a read |
| * |
| * mtd: MTD block structure |
| * dat: raw data read from the chip |
| * read_ecc: ECC from the chip (unused) |
| * isnull: unused |
| * |
| * Detect and correct a 1 bit error for a page |
| */ |
| static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *isnull) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| unsigned int ecc_status; |
| unsigned int ecc_word, ecc_bit; |
| |
| /* get the status from the Status Register */ |
| ecc_status = ecc_readl(ATMEL_BASE_ECC, SR); |
| |
| /* if there's no error */ |
| if (likely(!(ecc_status & ATMEL_ECC_RECERR))) |
| return 0; |
| |
| /* get error bit offset (4 bits) */ |
| ecc_bit = ecc_readl(ATMEL_BASE_ECC, PR) & ATMEL_ECC_BITADDR; |
| /* get word address (12 bits) */ |
| ecc_word = ecc_readl(ATMEL_BASE_ECC, PR) & ATMEL_ECC_WORDADDR; |
| ecc_word >>= 4; |
| |
| /* if there are multiple errors */ |
| if (ecc_status & ATMEL_ECC_MULERR) { |
| /* check if it is a freshly erased block |
| * (filled with 0xff) */ |
| if ((ecc_bit == ATMEL_ECC_BITADDR) |
| && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) { |
| /* the block has just been erased, return OK */ |
| return 0; |
| } |
| /* it doesn't seems to be a freshly |
| * erased block. |
| * We can't correct so many errors */ |
| dev_warn(mtd->dev, |
| "multiple errors detected. Unable to correct.\n"); |
| return -EBADMSG; |
| } |
| |
| /* if there's a single bit error : we can correct it */ |
| if (ecc_status & ATMEL_ECC_ECCERR) { |
| /* there's nothing much to do here. |
| * the bit error is on the ECC itself. |
| */ |
| dev_warn(mtd->dev, |
| "one bit error on ECC code. Nothing to correct\n"); |
| return 0; |
| } |
| |
| dev_warn(mtd->dev, |
| "one bit error on data. (word offset in the page : 0x%x bit offset : 0x%x)\n", |
| ecc_word, ecc_bit); |
| /* correct the error */ |
| if (nand_chip->options & NAND_BUSWIDTH_16) { |
| /* 16 bits words */ |
| ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit); |
| } else { |
| /* 8 bits words */ |
| dat[ecc_word] ^= (1 << ecc_bit); |
| } |
| dev_warn(mtd->dev, "error corrected\n"); |
| return 1; |
| } |
| |
| /* |
| * Enable HW ECC : unused on most chips |
| */ |
| static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) |
| { |
| } |
| |
| int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd) |
| { |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.calculate = atmel_nand_calculate; |
| nand->ecc.correct = atmel_nand_correct; |
| nand->ecc.hwctl = atmel_nand_hwctl; |
| nand->ecc.read_page = atmel_nand_read_page; |
| nand->ecc.bytes = 4; |
| nand->ecc.strength = 4; |
| |
| if (nand->ecc.mode == NAND_ECC_HW) { |
| /* ECC is calculated for the whole page (1 step) */ |
| nand->ecc.size = mtd->writesize; |
| |
| /* set ECC page size and oob layout */ |
| switch (mtd->writesize) { |
| case 512: |
| nand->ecc.layout = &atmel_oobinfo_small; |
| ecc_writel(ATMEL_BASE_ECC, MR, |
| ATMEL_ECC_PAGESIZE_528); |
| break; |
| case 1024: |
| nand->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(ATMEL_BASE_ECC, MR, |
| ATMEL_ECC_PAGESIZE_1056); |
| break; |
| case 2048: |
| nand->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(ATMEL_BASE_ECC, MR, |
| ATMEL_ECC_PAGESIZE_2112); |
| break; |
| case 4096: |
| nand->ecc.layout = &atmel_oobinfo_large; |
| ecc_writel(ATMEL_BASE_ECC, MR, |
| ATMEL_ECC_PAGESIZE_4224); |
| break; |
| default: |
| /* page size not handled by HW ECC */ |
| /* switching back to soft ECC */ |
| nand->ecc.mode = NAND_ECC_SOFT; |
| nand->ecc.calculate = NULL; |
| nand->ecc.correct = NULL; |
| nand->ecc.hwctl = NULL; |
| nand->ecc.read_page = NULL; |
| nand->ecc.postpad = 0; |
| nand->ecc.prepad = 0; |
| nand->ecc.bytes = 0; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #endif /* CONFIG_ATMEL_NAND_HW_PMECC */ |
| |
| #endif /* CONFIG_ATMEL_NAND_HWECC */ |
| |
| static void at91_nand_hwcontrol(struct mtd_info *mtd, |
| int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| ulong IO_ADDR_W = (ulong) this->IO_ADDR_W; |
| IO_ADDR_W &= ~(CFG_SYS_NAND_MASK_ALE |
| | CFG_SYS_NAND_MASK_CLE); |
| |
| if (ctrl & NAND_CLE) |
| IO_ADDR_W |= CFG_SYS_NAND_MASK_CLE; |
| if (ctrl & NAND_ALE) |
| IO_ADDR_W |= CFG_SYS_NAND_MASK_ALE; |
| |
| #ifdef CFG_SYS_NAND_ENABLE_PIN |
| at91_set_gpio_value(CFG_SYS_NAND_ENABLE_PIN, |
| !(ctrl & NAND_NCE)); |
| #endif |
| this->IO_ADDR_W = (void *) IO_ADDR_W; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| #ifdef CFG_SYS_NAND_READY_PIN |
| static int at91_nand_ready(struct mtd_info *mtd) |
| { |
| return at91_get_gpio_value(CFG_SYS_NAND_READY_PIN); |
| } |
| #endif |
| |
| #ifdef CONFIG_SPL_BUILD |
| /* The following code is for SPL */ |
| static struct mtd_info *mtd; |
| static struct nand_chip nand_chip; |
| |
| static int nand_command(int block, int page, uint32_t offs, u8 cmd) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| int page_addr = page + block * SYS_NAND_BLOCK_PAGES; |
| void (*hwctrl)(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) = this->cmd_ctrl; |
| |
| while (!this->dev_ready(mtd)) |
| ; |
| |
| if (cmd == NAND_CMD_READOOB) { |
| offs += CONFIG_SYS_NAND_PAGE_SIZE; |
| cmd = NAND_CMD_READ0; |
| } |
| |
| hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| |
| if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd)) |
| offs >>= 1; |
| |
| hwctrl(mtd, offs & 0xff, NAND_CTRL_ALE | NAND_CTRL_CHANGE); |
| hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); |
| hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); |
| hwctrl(mtd, ((page_addr >> 8) & 0xff), NAND_CTRL_ALE); |
| #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE |
| hwctrl(mtd, (page_addr >> 16) & 0x0f, NAND_CTRL_ALE); |
| #endif |
| hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| |
| hwctrl(mtd, NAND_CMD_READSTART, NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); |
| |
| while (!this->dev_ready(mtd)) |
| ; |
| |
| return 0; |
| } |
| |
| static int nand_is_bad_block(int block) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| |
| nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB); |
| |
| if (this->options & NAND_BUSWIDTH_16) { |
| if (readw(this->IO_ADDR_R) != 0xffff) |
| return 1; |
| } else { |
| if (readb(this->IO_ADDR_R) != 0xff) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SPL_NAND_ECC |
| static int nand_ecc_pos[] = CFG_SYS_NAND_ECCPOS; |
| #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \ |
| CFG_SYS_NAND_ECCSIZE) |
| #define ECCTOTAL (ECCSTEPS * CFG_SYS_NAND_ECCBYTES) |
| |
| static int nand_read_page(int block, int page, void *dst) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| u_char ecc_calc[ECCTOTAL]; |
| u_char ecc_code[ECCTOTAL]; |
| u_char oob_data[CONFIG_SYS_NAND_OOBSIZE]; |
| int eccsize = CFG_SYS_NAND_ECCSIZE; |
| int eccbytes = CFG_SYS_NAND_ECCBYTES; |
| int eccsteps = ECCSTEPS; |
| int i; |
| uint8_t *p = dst; |
| nand_command(block, page, 0, NAND_CMD_READ0); |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| if (this->ecc.mode != NAND_ECC_SOFT) |
| this->ecc.hwctl(mtd, NAND_ECC_READ); |
| this->read_buf(mtd, p, eccsize); |
| this->ecc.calculate(mtd, p, &ecc_calc[i]); |
| } |
| this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE); |
| |
| for (i = 0; i < ECCTOTAL; i++) |
| ecc_code[i] = oob_data[nand_ecc_pos[i]]; |
| |
| eccsteps = ECCSTEPS; |
| p = dst; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) |
| this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| |
| return 0; |
| } |
| |
| int spl_nand_erase_one(int block, int page) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| void (*hwctrl)(struct mtd_info *mtd, int cmd, |
| unsigned int ctrl) = this->cmd_ctrl; |
| int page_addr; |
| |
| if (nand_chip.select_chip) |
| nand_chip.select_chip(mtd, 0); |
| |
| page_addr = page + block * SYS_NAND_BLOCK_PAGES; |
| hwctrl(mtd, NAND_CMD_ERASE1, NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| /* Row address */ |
| hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE | NAND_CTRL_CHANGE); |
| hwctrl(mtd, ((page_addr >> 8) & 0xff), |
| NAND_CTRL_ALE | NAND_CTRL_CHANGE); |
| #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE |
| /* One more address cycle for devices > 128MiB */ |
| hwctrl(mtd, (page_addr >> 16) & 0x0f, |
| NAND_CTRL_ALE | NAND_CTRL_CHANGE); |
| #endif |
| hwctrl(mtd, NAND_CMD_ERASE2, NAND_CTRL_CLE | NAND_CTRL_CHANGE); |
| |
| while (!this->dev_ready(mtd)) |
| ; |
| |
| nand_deselect(); |
| |
| return 0; |
| } |
| #else |
| static int nand_read_page(int block, int page, void *dst) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| |
| nand_command(block, page, 0, NAND_CMD_READ0); |
| atmel_nand_pmecc_read_page(mtd, this, dst, 0, page); |
| |
| return 0; |
| } |
| #endif /* CONFIG_SPL_NAND_ECC */ |
| |
| int at91_nand_wait_ready(struct mtd_info *mtd) |
| { |
| struct nand_chip *this = mtd_to_nand(mtd); |
| |
| udelay(this->chip_delay); |
| |
| return 1; |
| } |
| |
| int board_nand_init(struct nand_chip *nand) |
| { |
| int ret = 0; |
| |
| nand->ecc.mode = NAND_ECC_SOFT; |
| #ifdef CONFIG_SYS_NAND_DBW_16 |
| nand->options = NAND_BUSWIDTH_16; |
| nand->read_buf = nand_read_buf16; |
| #else |
| nand->read_buf = nand_read_buf; |
| #endif |
| nand->cmd_ctrl = at91_nand_hwcontrol; |
| #ifdef CFG_SYS_NAND_READY_PIN |
| nand->dev_ready = at91_nand_ready; |
| #else |
| nand->dev_ready = at91_nand_wait_ready; |
| #endif |
| nand->chip_delay = 20; |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| nand->bbt_options |= NAND_BBT_USE_FLASH; |
| #endif |
| |
| #ifdef CONFIG_ATMEL_NAND_HWECC |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC |
| ret = atmel_pmecc_nand_init_params(nand, mtd); |
| #endif |
| #endif |
| |
| return ret; |
| } |
| |
| void nand_init(void) |
| { |
| mtd = nand_to_mtd(&nand_chip); |
| mtd->writesize = CONFIG_SYS_NAND_PAGE_SIZE; |
| mtd->oobsize = CONFIG_SYS_NAND_OOBSIZE; |
| nand_chip.IO_ADDR_R = (void __iomem *)CFG_SYS_NAND_BASE; |
| nand_chip.IO_ADDR_W = (void __iomem *)CFG_SYS_NAND_BASE; |
| board_nand_init(&nand_chip); |
| |
| #ifdef CONFIG_SPL_NAND_ECC |
| if (nand_chip.ecc.mode == NAND_ECC_SOFT) { |
| nand_chip.ecc.calculate = nand_calculate_ecc; |
| nand_chip.ecc.correct = nand_correct_data; |
| } |
| #endif |
| |
| if (nand_chip.select_chip) |
| nand_chip.select_chip(mtd, 0); |
| } |
| |
| unsigned int nand_page_size(void) |
| { |
| return nand_to_mtd(&nand_chip)->writesize; |
| } |
| |
| void nand_deselect(void) |
| { |
| if (nand_chip.select_chip) |
| nand_chip.select_chip(mtd, -1); |
| } |
| |
| #include "nand_spl_loaders.c" |
| |
| #else |
| |
| #ifndef CFG_SYS_NAND_BASE_LIST |
| #define CFG_SYS_NAND_BASE_LIST { CFG_SYS_NAND_BASE } |
| #endif |
| static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE]; |
| static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CFG_SYS_NAND_BASE_LIST; |
| |
| int atmel_nand_chip_init(int devnum, ulong base_addr) |
| { |
| int ret; |
| struct nand_chip *nand = &nand_chip[devnum]; |
| struct mtd_info *mtd = nand_to_mtd(nand); |
| |
| nand->IO_ADDR_R = nand->IO_ADDR_W = (void __iomem *)base_addr; |
| |
| #ifdef CONFIG_NAND_ECC_BCH |
| nand->ecc.mode = NAND_ECC_SOFT_BCH; |
| #else |
| nand->ecc.mode = NAND_ECC_SOFT; |
| #endif |
| #ifdef CONFIG_SYS_NAND_DBW_16 |
| nand->options = NAND_BUSWIDTH_16; |
| #endif |
| nand->cmd_ctrl = at91_nand_hwcontrol; |
| #ifdef CFG_SYS_NAND_READY_PIN |
| nand->dev_ready = at91_nand_ready; |
| #endif |
| nand->chip_delay = 75; |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| nand->bbt_options |= NAND_BBT_USE_FLASH; |
| #endif |
| |
| ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL); |
| if (ret) |
| return ret; |
| |
| #ifdef CONFIG_ATMEL_NAND_HWECC |
| #ifdef CONFIG_ATMEL_NAND_HW_PMECC |
| ret = atmel_pmecc_nand_init_params(nand, mtd); |
| #else |
| ret = atmel_hwecc_nand_init_param(nand, mtd); |
| #endif |
| if (ret) |
| return ret; |
| #endif |
| |
| ret = nand_scan_tail(mtd); |
| if (!ret) |
| nand_register(devnum, mtd); |
| |
| return ret; |
| } |
| |
| void board_nand_init(void) |
| { |
| int i; |
| for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) |
| if (atmel_nand_chip_init(i, base_addr[i])) |
| log_err("atmel_nand: Fail to initialize #%d chip", i); |
| } |
| #endif /* CONFIG_SPL_BUILD */ |