blob: 7c28fa39e14e824ab6ed584d7b3b933304968036 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2022 NXP
*
* Peng Fan <peng.fan@nxp.com>
*/
#include <config.h>
#include <cpu_func.h>
#include <init.h>
#include <log.h>
#include <asm/arch/imx-regs.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/ccm_regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/trdc.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/syscounter.h>
#include <asm/armv8/mmu.h>
#include <dm/device.h>
#include <dm/device_compat.h>
#include <dm/uclass.h>
#include <env.h>
#include <env_internal.h>
#include <errno.h>
#include <fdt_support.h>
#include <imx_thermal.h>
#include <linux/bitops.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <thermal.h>
#include <asm/setup.h>
#include <asm/bootm.h>
#include <asm/arch-imx/cpu.h>
#include <asm/mach-imx/ele_api.h>
#include <fuse.h>
#include <asm/arch/ddr.h>
DECLARE_GLOBAL_DATA_PTR;
struct rom_api *g_rom_api = (struct rom_api *)0x1980;
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return devno;
}
int mmc_get_env_dev(void)
{
int ret;
u32 boot;
u16 boot_type;
u8 boot_instance;
ret = rom_api_query_boot_infor(QUERY_BT_DEV, &boot);
if (ret != ROM_API_OKAY) {
puts("ROMAPI: failure at query_boot_info\n");
return CONFIG_SYS_MMC_ENV_DEV;
}
boot_type = boot >> 16;
boot_instance = (boot >> 8) & 0xff;
debug("boot_type %d, instance %d\n", boot_type, boot_instance);
/* If not boot from sd/mmc, use default value */
if (boot_type != BOOT_TYPE_SD && boot_type != BOOT_TYPE_MMC)
return env_get_ulong("mmcdev", 10, CONFIG_SYS_MMC_ENV_DEV);
return board_mmc_get_env_dev(boot_instance);
}
#endif
/*
* SPEED_GRADE[5:4] SPEED_GRADE[3:0] MHz
* xx 0000 2300
* xx 0001 2200
* xx 0010 2100
* xx 0011 2000
* xx 0100 1900
* xx 0101 1800
* xx 0110 1700
* xx 0111 1600
* xx 1000 1500
* xx 1001 1400
* xx 1010 1300
* xx 1011 1200
* xx 1100 1100
* xx 1101 1000
* xx 1110 900
* xx 1111 800
*/
u32 get_cpu_speed_grade_hz(void)
{
int ret;
u32 bank, word, speed, max_speed;
u32 val;
bank = HW_CFG1 / NUM_WORDS_PER_BANK;
word = HW_CFG1 % NUM_WORDS_PER_BANK;
ret = fuse_read(bank, word, &val);
if (ret)
val = 0; /* If read fuse failed, return as blank fuse */
val = FIELD_GET(SPEED_GRADING_MASK, val) & 0xF;
speed = MHZ(2300) - val * MHZ(100);
if (is_imx93())
max_speed = MHZ(1700);
/* In case the fuse of speed grade not programmed */
if (speed > max_speed)
speed = max_speed;
return speed;
}
/*
* `00` - Consumer 0C to 95C
* `01` - Ext. Consumer -20C to 105C
* `10` - Industrial -40C to 105C
* `11` - Automotive -40C to 125C
*/
u32 get_cpu_temp_grade(int *minc, int *maxc)
{
int ret;
u32 bank, word, val;
bank = HW_CFG1 / NUM_WORDS_PER_BANK;
word = HW_CFG1 % NUM_WORDS_PER_BANK;
ret = fuse_read(bank, word, &val);
if (ret)
val = 0; /* If read fuse failed, return as blank fuse */
val = FIELD_GET(MARKETING_GRADING_MASK, val);
if (minc && maxc) {
if (val == TEMP_AUTOMOTIVE) {
*minc = -40;
*maxc = 125;
} else if (val == TEMP_INDUSTRIAL) {
*minc = -40;
*maxc = 105;
} else if (val == TEMP_EXTCOMMERCIAL) {
if (is_imx93()) {
/* imx93 only has extended industrial*/
*minc = -40;
*maxc = 125;
} else {
*minc = -20;
*maxc = 105;
}
} else {
*minc = 0;
*maxc = 95;
}
}
return val;
}
static void set_cpu_info(struct ele_get_info_data *info)
{
gd->arch.soc_rev = info->soc;
gd->arch.lifecycle = info->lc;
memcpy((void *)&gd->arch.uid, &info->uid, 4 * sizeof(u32));
}
static u32 get_cpu_variant_type(u32 type)
{
u32 bank, word, val, val2;
int ret;
bank = HW_CFG1 / NUM_WORDS_PER_BANK;
word = HW_CFG1 % NUM_WORDS_PER_BANK;
ret = fuse_read(bank, word, &val);
if (ret)
val = 0; /* If read fuse failed, return as blank fuse */
bank = HW_CFG2 / NUM_WORDS_PER_BANK;
word = HW_CFG2 % NUM_WORDS_PER_BANK;
ret = fuse_read(bank, word, &val2);
if (ret)
val2 = 0; /* If read fuse failed, return as blank fuse */
bool npu_disable = !!(val & BIT(13));
bool core1_disable = !!(val & BIT(15));
u32 pack_9x9_fused = BIT(4) | BIT(17) | BIT(19) | BIT(24);
/* Low performance 93 part */
if (((val >> 6) & 0x3F) == 0xE && npu_disable)
return core1_disable ? MXC_CPU_IMX9301 : MXC_CPU_IMX9302;
if ((val2 & pack_9x9_fused) == pack_9x9_fused)
type = MXC_CPU_IMX9322;
if (npu_disable && core1_disable)
return type + 3;
else if (npu_disable)
return type + 2;
else if (core1_disable)
return type + 1;
return type;
}
u32 get_cpu_rev(void)
{
u32 rev = (gd->arch.soc_rev >> 24) - 0xa0;
return (get_cpu_variant_type(MXC_CPU_IMX93) << 12) |
(CHIP_REV_1_0 + rev);
}
#define UNLOCK_WORD 0xD928C520 /* unlock word */
#define REFRESH_WORD 0xB480A602 /* refresh word */
static void disable_wdog(void __iomem *wdog_base)
{
u32 val_cs = readl(wdog_base + 0x00);
if (!(val_cs & 0x80))
return;
/* default is 32bits cmd */
writel(REFRESH_WORD, (wdog_base + 0x04)); /* Refresh the CNT */
if (!(val_cs & 0x800)) {
writel(UNLOCK_WORD, (wdog_base + 0x04));
while (!(readl(wdog_base + 0x00) & 0x800))
;
}
writel(0x0, (wdog_base + 0x0C)); /* Set WIN to 0 */
writel(0x400, (wdog_base + 0x08)); /* Set timeout to default 0x400 */
writel(0x2120, (wdog_base + 0x00)); /* Disable it and set update */
while (!(readl(wdog_base + 0x00) & 0x400))
;
}
void init_wdog(void)
{
disable_wdog((void __iomem *)WDG3_BASE_ADDR);
disable_wdog((void __iomem *)WDG4_BASE_ADDR);
disable_wdog((void __iomem *)WDG5_BASE_ADDR);
}
static struct mm_region imx93_mem_map[] = {
{
/* ROM */
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0x100000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* TCM */
.virt = 0x201c0000UL,
.phys = 0x201c0000UL,
.size = 0x80000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* OCRAM */
.virt = 0x20480000UL,
.phys = 0x20480000UL,
.size = 0xA0000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* AIPS */
.virt = 0x40000000UL,
.phys = 0x40000000UL,
.size = 0x40000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* Flexible Serial Peripheral Interface */
.virt = 0x28000000UL,
.phys = 0x28000000UL,
.size = 0x08000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN
}, {
/* DRAM1 */
.virt = 0x80000000UL,
.phys = 0x80000000UL,
.size = PHYS_SDRAM_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_OUTER_SHARE
}, {
/* empty entrie to split table entry 5 if needed when TEEs are used */
0,
}, {
/* List terminator */
0,
}
};
struct mm_region *mem_map = imx93_mem_map;
static unsigned int imx9_find_dram_entry_in_mem_map(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(imx93_mem_map); i++)
if (imx93_mem_map[i].phys == CFG_SYS_SDRAM_BASE)
return i;
hang(); /* Entry not found, this must never happen. */
}
void enable_caches(void)
{
/* If OPTEE runs, remove OPTEE memory from MMU table to avoid speculative prefetch
* If OPTEE does not run, still update the MMU table according to dram banks structure
* to set correct dram size from board_phys_sdram_size
*/
int i = 0;
/*
* please make sure that entry initial value matches
* imx93_mem_map for DRAM1
*/
int entry = imx9_find_dram_entry_in_mem_map();
u64 attrs = imx93_mem_map[entry].attrs;
while (i < CONFIG_NR_DRAM_BANKS &&
entry < ARRAY_SIZE(imx93_mem_map)) {
if (gd->bd->bi_dram[i].start == 0)
break;
imx93_mem_map[entry].phys = gd->bd->bi_dram[i].start;
imx93_mem_map[entry].virt = gd->bd->bi_dram[i].start;
imx93_mem_map[entry].size = gd->bd->bi_dram[i].size;
imx93_mem_map[entry].attrs = attrs;
debug("Added memory mapping (%d): %llx %llx\n", entry,
imx93_mem_map[entry].phys, imx93_mem_map[entry].size);
i++; entry++;
}
icache_enable();
dcache_enable();
}
__weak int board_phys_sdram_size(phys_size_t *size)
{
phys_size_t start, end;
phys_size_t val;
if (!size)
return -EINVAL;
val = readl(REG_DDR_CS0_BNDS);
start = (val >> 16) << 24;
end = (val & 0xFFFF);
end = end ? end + 1 : 0;
end = end << 24;
*size = end - start;
val = readl(REG_DDR_CS1_BNDS);
start = (val >> 16) << 24;
end = (val & 0xFFFF);
end = end ? end + 1 : 0;
end = end << 24;
*size += end - start;
return 0;
}
int dram_init(void)
{
phys_size_t sdram_size;
int ret;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* rom_pointer[1] contains the size of TEE occupies */
if (!IS_ENABLED(CONFIG_XPL_BUILD) && rom_pointer[1])
gd->ram_size = sdram_size - rom_pointer[1];
else
gd->ram_size = sdram_size;
return 0;
}
int dram_init_banksize(void)
{
int bank = 0;
int ret;
phys_size_t sdram_size;
phys_size_t sdram_b1_size, sdram_b2_size;
ret = board_phys_sdram_size(&sdram_size);
if (ret)
return ret;
/* Bank 1 can't cross over 4GB space */
if (sdram_size > 0x80000000) {
sdram_b1_size = 0x80000000;
sdram_b2_size = sdram_size - 0x80000000;
} else {
sdram_b1_size = sdram_size;
sdram_b2_size = 0;
}
gd->bd->bi_dram[bank].start = PHYS_SDRAM;
if (!IS_ENABLED(CONFIG_XPL_BUILD) && rom_pointer[1]) {
phys_addr_t optee_start = (phys_addr_t)rom_pointer[0];
phys_size_t optee_size = (size_t)rom_pointer[1];
gd->bd->bi_dram[bank].size = optee_start - gd->bd->bi_dram[bank].start;
if ((optee_start + optee_size) < (PHYS_SDRAM + sdram_b1_size)) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough\n");
return -1;
}
gd->bd->bi_dram[bank].start = optee_start + optee_size;
gd->bd->bi_dram[bank].size = PHYS_SDRAM +
sdram_b1_size - gd->bd->bi_dram[bank].start;
}
} else {
gd->bd->bi_dram[bank].size = sdram_b1_size;
}
if (sdram_b2_size) {
if (++bank >= CONFIG_NR_DRAM_BANKS) {
puts("CONFIG_NR_DRAM_BANKS is not enough for SDRAM_2\n");
return -1;
}
gd->bd->bi_dram[bank].start = 0x100000000UL;
gd->bd->bi_dram[bank].size = sdram_b2_size;
}
return 0;
}
phys_size_t get_effective_memsize(void)
{
int ret;
phys_size_t sdram_size;
phys_size_t sdram_b1_size;
ret = board_phys_sdram_size(&sdram_size);
if (!ret) {
/* Bank 1 can't cross over 4GB space */
if (sdram_size > 0x80000000)
sdram_b1_size = 0x80000000;
else
sdram_b1_size = sdram_size;
if (!IS_ENABLED(CONFIG_XPL_BUILD) && rom_pointer[1]) {
/* We will relocate u-boot to top of dram1. TEE position has two cases:
* 1. At the top of dram1, Then return the size removed optee size.
* 2. In the middle of dram1, return the size of dram1.
*/
if ((rom_pointer[0] + rom_pointer[1]) == (PHYS_SDRAM + sdram_b1_size))
return ((phys_addr_t)rom_pointer[0] - PHYS_SDRAM);
}
return sdram_b1_size;
} else {
return PHYS_SDRAM_SIZE;
}
}
void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
u32 val[2] = {};
int ret;
if (dev_id == 0) {
ret = fuse_read(39, 3, &val[0]);
if (ret)
goto err;
ret = fuse_read(39, 4, &val[1]);
if (ret)
goto err;
mac[0] = val[1] >> 8;
mac[1] = val[1];
mac[2] = val[0] >> 24;
mac[3] = val[0] >> 16;
mac[4] = val[0] >> 8;
mac[5] = val[0];
} else {
ret = fuse_read(39, 5, &val[0]);
if (ret)
goto err;
ret = fuse_read(39, 4, &val[1]);
if (ret)
goto err;
if (is_imx93() && is_soc_rev(CHIP_REV_1_0)) {
mac[0] = val[1] >> 24;
mac[1] = val[1] >> 16;
mac[2] = val[0] >> 24;
mac[3] = val[0] >> 16;
mac[4] = val[0] >> 8;
mac[5] = val[0];
} else {
mac[0] = val[0] >> 24;
mac[1] = val[0] >> 16;
mac[2] = val[0] >> 8;
mac[3] = val[0];
mac[4] = val[1] >> 24;
mac[5] = val[1] >> 16;
}
}
debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
__func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
return;
err:
memset(mac, 0, 6);
printf("%s: fuse read err: %d\n", __func__, ret);
}
int print_cpuinfo(void)
{
u32 cpurev;
cpurev = get_cpu_rev();
printf("CPU: i.MX93 rev%d.%d\n", (cpurev & 0x000F0) >> 4, (cpurev & 0x0000F) >> 0);
return 0;
}
void build_info(void)
{
u32 fw_version, sha1, res, status;
int ret;
printf("\nBuildInfo:\n");
ret = ele_get_fw_status(&status, &res);
if (ret) {
printf(" - ELE firmware status failed %d, 0x%x\n", ret, res);
} else if ((status & 0xff) == 1) {
ret = ele_get_fw_version(&fw_version, &sha1, &res);
if (ret) {
printf(" - ELE firmware version failed %d, 0x%x\n", ret, res);
} else {
printf(" - ELE firmware version %u.%u.%u-%x",
(fw_version & (0x00ff0000)) >> 16,
(fw_version & (0x0000fff0)) >> 4,
(fw_version & (0x0000000f)), sha1);
((fw_version & (0x80000000)) >> 31) == 1 ? puts("-dirty\n") : puts("\n");
}
} else {
printf(" - ELE firmware not included\n");
}
puts("\n");
}
int arch_misc_init(void)
{
build_info();
return 0;
}
struct low_drive_freq_entry {
const char *node_path;
u32 clk;
u32 new_rate;
};
static int low_drive_fdt_fix_clock(void *fdt, int node_off, u32 clk_index, u32 new_rate)
{
#define MAX_ASSIGNED_CLKS 8
int cnt, j;
u32 assignedclks[MAX_ASSIGNED_CLKS]; /* max 8 clocks*/
cnt = fdtdec_get_int_array_count(fdt, node_off, "assigned-clock-rates",
assignedclks, MAX_ASSIGNED_CLKS);
if (cnt > 0) {
if (cnt <= clk_index)
return -ENOENT;
if (assignedclks[clk_index] <= new_rate)
return 0;
assignedclks[clk_index] = new_rate;
for (j = 0; j < cnt; j++)
assignedclks[j] = cpu_to_fdt32(assignedclks[j]);
return fdt_setprop(fdt, node_off, "assigned-clock-rates", &assignedclks,
cnt * sizeof(u32));
}
return -ENOENT;
}
static int low_drive_freq_update(void *blob)
{
int nodeoff, ret;
int i;
/* Update kernel dtb clocks for low drive mode */
struct low_drive_freq_entry table[] = {
{"/soc@0/bus@42800000/mmc@42850000", 0, 266666667},
{"/soc@0/bus@42800000/mmc@42860000", 0, 266666667},
{"/soc@0/bus@42800000/mmc@428b0000", 0, 266666667},
};
for (i = 0; i < ARRAY_SIZE(table); i++) {
nodeoff = fdt_path_offset(blob, table[i].node_path);
if (nodeoff >= 0) {
ret = low_drive_fdt_fix_clock(blob, nodeoff, table[i].clk,
table[i].new_rate);
if (!ret)
printf("%s freq updated\n", table[i].node_path);
}
}
return 0;
}
#ifdef CONFIG_OF_BOARD_FIXUP
#ifndef CONFIG_XPL_BUILD
int board_fix_fdt(void *fdt)
{
/* Update dtb clocks for low drive mode */
if (is_voltage_mode(VOLT_LOW_DRIVE)) {
int nodeoff;
int i;
struct low_drive_freq_entry table[] = {
{"/soc@0/bus@42800000/mmc@42850000", 0, 266666667},
{"/soc@0/bus@42800000/mmc@42860000", 0, 266666667},
{"/soc@0/bus@42800000/mmc@428b0000", 0, 266666667},
};
for (i = 0; i < ARRAY_SIZE(table); i++) {
nodeoff = fdt_path_offset(fdt, table[i].node_path);
if (nodeoff >= 0)
low_drive_fdt_fix_clock(fdt, nodeoff, table[i].clk,
table[i].new_rate);
}
}
return 0;
}
#endif
#endif
int ft_system_setup(void *blob, struct bd_info *bd)
{
static const char * const nodes_path[] = {
"/cpus/cpu@0",
"/cpus/cpu@100",
};
if (fixup_thermal_trips(blob, "cpu-thermal"))
printf("Failed to update cpu-thermal trip(s)");
if (is_imx9351() || is_imx9331() || is_imx9321() || is_imx9311() || is_imx9301())
disable_cpu_nodes(blob, nodes_path, 1, 2);
if (is_voltage_mode(VOLT_LOW_DRIVE))
low_drive_freq_update(blob);
return 0;
}
#if defined(CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG)
void get_board_serial(struct tag_serialnr *serialnr)
{
printf("UID: %08x%08x%08x%08x\n", __be32_to_cpu(gd->arch.uid[0]),
__be32_to_cpu(gd->arch.uid[1]), __be32_to_cpu(gd->arch.uid[2]),
__be32_to_cpu(gd->arch.uid[3]));
serialnr->low = __be32_to_cpu(gd->arch.uid[1]);
serialnr->high = __be32_to_cpu(gd->arch.uid[0]);
}
#endif
static void save_reset_cause(void)
{
struct src_general_regs *src = (struct src_general_regs *)SRC_GLOBAL_RBASE;
u32 srsr = readl(&src->srsr);
/* clear srsr in sec mode */
writel(srsr, &src->srsr);
/* Save value to GPR1 to pass to nonsecure */
writel(srsr, &src->gpr[0]);
}
int arch_cpu_init(void)
{
if (IS_ENABLED(CONFIG_XPL_BUILD)) {
/* Disable wdog */
init_wdog();
clock_init_early();
trdc_early_init();
/* Save SRC SRSR to GPR1 and clear it */
save_reset_cause();
}
return 0;
}
int imx9_probe_mu(void)
{
struct udevice *devp;
int node, ret;
u32 res;
struct ele_get_info_data info;
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx93-mu-s4");
ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
if (ret)
return ret;
if (gd->flags & GD_FLG_RELOC)
return 0;
ret = ele_get_info(&info, &res);
if (ret)
return ret;
set_cpu_info(&info);
return 0;
}
EVENT_SPY_SIMPLE(EVT_DM_POST_INIT_F, imx9_probe_mu);
EVENT_SPY_SIMPLE(EVT_DM_POST_INIT_R, imx9_probe_mu);
int timer_init(void)
{
#ifdef CONFIG_XPL_BUILD
struct sctr_regs *sctr = (struct sctr_regs *)SYSCNT_CTRL_BASE_ADDR;
unsigned long freq = readl(&sctr->cntfid0);
/* Update with accurate clock frequency */
asm volatile("msr cntfrq_el0, %0" : : "r" (freq) : "memory");
clrsetbits_le32(&sctr->cntcr, SC_CNTCR_FREQ0 | SC_CNTCR_FREQ1,
SC_CNTCR_FREQ0 | SC_CNTCR_ENABLE | SC_CNTCR_HDBG);
#endif
gd->arch.tbl = 0;
gd->arch.tbu = 0;
return 0;
}
enum env_location env_get_location(enum env_operation op, int prio)
{
enum boot_device dev = get_boot_device();
if (prio)
return ENVL_UNKNOWN;
switch (dev) {
case QSPI_BOOT:
if (CONFIG_IS_ENABLED(ENV_IS_IN_SPI_FLASH))
return ENVL_SPI_FLASH;
return ENVL_NOWHERE;
case SD1_BOOT:
case SD2_BOOT:
case SD3_BOOT:
case MMC1_BOOT:
case MMC2_BOOT:
case MMC3_BOOT:
if (CONFIG_IS_ENABLED(ENV_IS_IN_MMC))
return ENVL_MMC;
else if (CONFIG_IS_ENABLED(ENV_IS_IN_EXT4))
return ENVL_EXT4;
else if (CONFIG_IS_ENABLED(ENV_IS_IN_FAT))
return ENVL_FAT;
return ENVL_NOWHERE;
default:
return ENVL_NOWHERE;
}
}
static int mix_power_init(enum mix_power_domain pd)
{
enum src_mix_slice_id mix_id;
enum src_mem_slice_id mem_id;
struct src_mix_slice_regs *mix_regs;
struct src_mem_slice_regs *mem_regs;
struct src_general_regs *global_regs;
u32 scr, val;
switch (pd) {
case MIX_PD_MEDIAMIX:
mix_id = SRC_MIX_MEDIA;
mem_id = SRC_MEM_MEDIA;
scr = BIT(5);
/* Enable ELE handshake */
struct blk_ctrl_s_aonmix_regs *s_regs =
(struct blk_ctrl_s_aonmix_regs *)BLK_CTRL_S_ANOMIX_BASE_ADDR;
setbits_le32(&s_regs->lp_handshake[0], BIT(13));
break;
case MIX_PD_MLMIX:
mix_id = SRC_MIX_ML;
mem_id = SRC_MEM_ML;
scr = BIT(4);
break;
case MIX_PD_DDRMIX:
mix_id = SRC_MIX_DDRMIX;
mem_id = SRC_MEM_DDRMIX;
scr = BIT(6);
break;
default:
return -EINVAL;
}
mix_regs = (struct src_mix_slice_regs *)(ulong)(SRC_IPS_BASE_ADDR + 0x400 * (mix_id + 1));
mem_regs =
(struct src_mem_slice_regs *)(ulong)(SRC_IPS_BASE_ADDR + 0x3800 + 0x400 * mem_id);
global_regs = (struct src_general_regs *)(ulong)SRC_GLOBAL_RBASE;
/* Allow NS to set it */
setbits_le32(&mix_regs->authen_ctrl, BIT(9));
clrsetbits_le32(&mix_regs->psw_ack_ctrl[0], BIT(28), BIT(29));
/* mix reset will be held until boot core write this bit to 1 */
setbits_le32(&global_regs->scr, scr);
/* Enable mem in Low power auto sequence */
setbits_le32(&mem_regs->mem_ctrl, BIT(2));
/* Set the power down state */
val = readl(&mix_regs->func_stat);
if (val & SRC_MIX_SLICE_FUNC_STAT_PSW_STAT) {
/* The mix is default power off, power down it to make PDN_SFT bit
* aligned with FUNC STAT
*/
setbits_le32(&mix_regs->slice_sw_ctrl, BIT(31));
val = readl(&mix_regs->func_stat);
/* Since PSW_STAT is 1, can't be used for power off status (SW_CTRL BIT31 set)) */
/* Check the MEM STAT change to ensure SSAR is completed */
while (!(val & SRC_MIX_SLICE_FUNC_STAT_MEM_STAT))
val = readl(&mix_regs->func_stat);
/* wait few ipg clock cycles to ensure FSM done and power off status is correct */
/* About 5 cycles at 24Mhz, 1us is enough */
udelay(1);
} else {
/* The mix is default power on, Do mix power cycle */
setbits_le32(&mix_regs->slice_sw_ctrl, BIT(31));
val = readl(&mix_regs->func_stat);
while (!(val & SRC_MIX_SLICE_FUNC_STAT_PSW_STAT))
val = readl(&mix_regs->func_stat);
}
/* power on */
clrbits_le32(&mix_regs->slice_sw_ctrl, BIT(31));
val = readl(&mix_regs->func_stat);
while (val & SRC_MIX_SLICE_FUNC_STAT_SSAR_STAT)
val = readl(&mix_regs->func_stat);
return 0;
}
void disable_isolation(void)
{
struct src_general_regs *global_regs = (struct src_general_regs *)(ulong)SRC_GLOBAL_RBASE;
/* clear isolation for usbphy, dsi, csi*/
writel(0x0, &global_regs->sp_iso_ctrl);
}
void soc_power_init(void)
{
mix_power_init(MIX_PD_MEDIAMIX);
mix_power_init(MIX_PD_MLMIX);
disable_isolation();
}
bool m33_is_rom_kicked(void)
{
struct blk_ctrl_s_aonmix_regs *s_regs =
(struct blk_ctrl_s_aonmix_regs *)BLK_CTRL_S_ANOMIX_BASE_ADDR;
if (!(readl(&s_regs->m33_cfg) & BIT(2)))
return true;
return false;
}
int m33_prepare(void)
{
struct src_mix_slice_regs *mix_regs =
(struct src_mix_slice_regs *)(ulong)(SRC_IPS_BASE_ADDR + 0x400 * (SRC_MIX_CM33 + 1));
struct src_general_regs *global_regs =
(struct src_general_regs *)(ulong)SRC_GLOBAL_RBASE;
struct blk_ctrl_s_aonmix_regs *s_regs =
(struct blk_ctrl_s_aonmix_regs *)BLK_CTRL_S_ANOMIX_BASE_ADDR;
u32 val, i;
if (m33_is_rom_kicked())
return -EPERM;
/* Release reset of M33 */
setbits_le32(&global_regs->scr, BIT(0));
/* Check the reset released in M33 MIX func stat */
val = readl(&mix_regs->func_stat);
while (!(val & SRC_MIX_SLICE_FUNC_STAT_RST_STAT))
val = readl(&mix_regs->func_stat);
/* Release ELE TROUT */
ele_release_m33_trout();
/* Mask WDOG1 IRQ from A55, we use it for M33 reset */
setbits_le32(&s_regs->ca55_irq_mask[1], BIT(6));
/* Turn on WDOG1 clock */
ccm_lpcg_on(CCGR_WDG1, 1);
/* Set ELE LP handshake for M33 reset */
setbits_le32(&s_regs->lp_handshake[0], BIT(6));
/* OSCCA enabled, reconfigure TRDC for TCM access, otherwise ECC init will raise error */
val = readl(BLK_CTRL_NS_ANOMIX_BASE_ADDR + 0x28);
if (val & BIT(0)) {
trdc_mbc_set_control(0x44270000, 1, 0, 0x6600);
for (i = 0; i < 32; i++)
trdc_mbc_blk_config(0x44270000, 1, 3, 0, i, true, 0);
for (i = 0; i < 32; i++)
trdc_mbc_blk_config(0x44270000, 1, 3, 1, i, true, 0);
}
/* Clear M33 TCM for ECC */
memset((void *)(ulong)0x201e0000, 0, 0x40000);
return 0;
}
int psci_sysreset_get_status(struct udevice *dev, char *buf, int size)
{
static const char *reset_cause[] = {
"POR ",
"JTAG ",
"IPP USER ",
"WDOG1 ",
"WDOG2 ",
"WDOG3 ",
"WDOG4 ",
"WDOG5 ",
"TEMPSENSE ",
"CSU ",
"JTAG_SW ",
"M33_REQ ",
"M33_LOCKUP ",
"UNK ",
"UNK ",
"UNK "
};
struct src_general_regs *src = (struct src_general_regs *)SRC_GLOBAL_RBASE;
u32 srsr;
u32 i;
int res;
srsr = readl(&src->gpr[0]);
for (i = ARRAY_SIZE(reset_cause); i > 0; i--) {
if (srsr & (BIT(i - 1)))
break;
}
res = snprintf(buf, size, "Reset Status: %s\n", i ? reset_cause[i - 1] : "unknown reset");
if (res < 0) {
dev_err(dev, "Could not write reset status message (err = %d)\n", res);
return -EIO;
}
return 0;
}
enum imx9_soc_voltage_mode soc_target_voltage_mode(void)
{
u32 speed = get_cpu_speed_grade_hz();
enum imx9_soc_voltage_mode voltage = VOLT_OVER_DRIVE;
if (is_imx93()) {
if (speed == 1700000000)
voltage = VOLT_OVER_DRIVE;
else if (speed == 1400000000)
voltage = VOLT_NOMINAL_DRIVE;
else if (speed == 900000000 || speed == 800000000)
voltage = VOLT_LOW_DRIVE;
else
printf("Unexpected A55 freq %u, default to OD\n", speed);
}
return voltage;
}