| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * This file provides ECC correction for more than 1 bit per block of data, |
| * using binary BCH codes. It relies on the generic BCH library lib/bch.c. |
| * |
| * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com> |
| * |
| */ |
| |
| #include <common.h> |
| #include <log.h> |
| #include <dm/devres.h> |
| /*#include <asm/io.h>*/ |
| #include <linux/types.h> |
| |
| #include <linux/bitops.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/nand_bch.h> |
| #include <linux/bch.h> |
| #include <malloc.h> |
| |
| /** |
| * struct nand_bch_control - private NAND BCH control structure |
| * @bch: BCH control structure |
| * @ecclayout: private ecc layout for this BCH configuration |
| * @errloc: error location array |
| * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid |
| */ |
| struct nand_bch_control { |
| struct bch_control *bch; |
| struct nand_ecclayout ecclayout; |
| unsigned int *errloc; |
| unsigned char *eccmask; |
| }; |
| |
| /** |
| * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block |
| * @mtd: MTD block structure |
| * @buf: input buffer with raw data |
| * @code: output buffer with ECC |
| */ |
| int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, |
| unsigned char *code) |
| { |
| const struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_bch_control *nbc = chip->ecc.priv; |
| unsigned int i; |
| |
| memset(code, 0, chip->ecc.bytes); |
| encode_bch(nbc->bch, buf, chip->ecc.size, code); |
| |
| /* apply mask so that an erased page is a valid codeword */ |
| for (i = 0; i < chip->ecc.bytes; i++) |
| code[i] ^= nbc->eccmask[i]; |
| |
| return 0; |
| } |
| |
| /** |
| * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) |
| * @mtd: MTD block structure |
| * @buf: raw data read from the chip |
| * @read_ecc: ECC from the chip |
| * @calc_ecc: the ECC calculated from raw data |
| * |
| * Detect and correct bit errors for a data byte block |
| */ |
| int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, |
| unsigned char *read_ecc, unsigned char *calc_ecc) |
| { |
| const struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_bch_control *nbc = chip->ecc.priv; |
| unsigned int *errloc = nbc->errloc; |
| int i, count; |
| |
| count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc, |
| NULL, errloc); |
| if (count > 0) { |
| for (i = 0; i < count; i++) { |
| if (errloc[i] < (chip->ecc.size*8)) |
| /* error is located in data, correct it */ |
| buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); |
| /* else error in ecc, no action needed */ |
| |
| pr_debug("%s: corrected bitflip %u\n", |
| __func__, errloc[i]); |
| } |
| } else if (count < 0) { |
| printk(KERN_ERR "ecc unrecoverable error\n"); |
| count = -EBADMSG; |
| } |
| return count; |
| } |
| |
| /** |
| * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction |
| * @mtd: MTD block structure |
| * |
| * Returns: |
| * a pointer to a new NAND BCH control structure, or NULL upon failure |
| * |
| * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes |
| * are used to compute BCH parameters m (Galois field order) and t (error |
| * correction capability). @eccbytes should be equal to the number of bytes |
| * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. |
| * |
| * Example: to configure 4 bit correction per 512 bytes, you should pass |
| * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) |
| * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits) |
| */ |
| struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand = mtd_to_nand(mtd); |
| unsigned int m, t, eccsteps, i; |
| struct nand_ecclayout *layout = nand->ecc.layout; |
| struct nand_bch_control *nbc = NULL; |
| unsigned char *erased_page; |
| unsigned int eccsize = nand->ecc.size; |
| unsigned int eccbytes = nand->ecc.bytes; |
| unsigned int eccstrength = nand->ecc.strength; |
| |
| if (!eccbytes && eccstrength) { |
| eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8); |
| nand->ecc.bytes = eccbytes; |
| } |
| |
| if (!eccsize || !eccbytes) { |
| printk(KERN_WARNING "ecc parameters not supplied\n"); |
| goto fail; |
| } |
| |
| m = fls(1+8*eccsize); |
| t = (eccbytes*8)/m; |
| |
| nbc = kzalloc(sizeof(*nbc), GFP_KERNEL); |
| if (!nbc) |
| goto fail; |
| |
| nbc->bch = init_bch(m, t, 0); |
| if (!nbc->bch) |
| goto fail; |
| |
| /* verify that eccbytes has the expected value */ |
| if (nbc->bch->ecc_bytes != eccbytes) { |
| printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", |
| eccbytes, nbc->bch->ecc_bytes); |
| goto fail; |
| } |
| |
| eccsteps = mtd->writesize/eccsize; |
| |
| /* if no ecc placement scheme was provided, build one */ |
| if (!layout) { |
| |
| /* handle large page devices only */ |
| if (mtd->oobsize < 64) { |
| printk(KERN_WARNING "must provide an oob scheme for " |
| "oobsize %d\n", mtd->oobsize); |
| goto fail; |
| } |
| |
| layout = &nbc->ecclayout; |
| layout->eccbytes = eccsteps*eccbytes; |
| |
| /* reserve 2 bytes for bad block marker */ |
| if (layout->eccbytes+2 > mtd->oobsize) { |
| printk(KERN_WARNING "no suitable oob scheme available " |
| "for oobsize %d eccbytes %u\n", mtd->oobsize, |
| eccbytes); |
| goto fail; |
| } |
| /* put ecc bytes at oob tail */ |
| for (i = 0; i < layout->eccbytes; i++) |
| layout->eccpos[i] = mtd->oobsize-layout->eccbytes+i; |
| |
| layout->oobfree[0].offset = 2; |
| layout->oobfree[0].length = mtd->oobsize-2-layout->eccbytes; |
| |
| nand->ecc.layout = layout; |
| } |
| |
| /* sanity checks */ |
| if (8*(eccsize+eccbytes) >= (1 << m)) { |
| printk(KERN_WARNING "eccsize %u is too large\n", eccsize); |
| goto fail; |
| } |
| if (layout->eccbytes != (eccsteps*eccbytes)) { |
| printk(KERN_WARNING "invalid ecc layout\n"); |
| goto fail; |
| } |
| |
| nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL); |
| nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL); |
| if (!nbc->eccmask || !nbc->errloc) |
| goto fail; |
| /* |
| * compute and store the inverted ecc of an erased ecc block |
| */ |
| erased_page = kmalloc(eccsize, GFP_KERNEL); |
| if (!erased_page) |
| goto fail; |
| |
| memset(erased_page, 0xff, eccsize); |
| memset(nbc->eccmask, 0, eccbytes); |
| encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask); |
| kfree(erased_page); |
| |
| for (i = 0; i < eccbytes; i++) |
| nbc->eccmask[i] ^= 0xff; |
| |
| if (!eccstrength) |
| nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize); |
| |
| return nbc; |
| fail: |
| nand_bch_free(nbc); |
| return NULL; |
| } |
| |
| /** |
| * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources |
| * @nbc: NAND BCH control structure |
| */ |
| void nand_bch_free(struct nand_bch_control *nbc) |
| { |
| if (nbc) { |
| free_bch(nbc->bch); |
| kfree(nbc->errloc); |
| kfree(nbc->eccmask); |
| kfree(nbc); |
| } |
| } |