blob: eabaf3e773f63d8e14d46694e1a57fd394437428 [file] [log] [blame]
/*
* NAND driver for TI DaVinci based boards.
*
* Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
*
* Based on Linux DaVinci NAND driver by TI. Original copyright follows:
*/
/*
*
* linux/drivers/mtd/nand/nand_davinci.c
*
* NAND Flash Driver
*
* Copyright (C) 2006 Texas Instruments.
*
* ----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
* ----------------------------------------------------------------------------
*
* Overview:
* This is a device driver for the NAND flash device found on the
* DaVinci board which utilizes the Samsung k9k2g08 part.
*
Modifications:
ver. 1.0: Feb 2005, Vinod/Sudhakar
-
*
*/
#include <common.h>
#include <asm/io.h>
#include <nand.h>
#include <asm/arch/nand_defs.h>
#include <asm/arch/emif_defs.h>
/* Definitions for 4-bit hardware ECC */
#define NAND_TIMEOUT 10240
#define NAND_ECC_BUSY 0xC
#define NAND_4BITECC_MASK 0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00
#define ECC_STATE_NO_ERR 0x0
#define ECC_STATE_TOO_MANY_ERRS 0x1
#define ECC_STATE_ERR_CORR_COMP_P 0x2
#define ECC_STATE_ERR_CORR_COMP_N 0x3
static emif_registers *const emif_regs = (void *) DAVINCI_ASYNC_EMIF_CNTRL_BASE;
static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;
IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);
if (ctrl & NAND_CTRL_CHANGE) {
if ( ctrl & NAND_CLE )
IO_ADDR_W |= MASK_CLE;
if ( ctrl & NAND_ALE )
IO_ADDR_W |= MASK_ALE;
this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, this->IO_ADDR_W);
}
#ifdef CONFIG_SYS_NAND_HW_ECC
static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
{
int dummy;
dummy = emif_regs->NANDF1ECC;
/* FIXME: only chipselect 0 is supported for now */
emif_regs->NANDFCR |= 1 << 8;
}
static u_int32_t nand_davinci_readecc(struct mtd_info *mtd, u_int32_t region)
{
u_int32_t ecc = 0;
if (region == 1)
ecc = emif_regs->NANDF1ECC;
else if (region == 2)
ecc = emif_regs->NANDF2ECC;
else if (region == 3)
ecc = emif_regs->NANDF3ECC;
else if (region == 4)
ecc = emif_regs->NANDF4ECC;
return(ecc);
}
static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
u_int32_t tmp;
const int region = 1;
tmp = nand_davinci_readecc(mtd, region);
/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
* and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);
/* Invert so that erased block ECC is correct */
tmp = ~tmp;
*ecc_code++ = tmp;
*ecc_code++ = tmp >> 8;
*ecc_code++ = tmp >> 16;
/* NOTE: the above code matches mainline Linux:
* .PQR.stu ==> ~PQRstu
*
* MontaVista/TI kernels encode those bytes differently, use
* complicated (and allegedly sometimes-wrong) correction code,
* and usually shipped with U-Boot that uses software ECC:
* .PQR.stu ==> PsQRtu
*
* If you need MV/TI compatible NAND I/O in U-Boot, it should
* be possible to (a) change the mangling above, (b) reverse
* that mangling in nand_davinci_correct_data() below.
*/
return 0;
}
static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *this = mtd->priv;
u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
(read_ecc[2] << 16);
u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
(calc_ecc[2] << 16);
u_int32_t diff = ecc_calc ^ ecc_nand;
if (diff) {
if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
/* Correctable error */
if ((diff >> (12 + 3)) < this->ecc.size) {
uint8_t find_bit = 1 << ((diff >> 12) & 7);
uint32_t find_byte = diff >> (12 + 3);
dat[find_byte] ^= find_bit;
MTDDEBUG(MTD_DEBUG_LEVEL0, "Correcting single "
"bit ECC error at offset: %d, bit: "
"%d\n", find_byte, find_bit);
return 1;
} else {
return -1;
}
} else if (!(diff & (diff - 1))) {
/* Single bit ECC error in the ECC itself,
nothing to fix */
MTDDEBUG(MTD_DEBUG_LEVEL0, "Single bit ECC error in "
"ECC.\n");
return 1;
} else {
/* Uncorrectable error */
MTDDEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
return -1;
}
}
return(0);
}
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
/*
* TI uses a different layout for 4K page deviecs. Since the
* eccpos filed can hold only a limited number of entries, adding
* support for 4K page will result in compilation warnings
* 4K Support will be added later
*/
#ifdef CONFIG_SYS_NAND_PAGE_2K
.eccbytes = 40,
.eccpos = {
24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63,
},
.oobfree = {
{.offset = 2, .length = 22, },
},
#endif
};
static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
u32 val;
switch (mode) {
case NAND_ECC_WRITE:
case NAND_ECC_READ:
/*
* Start a new ECC calculation for reading or writing 512 bytes
* of data.
*/
val = (emif_regs->NANDFCR & ~(3 << 4)) | (1 << 12);
emif_regs->NANDFCR = val;
break;
case NAND_ECC_READSYN:
val = emif_regs->NAND4BITECC1;
break;
default:
break;
}
}
static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
ecc[0] = emif_regs->NAND4BITECC1 & NAND_4BITECC_MASK;
ecc[1] = emif_regs->NAND4BITECC2 & NAND_4BITECC_MASK;
ecc[2] = emif_regs->NAND4BITECC3 & NAND_4BITECC_MASK;
ecc[3] = emif_regs->NAND4BITECC4 & NAND_4BITECC_MASK;
return 0;
}
static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
const uint8_t *dat,
uint8_t *ecc_code)
{
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 };
unsigned int const1 = 0, const2 = 0;
unsigned char count1 = 0;
nand_davinci_4bit_readecc(mtd, hw_4ecc);
/*Convert 10 bit ecc value to 8 bit */
for (count1 = 0; count1 < 2; count1++) {
const2 = count1 * 5;
const1 = count1 * 2;
/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
ecc_code[const2] = hw_4ecc[const1] & 0xFF;
/*
* Take 2 bits as LSB bits from val1 (count1=0) or val5
* (count1=1) and 6 bits from val2 (count1=0) or
* val5 (count1=1)
*/
ecc_code[const2 + 1] =
((hw_4ecc[const1] >> 8) & 0x3) | ((hw_4ecc[const1] >> 14) &
0xFC);
/*
* Take 4 bits from val2 (count1=0) or val5 (count1=1) and
* 4 bits from val3 (count1=0) or val6 (count1=1)
*/
ecc_code[const2 + 2] =
((hw_4ecc[const1] >> 22) & 0xF) |
((hw_4ecc[const1 + 1] << 4) & 0xF0);
/*
* Take 6 bits from val3(count1=0) or val6 (count1=1) and
* 2 bits from val4 (count1=0) or val7 (count1=1)
*/
ecc_code[const2 + 3] =
((hw_4ecc[const1 + 1] >> 4) & 0x3F) |
((hw_4ecc[const1 + 1] >> 10) & 0xC0);
/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
ecc_code[const2 + 4] = (hw_4ecc[const1 + 1] >> 18) & 0xFF;
}
return 0;
}
static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
unsigned short ecc_10bit[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
int i;
unsigned int hw_4ecc[4] = { 0, 0, 0, 0 }, iserror = 0;
unsigned short *pspare = NULL, *pspare1 = NULL;
unsigned int numerrors, erroraddress, errorvalue;
u32 val;
/*
* Check for an ECC where all bytes are 0xFF. If this is the case, we
* will assume we are looking at an erased page and we should ignore
* the ECC.
*/
for (i = 0; i < 10; i++) {
if (read_ecc[i] != 0xFF)
break;
}
if (i == 10)
return 0;
/* Convert 8 bit in to 10 bit */
pspare = (unsigned short *)&read_ecc[2];
pspare1 = (unsigned short *)&read_ecc[0];
/* Take 10 bits from 0th and 1st bytes */
ecc_10bit[0] = (*pspare1) & 0x3FF;
/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
ecc_10bit[1] = (((*pspare1) >> 10) & 0x3F)
| (((pspare[0]) << 6) & 0x3C0);
/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
ecc_10bit[2] = ((pspare[0]) >> 4) & 0x3FF;
/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
ecc_10bit[3] = (((pspare[0]) >> 14) & 0x3)
| ((((pspare[1])) << 2) & 0x3FC);
/* Take 8 bits from 5th byte and 2 bits from 6th byte */
ecc_10bit[4] = ((pspare[1]) >> 8)
| ((((pspare[2])) << 8) & 0x300);
/* Take 6 bits from 6th byte and 4 bits from 7th byte */
ecc_10bit[5] = (pspare[2] >> 2) & 0x3FF;
/* Take 4 bits from 7th byte and 6 bits from 8th byte */
ecc_10bit[6] = (((pspare[2]) >> 12) & 0xF)
| ((((pspare[3])) << 4) & 0x3F0);
/*Take 2 bits from 8th byte and 8 bits from 9th byte */
ecc_10bit[7] = ((pspare[3]) >> 6) & 0x3FF;
/*
* Write the parity values in the NAND Flash 4-bit ECC Load register.
* Write each parity value one at a time starting from 4bit_ecc_val8
* to 4bit_ecc_val1.
*/
for (i = 7; i >= 0; i--)
emif_regs->NAND4BITECCLOAD = ecc_10bit[i];
/*
* Perform a dummy read to the EMIF Revision Code and Status register.
* This is required to ensure time for syndrome calculation after
* writing the ECC values in previous step.
*/
val = emif_regs->NANDFSR;
/*
* Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
* A syndrome value of 0 means no bit errors. If the syndrome is
* non-zero then go further otherwise return.
*/
nand_davinci_4bit_readecc(mtd, hw_4ecc);
if (hw_4ecc[0] == ECC_STATE_NO_ERR && hw_4ecc[1] == ECC_STATE_NO_ERR &&
hw_4ecc[2] == ECC_STATE_NO_ERR && hw_4ecc[3] == ECC_STATE_NO_ERR)
return 0;
/*
* Clear any previous address calculation by doing a dummy read of an
* error address register.
*/
val = emif_regs->NANDERRADD1;
/*
* Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
* register to 1.
*/
emif_regs->NANDFCR |= 1 << 13;
/*
* Wait for the corr_state field (bits 8 to 11)in the
* NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
*/
i = NAND_TIMEOUT;
do {
val = emif_regs->NANDFSR;
val &= 0xc00;
i--;
} while ((i > 0) && val);
iserror = emif_regs->NANDFSR;
iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
iserror = iserror >> 8;
/*
* ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
* corrected (five or more errors). The number of errors
* calculated (err_num field) differs from the number of errors
* searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error
* correction complete (errors on bit 8 or 9).
* ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
* complete (error exists).
*/
if (iserror == ECC_STATE_NO_ERR) {
val = emif_regs->NANDERRVAL1;
return 0;
} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
val = emif_regs->NANDERRVAL1;
return -1;
}
numerrors = ((emif_regs->NANDFSR >> 16) & 0x3) + 1;
/* Read the error address, error value and correct */
for (i = 0; i < numerrors; i++) {
if (i > 1) {
erroraddress =
((emif_regs->NANDERRADD2 >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((emif_regs->NANDERRVAL2 >>
(16 * (i & 1))) & 0xFF);
} else {
erroraddress =
((emif_regs->NANDERRADD1 >>
(16 * (i & 1))) & 0x3FF);
erroraddress = ((512 + 7) - erroraddress);
errorvalue =
((emif_regs->NANDERRVAL1 >>
(16 * (i & 1))) & 0xFF);
}
/* xor the corrupt data with error value */
if (erroraddress < 512)
dat[erroraddress] ^= errorvalue;
}
return numerrors;
}
#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */
static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
return emif_regs->NANDFSR & 0x1;
}
static void nand_flash_init(void)
{
/* This is for DM6446 EVM and *very* similar. DO NOT GROW THIS!
* Instead, have your board_init() set EMIF timings, based on its
* knowledge of the clocks and what devices are hooked up ... and
* don't even do that unless no UBL handled it.
*/
#ifdef CONFIG_SOC_DM644X
u_int32_t acfg1 = 0x3ffffffc;
/*------------------------------------------------------------------*
* NAND FLASH CHIP TIMEOUT @ 459 MHz *
* *
* AEMIF.CLK freq = PLL1/6 = 459/6 = 76.5 MHz *
* AEMIF.CLK period = 1/76.5 MHz = 13.1 ns *
* *
*------------------------------------------------------------------*/
acfg1 = 0
| (0 << 31 ) /* selectStrobe */
| (0 << 30 ) /* extWait */
| (1 << 26 ) /* writeSetup 10 ns */
| (3 << 20 ) /* writeStrobe 40 ns */
| (1 << 17 ) /* writeHold 10 ns */
| (1 << 13 ) /* readSetup 10 ns */
| (5 << 7 ) /* readStrobe 60 ns */
| (1 << 4 ) /* readHold 10 ns */
| (3 << 2 ) /* turnAround ?? ns */
| (0 << 0 ) /* asyncSize 8-bit bus */
;
emif_regs->AB1CR = acfg1; /* CS2 */
emif_regs->NANDFCR = 0x00000101; /* NAND flash on CS2 */
#endif
}
void davinci_nand_init(struct nand_chip *nand)
{
nand->chip_delay = 0;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
nand->options |= NAND_USE_FLASH_BBT;
#endif
#ifdef CONFIG_SYS_NAND_HW_ECC
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.size = 512;
nand->ecc.bytes = 3;
nand->ecc.calculate = nand_davinci_calculate_ecc;
nand->ecc.correct = nand_davinci_correct_data;
nand->ecc.hwctl = nand_davinci_enable_hwecc;
#else
nand->ecc.mode = NAND_ECC_SOFT;
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
nand->ecc.size = 512;
nand->ecc.bytes = 10;
nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
nand->ecc.correct = nand_davinci_4bit_correct_data;
nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
#endif
/* Set address of hardware control function */
nand->cmd_ctrl = nand_davinci_hwcontrol;
nand->dev_ready = nand_davinci_dev_ready;
nand_flash_init();
}
int board_nand_init(struct nand_chip *chip) __attribute__((weak));
int board_nand_init(struct nand_chip *chip)
{
davinci_nand_init(chip);
return 0;
}