| /* |
| * Copyright 2008 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0 |
| */ |
| |
| #include <common.h> |
| #include <fsl_ddr_sdram.h> |
| |
| #include <fsl_ddr.h> |
| |
| /* |
| * Calculate the Density of each Physical Rank. |
| * Returned size is in bytes. |
| * |
| * Study these table from Byte 31 of JEDEC SPD Spec. |
| * |
| * DDR I DDR II |
| * Bit Size Size |
| * --- ----- ------ |
| * 7 high 512MB 512MB |
| * 6 256MB 256MB |
| * 5 128MB 128MB |
| * 4 64MB 16GB |
| * 3 32MB 8GB |
| * 2 16MB 4GB |
| * 1 2GB 2GB |
| * 0 low 1GB 1GB |
| * |
| * Reorder Table to be linear by stripping the bottom |
| * 2 or 5 bits off and shifting them up to the top. |
| */ |
| |
| static unsigned long long |
| compute_ranksize(unsigned int mem_type, unsigned char row_dens) |
| { |
| unsigned long long bsize; |
| |
| /* Bottom 2 bits up to the top. */ |
| bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)); |
| bsize <<= 24ULL; |
| debug("DDR: DDR I rank density = 0x%16llx\n", bsize); |
| |
| return bsize; |
| } |
| |
| /* |
| * Convert a two-nibble BCD value into a cycle time. |
| * While the spec calls for nano-seconds, picos are returned. |
| * |
| * This implements the tables for bytes 9, 23 and 25 for both |
| * DDR I and II. No allowance for distinguishing the invalid |
| * fields absent for DDR I yet present in DDR II is made. |
| * (That is, cycle times of .25, .33, .66 and .75 ns are |
| * allowed for both DDR II and I.) |
| */ |
| static unsigned int |
| convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) |
| { |
| /* Table look up the lower nibble, allow DDR I & II. */ |
| unsigned int tenths_ps[16] = { |
| 0, |
| 100, |
| 200, |
| 300, |
| 400, |
| 500, |
| 600, |
| 700, |
| 800, |
| 900, |
| 250, /* This and the next 3 entries valid ... */ |
| 330, /* ... only for tCK calculations. */ |
| 660, |
| 750, |
| 0, /* undefined */ |
| 0 /* undefined */ |
| }; |
| |
| unsigned int whole_ns = (spd_val & 0xF0) >> 4; |
| unsigned int tenth_ns = spd_val & 0x0F; |
| unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; |
| |
| return ps; |
| } |
| |
| static unsigned int |
| convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val) |
| { |
| unsigned int tenth_ns = (spd_val & 0xF0) >> 4; |
| unsigned int hundredth_ns = spd_val & 0x0F; |
| unsigned int ps = tenth_ns * 100 + hundredth_ns * 10; |
| |
| return ps; |
| } |
| |
| static unsigned int byte40_table_ps[8] = { |
| 0, |
| 250, |
| 330, |
| 500, |
| 660, |
| 750, |
| 0, /* supposed to be RFC, but not sure what that means */ |
| 0 /* Undefined */ |
| }; |
| |
| static unsigned int |
| compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc) |
| { |
| return ((trctrfc_ext & 0x1) * 256 + trfc) * 1000 |
| + byte40_table_ps[(trctrfc_ext >> 1) & 0x7]; |
| } |
| |
| static unsigned int |
| compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc) |
| { |
| return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7]; |
| } |
| |
| /* |
| * tCKmax from DDR I SPD Byte 43 |
| * |
| * Bits 7:2 == whole ns |
| * Bits 1:0 == quarter ns |
| * 00 == 0.00 ns |
| * 01 == 0.25 ns |
| * 10 == 0.50 ns |
| * 11 == 0.75 ns |
| * |
| * Returns picoseconds. |
| */ |
| static unsigned int |
| compute_tckmax_from_spd_ps(unsigned int byte43) |
| { |
| return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250; |
| } |
| |
| /* |
| * Determine Refresh Rate. Ignore self refresh bit on DDR I. |
| * Table from SPD Spec, Byte 12, converted to picoseconds and |
| * filled in with "default" normal values. |
| */ |
| static unsigned int |
| determine_refresh_rate_ps(const unsigned int spd_refresh) |
| { |
| unsigned int refresh_time_ps[8] = { |
| 15625000, /* 0 Normal 1.00x */ |
| 3900000, /* 1 Reduced .25x */ |
| 7800000, /* 2 Extended .50x */ |
| 31300000, /* 3 Extended 2.00x */ |
| 62500000, /* 4 Extended 4.00x */ |
| 125000000, /* 5 Extended 8.00x */ |
| 15625000, /* 6 Normal 1.00x filler */ |
| 15625000, /* 7 Normal 1.00x filler */ |
| }; |
| |
| return refresh_time_ps[spd_refresh & 0x7]; |
| } |
| |
| /* |
| * The purpose of this function is to compute a suitable |
| * CAS latency given the DRAM clock period. The SPD only |
| * defines at most 3 CAS latencies. Typically the slower in |
| * frequency the DIMM runs at, the shorter its CAS latency can be. |
| * If the DIMM is operating at a sufficiently low frequency, |
| * it may be able to run at a CAS latency shorter than the |
| * shortest SPD-defined CAS latency. |
| * |
| * If a CAS latency is not found, 0 is returned. |
| * |
| * Do this by finding in the standard speed bin table the longest |
| * tCKmin that doesn't exceed the value of mclk_ps (tCK). |
| * |
| * An assumption made is that the SDRAM device allows the |
| * CL to be programmed for a value that is lower than those |
| * advertised by the SPD. This is not always the case, |
| * as those modes not defined in the SPD are optional. |
| * |
| * CAS latency de-rating based upon values JEDEC Standard No. 79-E |
| * Table 11. |
| * |
| * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2 |
| */ |
| /* CL2.0 CL2.5 CL3.0 */ |
| unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 }; |
| |
| unsigned int |
| compute_derated_DDR1_CAS_latency(unsigned int mclk_ps) |
| { |
| const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins); |
| unsigned int lowest_tCKmin_found = 0; |
| unsigned int lowest_tCKmin_CL = 0; |
| unsigned int i; |
| |
| debug("mclk_ps = %u\n", mclk_ps); |
| |
| for (i = 0; i < num_speed_bins; i++) { |
| unsigned int x = ddr1_speed_bins[i]; |
| debug("i=%u, x = %u, lowest_tCKmin_found = %u\n", |
| i, x, lowest_tCKmin_found); |
| if (x && lowest_tCKmin_found <= x && x <= mclk_ps) { |
| lowest_tCKmin_found = x; |
| lowest_tCKmin_CL = i + 1; |
| } |
| } |
| |
| debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL); |
| |
| return lowest_tCKmin_CL; |
| } |
| |
| /* |
| * ddr_compute_dimm_parameters for DDR1 SPD |
| * |
| * Compute DIMM parameters based upon the SPD information in spd. |
| * Writes the results to the dimm_params_t structure pointed by pdimm. |
| * |
| * FIXME: use #define for the retvals |
| */ |
| unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num, |
| const ddr1_spd_eeprom_t *spd, |
| dimm_params_t *pdimm, |
| unsigned int dimm_number) |
| { |
| unsigned int retval; |
| |
| if (spd->mem_type) { |
| if (spd->mem_type != SPD_MEMTYPE_DDR) { |
| printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number); |
| return 1; |
| } |
| } else { |
| memset(pdimm, 0, sizeof(dimm_params_t)); |
| return 1; |
| } |
| |
| retval = ddr1_spd_check(spd); |
| if (retval) { |
| printf("DIMM %u: failed checksum\n", dimm_number); |
| return 2; |
| } |
| |
| /* |
| * The part name in ASCII in the SPD EEPROM is not null terminated. |
| * Guarantee null termination here by presetting all bytes to 0 |
| * and copying the part name in ASCII from the SPD onto it |
| */ |
| memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); |
| memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); |
| |
| /* DIMM organization parameters */ |
| pdimm->n_ranks = spd->nrows; |
| pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens); |
| pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; |
| pdimm->data_width = spd->dataw_lsb; |
| pdimm->primary_sdram_width = spd->primw; |
| pdimm->ec_sdram_width = spd->ecw; |
| |
| /* |
| * FIXME: Need to determine registered_dimm status. |
| * 1 == register buffered |
| * 0 == unbuffered |
| */ |
| pdimm->registered_dimm = 0; /* unbuffered */ |
| |
| /* SDRAM device parameters */ |
| pdimm->n_row_addr = spd->nrow_addr; |
| pdimm->n_col_addr = spd->ncol_addr; |
| pdimm->n_banks_per_sdram_device = spd->nbanks; |
| pdimm->edc_config = spd->config; |
| pdimm->burst_lengths_bitmask = spd->burstl; |
| |
| /* |
| * Calculate the Maximum Data Rate based on the Minimum Cycle time. |
| * The SPD clk_cycle field (tCKmin) is measured in tenths of |
| * nanoseconds and represented as BCD. |
| */ |
| pdimm->tckmin_x_ps |
| = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle); |
| pdimm->tckmin_x_minus_1_ps |
| = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2); |
| pdimm->tckmin_x_minus_2_ps |
| = convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3); |
| |
| pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax); |
| |
| /* |
| * Compute CAS latencies defined by SPD |
| * The SPD caslat_x should have at least 1 and at most 3 bits set. |
| * |
| * If cas_lat after masking is 0, the __ilog2 function returns |
| * 255 into the variable. This behavior is abused once. |
| */ |
| pdimm->caslat_x = __ilog2(spd->cas_lat); |
| pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat |
| & ~(1 << pdimm->caslat_x)); |
| pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat |
| & ~(1 << pdimm->caslat_x) |
| & ~(1 << pdimm->caslat_x_minus_1)); |
| |
| /* Compute CAS latencies below that defined by SPD */ |
| pdimm->caslat_lowest_derated = compute_derated_DDR1_CAS_latency( |
| get_memory_clk_period_ps(ctrl_num)); |
| |
| /* Compute timing parameters */ |
| pdimm->trcd_ps = spd->trcd * 250; |
| pdimm->trp_ps = spd->trp * 250; |
| pdimm->tras_ps = spd->tras * 1000; |
| |
| pdimm->twr_ps = mclk_to_picos(ctrl_num, 3); |
| pdimm->twtr_ps = mclk_to_picos(ctrl_num, 1); |
| pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc); |
| |
| pdimm->trrd_ps = spd->trrd * 250; |
| pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc); |
| |
| pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh); |
| |
| pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup); |
| pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold); |
| pdimm->tds_ps |
| = convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup); |
| pdimm->tdh_ps |
| = convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold); |
| |
| pdimm->trtp_ps = mclk_to_picos(ctrl_num, 2); /* By the book. */ |
| pdimm->tdqsq_max_ps = spd->tdqsq * 10; |
| pdimm->tqhs_ps = spd->tqhs * 10; |
| |
| return 0; |
| } |