blob: f0e3d2c993fec6b22b2c29b9aa7c007f87e8e83c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
* Copyright (c) 2024 Svyatoslav Ryhel <clamor95@gmail.com>
*/
#include <backlight.h>
#include <cpu_func.h>
#include <clk.h>
#include <dm.h>
#include <dm/ofnode_graph.h>
#include <fdtdec.h>
#include <log.h>
#include <panel.h>
#include <video.h>
#include <video_bridge.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/powergate.h>
#include "dc.h"
/* Holder of Tegra per-SOC DC differences */
struct tegra_dc_soc_info {
bool has_timer;
bool has_rgb;
bool has_pgate;
};
/* Information about the display controller */
struct tegra_lcd_priv {
int width; /* width in pixels */
int height; /* height in pixels */
enum video_log2_bpp log2_bpp; /* colour depth */
struct display_timing timing;
struct udevice *panel; /* Panels attached to RGB */
struct udevice *bridge; /* Bridge linked with DC */
struct dc_ctlr *dc; /* Display controller regmap */
const struct tegra_dc_soc_info *soc;
fdt_addr_t frame_buffer; /* Address of frame buffer */
unsigned pixel_clock; /* Pixel clock in Hz */
struct clk *clk;
struct clk *clk_parent;
ulong scdiv; /* Clock divider used by disp_clk_ctrl */
bool rotation; /* 180 degree panel turn */
int pipe; /* DC controller: 0 for A, 1 for B */
};
enum {
/* Maximum LCD size we support */
LCD_MAX_WIDTH = 2560,
LCD_MAX_HEIGHT = 1600,
LCD_MAX_LOG2_BPP = VIDEO_BPP16,
};
static void update_window(struct tegra_lcd_priv *priv,
struct disp_ctl_win *win)
{
struct dc_ctlr *dc = priv->dc;
unsigned h_dda, v_dda;
unsigned long val;
val = readl(&dc->cmd.disp_win_header);
val |= WINDOW_A_SELECT;
writel(val, &dc->cmd.disp_win_header);
writel(win->fmt, &dc->win.color_depth);
clrsetbits_le32(&dc->win.byte_swap, BYTE_SWAP_MASK,
BYTE_SWAP_NOSWAP << BYTE_SWAP_SHIFT);
val = win->out_x << H_POSITION_SHIFT;
val |= win->out_y << V_POSITION_SHIFT;
writel(val, &dc->win.pos);
val = win->out_w << H_SIZE_SHIFT;
val |= win->out_h << V_SIZE_SHIFT;
writel(val, &dc->win.size);
val = (win->w * win->bpp / 8) << H_PRESCALED_SIZE_SHIFT;
val |= win->h << V_PRESCALED_SIZE_SHIFT;
writel(val, &dc->win.prescaled_size);
writel(0, &dc->win.h_initial_dda);
writel(0, &dc->win.v_initial_dda);
h_dda = (win->w * 0x1000) / max(win->out_w - 1, 1U);
v_dda = (win->h * 0x1000) / max(win->out_h - 1, 1U);
val = h_dda << H_DDA_INC_SHIFT;
val |= v_dda << V_DDA_INC_SHIFT;
writel(val, &dc->win.dda_increment);
writel(win->stride, &dc->win.line_stride);
writel(0, &dc->win.buf_stride);
val = WIN_ENABLE;
if (win->bpp < 24)
val |= COLOR_EXPAND;
if (priv->rotation)
val |= H_DIRECTION | V_DIRECTION;
writel(val, &dc->win.win_opt);
writel((unsigned long)win->phys_addr, &dc->winbuf.start_addr);
writel(win->x, &dc->winbuf.addr_h_offset);
writel(win->y, &dc->winbuf.addr_v_offset);
writel(0xff00, &dc->win.blend_nokey);
writel(0xff00, &dc->win.blend_1win);
val = GENERAL_ACT_REQ | WIN_A_ACT_REQ;
val |= GENERAL_UPDATE | WIN_A_UPDATE;
writel(val, &dc->cmd.state_ctrl);
}
static int update_display_mode(struct tegra_lcd_priv *priv)
{
struct dc_disp_reg *disp = &priv->dc->disp;
struct display_timing *dt = &priv->timing;
unsigned long val;
writel(0x0, &disp->disp_timing_opt);
writel(1 | 1 << 16, &disp->ref_to_sync);
writel(dt->hsync_len.typ | dt->vsync_len.typ << 16, &disp->sync_width);
writel(dt->hback_porch.typ | dt->vback_porch.typ << 16,
&disp->back_porch);
writel((dt->hfront_porch.typ - 1) | (dt->vfront_porch.typ - 1) << 16,
&disp->front_porch);
writel(dt->hactive.typ | (dt->vactive.typ << 16), &disp->disp_active);
if (priv->soc->has_rgb) {
val = DE_SELECT_ACTIVE << DE_SELECT_SHIFT;
val |= DE_CONTROL_NORMAL << DE_CONTROL_SHIFT;
writel(val, &disp->data_enable_opt);
val = DATA_FORMAT_DF1P1C << DATA_FORMAT_SHIFT;
val |= DATA_ALIGNMENT_MSB << DATA_ALIGNMENT_SHIFT;
val |= DATA_ORDER_RED_BLUE << DATA_ORDER_SHIFT;
writel(val, &disp->disp_interface_ctrl);
writel(0x00010001, &disp->shift_clk_opt);
}
val = PIXEL_CLK_DIVIDER_PCD1 << PIXEL_CLK_DIVIDER_SHIFT;
val |= priv->scdiv << SHIFT_CLK_DIVIDER_SHIFT;
writel(val, &disp->disp_clk_ctrl);
return 0;
}
/* Start up the display and turn on power to PWMs */
static void basic_init(struct dc_cmd_reg *cmd)
{
u32 val;
writel(0x00000100, &cmd->gen_incr_syncpt_ctrl);
writel(0x0000011a, &cmd->cont_syncpt_vsync);
writel(0x00000000, &cmd->int_type);
writel(0x00000000, &cmd->int_polarity);
writel(0x00000000, &cmd->int_mask);
writel(0x00000000, &cmd->int_enb);
val = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE;
val |= PW3_ENABLE | PW4_ENABLE | PM0_ENABLE;
val |= PM1_ENABLE;
writel(val, &cmd->disp_pow_ctrl);
val = readl(&cmd->disp_cmd);
val &= ~CTRL_MODE_MASK;
val |= CTRL_MODE_C_DISPLAY << CTRL_MODE_SHIFT;
writel(val, &cmd->disp_cmd);
}
static void basic_init_timer(struct dc_disp_reg *disp)
{
writel(0x00000020, &disp->mem_high_pri);
writel(0x00000001, &disp->mem_high_pri_timer);
}
static const u32 rgb_enb_tab[PIN_REG_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
};
static const u32 rgb_polarity_tab[PIN_REG_COUNT] = {
0x00000000,
0x01000000,
0x00000000,
0x00000000,
};
static const u32 rgb_data_tab[PIN_REG_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
};
static const u32 rgb_sel_tab[PIN_OUTPUT_SEL_COUNT] = {
0x00000000,
0x00000000,
0x00000000,
0x00000000,
0x00210222,
0x00002200,
0x00020000,
};
static void rgb_enable(struct tegra_lcd_priv *priv)
{
struct dc_com_reg *com = &priv->dc->com;
struct display_timing *dt = &priv->timing;
u32 value;
int i;
for (i = 0; i < PIN_REG_COUNT; i++) {
writel(rgb_enb_tab[i], &com->pin_output_enb[i]);
writel(rgb_polarity_tab[i], &com->pin_output_polarity[i]);
writel(rgb_data_tab[i], &com->pin_output_data[i]);
}
/* configure H- and V-sync signal polarities */
value = readl(&com->pin_output_polarity[1]);
if (dt->flags & DISPLAY_FLAGS_HSYNC_LOW)
value |= LHS_OUTPUT_POLARITY_LOW;
else
value &= ~LHS_OUTPUT_POLARITY_LOW;
if (dt->flags & DISPLAY_FLAGS_VSYNC_LOW)
value |= LVS_OUTPUT_POLARITY_LOW;
else
value &= ~LVS_OUTPUT_POLARITY_LOW;
writel(value, &com->pin_output_polarity[1]);
for (i = 0; i < PIN_OUTPUT_SEL_COUNT; i++)
writel(rgb_sel_tab[i], &com->pin_output_sel[i]);
}
static int setup_window(struct tegra_lcd_priv *priv,
struct disp_ctl_win *win)
{
if (priv->rotation) {
win->x = priv->width * 2 - 1;
win->y = priv->height - 1;
} else {
win->x = 0;
win->y = 0;
}
win->w = priv->width;
win->h = priv->height;
win->out_x = 0;
win->out_y = 0;
win->out_w = priv->width;
win->out_h = priv->height;
win->phys_addr = priv->frame_buffer;
win->stride = priv->width * (1 << priv->log2_bpp) / 8;
log_debug("%s: depth = %d\n", __func__, priv->log2_bpp);
switch (priv->log2_bpp) {
case VIDEO_BPP32:
win->fmt = COLOR_DEPTH_R8G8B8A8;
win->bpp = 32;
break;
case VIDEO_BPP16:
win->fmt = COLOR_DEPTH_B5G6R5;
win->bpp = 16;
break;
default:
log_debug("Unsupported LCD bit depth\n");
return -1;
}
return 0;
}
/**
* Register a new display based on device tree configuration.
*
* The frame buffer can be positioned by U-Boot or overridden by the fdt.
* You should pass in the U-Boot address here, and check the contents of
* struct tegra_lcd_priv to see what was actually chosen.
*
* @param priv Driver's private data
* @param default_lcd_base Default address of LCD frame buffer
* Return: 0 if ok, -1 on error (unsupported bits per pixel)
*/
static int tegra_display_probe(struct tegra_lcd_priv *priv,
void *default_lcd_base)
{
struct disp_ctl_win window;
unsigned long rate = clk_get_rate(priv->clk_parent);
int ret;
priv->frame_buffer = (u32)default_lcd_base;
/*
* We halve the rate if DISP1 parent is PLLD, since actual parent
* is plld_out0 which is PLLD divided by 2.
*/
if (priv->clk_parent->id == CLOCK_ID_DISPLAY ||
priv->clk_parent->id == CLOCK_ID_DISPLAY2)
rate /= 2;
/*
* The pixel clock divider is in 7.1 format (where the bottom bit
* represents 0.5). Here we calculate the divider needed to get from
* the display clock (typically 600MHz) to the pixel clock. We round
* up or down as required.
*/
if (!priv->scdiv)
priv->scdiv = ((rate * 2 + priv->pixel_clock / 2)
/ priv->pixel_clock) - 2;
log_debug("Display clock %lu, divider %lu\n", rate, priv->scdiv);
clock_start_periph_pll(priv->clk->id, priv->clk_parent->id,
rate);
basic_init(&priv->dc->cmd);
if (priv->soc->has_timer)
basic_init_timer(&priv->dc->disp);
if (priv->soc->has_rgb)
rgb_enable(priv);
if (priv->pixel_clock)
update_display_mode(priv);
ret = setup_window(priv, &window);
if (ret)
return ret;
update_window(priv, &window);
return 0;
}
static int tegra_lcd_probe(struct udevice *dev)
{
struct video_uc_plat *plat = dev_get_uclass_plat(dev);
struct video_priv *uc_priv = dev_get_uclass_priv(dev);
struct tegra_lcd_priv *priv = dev_get_priv(dev);
int ret;
/* Initialize the Tegra display controller */
if (priv->soc->has_pgate) {
uint powergate;
if (priv->pipe)
powergate = TEGRA_POWERGATE_DISB;
else
powergate = TEGRA_POWERGATE_DIS;
ret = tegra_powergate_power_off(powergate);
if (ret < 0) {
log_debug("failed to power off DISP gate: %d", ret);
return ret;
}
ret = tegra_powergate_sequence_power_up(powergate,
priv->clk->id);
if (ret < 0) {
log_debug("failed to power up DISP gate: %d", ret);
return ret;
}
}
/* Get shift clock divider from Tegra DSI if used */
if (priv->bridge) {
if (!strcmp(priv->bridge->driver->name, "tegra_dsi")) {
struct tegra_dc_plat *dc_plat = dev_get_plat(priv->bridge);
priv->scdiv = dc_plat->scdiv;
}
}
/* Clean the framebuffer area */
memset((u8 *)plat->base, 0, plat->size);
flush_dcache_all();
ret = tegra_display_probe(priv, (void *)plat->base);
if (ret) {
log_debug("%s: Failed to probe display driver\n", __func__);
return ret;
}
if (priv->panel) {
ret = panel_enable_backlight(priv->panel);
if (ret) {
log_debug("%s: Cannot enable backlight, ret=%d\n", __func__, ret);
return ret;
}
}
if (priv->bridge) {
ret = video_bridge_attach(priv->bridge);
if (ret) {
log_debug("%s: Cannot attach bridge, ret=%d\n", __func__, ret);
return ret;
}
}
mmu_set_region_dcache_behaviour(priv->frame_buffer, plat->size,
DCACHE_WRITETHROUGH);
/* Enable flushing after LCD writes if requested */
video_set_flush_dcache(dev, true);
uc_priv->xsize = priv->width;
uc_priv->ysize = priv->height;
uc_priv->bpix = priv->log2_bpp;
log_debug("LCD frame buffer at %08x, size %x\n", priv->frame_buffer,
plat->size);
if (priv->panel) {
ret = panel_set_backlight(priv->panel, BACKLIGHT_DEFAULT);
if (ret)
return ret;
}
if (priv->bridge) {
ret = video_bridge_set_backlight(priv->bridge, BACKLIGHT_DEFAULT);
if (ret)
return ret;
}
return 0;
}
static int tegra_lcd_configure_rgb(struct udevice *dev, ofnode rgb)
{
struct tegra_lcd_priv *priv = dev_get_priv(dev);
ofnode remote;
int ret;
/* DC can have only 1 port */
remote = ofnode_graph_get_remote_node(rgb, -1, -1);
ret = uclass_get_device_by_ofnode(UCLASS_PANEL, remote, &priv->panel);
if (!ret)
return 0;
ret = uclass_get_device_by_ofnode(UCLASS_VIDEO_BRIDGE, remote, &priv->bridge);
if (!ret)
return 0;
/* Try legacy method if graph did not work */
remote = ofnode_parse_phandle(rgb, "nvidia,panel", 0);
if (!ofnode_valid(remote))
return -EINVAL;
ret = uclass_get_device_by_ofnode(UCLASS_PANEL, remote, &priv->panel);
if (ret) {
log_debug("%s: Cannot find panel for '%s' (ret=%d)\n",
__func__, dev->name, ret);
ret = uclass_get_device_by_ofnode(UCLASS_VIDEO_BRIDGE, remote,
&priv->bridge);
if (ret) {
log_err("%s: Cannot find panel or bridge for '%s' (ret=%d)\n",
__func__, dev->name, ret);
return ret;
}
}
return 0;
}
static int tegra_lcd_configure_internal(struct udevice *dev)
{
struct tegra_lcd_priv *priv = dev_get_priv(dev);
struct tegra_dc_plat *dc_plat;
ofnode host1x = ofnode_get_parent(dev_ofnode(dev));
ofnode node;
int ret;
switch (priv->pipe) {
case 0: /* DC0 is usually used for DSI */
/* Check for ganged DSI configuration */
ofnode_for_each_subnode(node, host1x)
if (ofnode_name_eq(node, "dsi") && ofnode_is_enabled(node) &&
ofnode_read_bool(node, "nvidia,ganged-mode"))
goto exit;
/* If no master DSI found loop for any active DSI */
ofnode_for_each_subnode(node, host1x)
if (ofnode_name_eq(node, "dsi") && ofnode_is_enabled(node))
goto exit;
log_err("%s: failed to find DSI device for '%s'\n",
__func__, dev->name);
return -ENODEV;
case 1: /* DC1 is usually used for HDMI */
ofnode_for_each_subnode(node, host1x)
if (ofnode_name_eq(node, "hdmi"))
goto exit;
log_err("%s: failed to find HDMI device for '%s'\n",
__func__, dev->name);
return -ENODEV;
default:
log_debug("Unsupported DC selection\n");
return -EINVAL;
}
exit:
ret = uclass_get_device_by_ofnode(UCLASS_VIDEO_BRIDGE, node, &priv->bridge);
if (ret) {
log_err("%s: failed to get DSI/HDMI device for '%s' (ret %d)\n",
__func__, dev->name, ret);
return ret;
}
priv->clk_parent = devm_clk_get(priv->bridge, "parent");
if (IS_ERR(priv->clk_parent)) {
log_debug("%s: Could not get DC clock parent from DSI/HDMI: %ld\n",
__func__, PTR_ERR(priv->clk_parent));
return PTR_ERR(priv->clk_parent);
}
dc_plat = dev_get_plat(priv->bridge);
/* Fill the platform data for internal devices */
dc_plat->dev = dev;
dc_plat->dc = priv->dc;
dc_plat->pipe = priv->pipe;
return 0;
}
static int tegra_lcd_of_to_plat(struct udevice *dev)
{
struct tegra_lcd_priv *priv = dev_get_priv(dev);
struct display_timing *timing;
ofnode rgb;
int ret;
priv->dc = (struct dc_ctlr *)dev_read_addr_ptr(dev);
if (!priv->dc) {
log_debug("%s: No display controller address\n", __func__);
return -EINVAL;
}
priv->soc = (struct tegra_dc_soc_info *)dev_get_driver_data(dev);
priv->clk = devm_clk_get(dev, NULL);
if (IS_ERR(priv->clk)) {
log_debug("%s: Could not get DC clock: %ld\n",
__func__, PTR_ERR(priv->clk));
return PTR_ERR(priv->clk);
}
priv->clk_parent = devm_clk_get(dev, "parent");
if (IS_ERR(priv->clk_parent)) {
log_debug("%s: Could not get DC clock parent: %ld\n",
__func__, PTR_ERR(priv->clk_parent));
return PTR_ERR(priv->clk_parent);
}
priv->rotation = dev_read_bool(dev, "nvidia,180-rotation");
priv->pipe = dev_read_u32_default(dev, "nvidia,head", 0);
/*
* Usual logic of Tegra video routing should be next:
* 1. Check rgb subnode for RGB/LVDS panels or bridges
* 2. If none found, then iterate through bridges bound,
* looking for DSIA or DSIB for DC0 and HDMI for DC1.
* If none of above is valid, then configuration is not
* valid.
*/
rgb = dev_read_subnode(dev, "rgb");
if (ofnode_valid(rgb) && ofnode_is_enabled(rgb)) {
/* RGB is available, use it */
ret = tegra_lcd_configure_rgb(dev, rgb);
if (ret)
return ret;
} else {
/* RGB is not available, check for internal devices */
ret = tegra_lcd_configure_internal(dev);
if (ret)
return ret;
}
if (priv->panel) {
ret = panel_get_display_timing(priv->panel, &priv->timing);
if (ret) {
ret = ofnode_decode_display_timing(rgb, 0, &priv->timing);
if (ret) {
log_debug("%s: Cannot read display timing for '%s' (ret=%d)\n",
__func__, dev->name, ret);
return -EINVAL;
}
}
}
if (priv->bridge) {
ret = video_bridge_get_display_timing(priv->bridge, &priv->timing);
if (ret) {
log_debug("%s: Cannot read display timing for '%s' (ret=%d)\n",
__func__, dev->name, ret);
return -EINVAL;
}
}
timing = &priv->timing;
priv->width = timing->hactive.typ;
priv->height = timing->vactive.typ;
priv->pixel_clock = timing->pixelclock.typ;
priv->log2_bpp = VIDEO_BPP16;
return 0;
}
static int tegra_lcd_bind(struct udevice *dev)
{
struct video_uc_plat *plat = dev_get_uclass_plat(dev);
plat->size = LCD_MAX_WIDTH * LCD_MAX_HEIGHT *
(1 << LCD_MAX_LOG2_BPP) / 8;
return dm_scan_fdt_dev(dev);
}
static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
.has_timer = true,
.has_rgb = true,
.has_pgate = false,
};
static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
.has_timer = false,
.has_rgb = true,
.has_pgate = false,
};
static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
.has_timer = false,
.has_rgb = false,
.has_pgate = true,
};
static const struct udevice_id tegra_lcd_ids[] = {
{
.compatible = "nvidia,tegra20-dc",
.data = (ulong)&tegra20_dc_soc_info
}, {
.compatible = "nvidia,tegra30-dc",
.data = (ulong)&tegra30_dc_soc_info
}, {
.compatible = "nvidia,tegra114-dc",
.data = (ulong)&tegra114_dc_soc_info
}, {
.compatible = "nvidia,tegra124-dc",
.data = (ulong)&tegra114_dc_soc_info
}, {
/* sentinel */
}
};
U_BOOT_DRIVER(tegra_lcd) = {
.name = "tegra_lcd",
.id = UCLASS_VIDEO,
.of_match = tegra_lcd_ids,
.bind = tegra_lcd_bind,
.probe = tegra_lcd_probe,
.of_to_plat = tegra_lcd_of_to_plat,
.priv_auto = sizeof(struct tegra_lcd_priv),
};