blob: f447c639a60e956a983582d42995c52bc3206ece [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Procedures for maintaining information about logical memory blocks.
*
* Peter Bergner, IBM Corp. June 2001.
* Copyright (C) 2001 Peter Bergner.
*/
#include <common.h>
#include <efi_loader.h>
#include <image.h>
#include <mapmem.h>
#include <lmb.h>
#include <log.h>
#include <malloc.h>
#include <asm/global_data.h>
#include <asm/sections.h>
DECLARE_GLOBAL_DATA_PTR;
#define LMB_ALLOC_ANYWHERE 0
static void lmb_dump_region(struct lmb_region *rgn, char *name)
{
unsigned long long base, size, end;
enum lmb_flags flags;
int i;
printf(" %s.cnt = 0x%lx\n", name, rgn->cnt);
for (i = 0; i < rgn->cnt; i++) {
base = rgn->region[i].base;
size = rgn->region[i].size;
end = base + size - 1;
flags = rgn->region[i].flags;
printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n",
name, i, base, end, size, flags);
}
}
void lmb_dump_all_force(struct lmb *lmb)
{
printf("lmb_dump_all:\n");
lmb_dump_region(&lmb->memory, "memory");
lmb_dump_region(&lmb->reserved, "reserved");
}
void lmb_dump_all(struct lmb *lmb)
{
#ifdef DEBUG
lmb_dump_all_force(lmb);
#endif
}
static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
const phys_addr_t base1_end = base1 + size1 - 1;
const phys_addr_t base2_end = base2 + size2 - 1;
return ((base1 <= base2_end) && (base2 <= base1_end));
}
static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
phys_addr_t base2, phys_size_t size2)
{
if (base2 == base1 + size1)
return 1;
else if (base1 == base2 + size2)
return -1;
return 0;
}
static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
unsigned long r2)
{
phys_addr_t base1 = rgn->region[r1].base;
phys_size_t size1 = rgn->region[r1].size;
phys_addr_t base2 = rgn->region[r2].base;
phys_size_t size2 = rgn->region[r2].size;
return lmb_addrs_adjacent(base1, size1, base2, size2);
}
static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
{
unsigned long i;
for (i = r; i < rgn->cnt - 1; i++) {
rgn->region[i].base = rgn->region[i + 1].base;
rgn->region[i].size = rgn->region[i + 1].size;
rgn->region[i].flags = rgn->region[i + 1].flags;
}
rgn->cnt--;
}
/* Assumption: base addr of region 1 < base addr of region 2 */
static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
unsigned long r2)
{
rgn->region[r1].size += rgn->region[r2].size;
lmb_remove_region(rgn, r2);
}
void lmb_init(struct lmb *lmb)
{
#if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
lmb->memory.max = CONFIG_LMB_MAX_REGIONS;
lmb->reserved.max = CONFIG_LMB_MAX_REGIONS;
#elif defined(CONFIG_LMB_MEMORY_REGIONS)
lmb->memory.max = CONFIG_LMB_MEMORY_REGIONS;
lmb->reserved.max = CONFIG_LMB_RESERVED_REGIONS;
lmb->memory.region = lmb->memory_regions;
lmb->reserved.region = lmb->reserved_regions;
#endif
lmb->memory.cnt = 0;
lmb->reserved.cnt = 0;
}
void arch_lmb_reserve_generic(struct lmb *lmb, ulong sp, ulong end, ulong align)
{
ulong bank_end;
int bank;
/*
* Reserve memory from aligned address below the bottom of U-Boot stack
* until end of U-Boot area using LMB to prevent U-Boot from overwriting
* that memory.
*/
debug("## Current stack ends at 0x%08lx ", sp);
/* adjust sp by 4K to be safe */
sp -= align;
for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
if (!gd->bd->bi_dram[bank].size ||
sp < gd->bd->bi_dram[bank].start)
continue;
/* Watch out for RAM at end of address space! */
bank_end = gd->bd->bi_dram[bank].start +
gd->bd->bi_dram[bank].size - 1;
if (sp > bank_end)
continue;
if (bank_end > end)
bank_end = end - 1;
lmb_reserve(lmb, sp, bank_end - sp + 1);
if (gd->flags & GD_FLG_SKIP_RELOC)
lmb_reserve(lmb, (phys_addr_t)(uintptr_t)_start, gd->mon_len);
break;
}
}
/**
* efi_lmb_reserve() - add reservations for EFI memory
*
* Add reservations for all EFI memory areas that are not
* EFI_CONVENTIONAL_MEMORY.
*
* @lmb: lmb environment
* Return: 0 on success, 1 on failure
*/
static __maybe_unused int efi_lmb_reserve(struct lmb *lmb)
{
struct efi_mem_desc *memmap = NULL, *map;
efi_uintn_t i, map_size = 0;
efi_status_t ret;
ret = efi_get_memory_map_alloc(&map_size, &memmap);
if (ret != EFI_SUCCESS)
return 1;
for (i = 0, map = memmap; i < map_size / sizeof(*map); ++map, ++i) {
if (map->type != EFI_CONVENTIONAL_MEMORY) {
lmb_reserve_flags(lmb,
map_to_sysmem((void *)(uintptr_t)
map->physical_start),
map->num_pages * EFI_PAGE_SIZE,
map->type == EFI_RESERVED_MEMORY_TYPE
? LMB_NOMAP : LMB_NONE);
}
}
efi_free_pool(memmap);
return 0;
}
static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
{
arch_lmb_reserve(lmb);
board_lmb_reserve(lmb);
if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
if (CONFIG_IS_ENABLED(EFI_LOADER))
efi_lmb_reserve(lmb);
}
/* Initialize the struct, add memory and call arch/board reserve functions */
void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob)
{
int i;
lmb_init(lmb);
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
if (bd->bi_dram[i].size) {
lmb_add(lmb, bd->bi_dram[i].start,
bd->bi_dram[i].size);
}
}
lmb_reserve_common(lmb, fdt_blob);
}
/* Initialize the struct, add memory and call arch/board reserve functions */
void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
phys_size_t size, void *fdt_blob)
{
lmb_init(lmb);
lmb_add(lmb, base, size);
lmb_reserve_common(lmb, fdt_blob);
}
/* This routine called with relocation disabled. */
static long lmb_add_region_flags(struct lmb_region *rgn, phys_addr_t base,
phys_size_t size, enum lmb_flags flags)
{
unsigned long coalesced = 0;
long adjacent, i;
if (rgn->cnt == 0) {
rgn->region[0].base = base;
rgn->region[0].size = size;
rgn->region[0].flags = flags;
rgn->cnt = 1;
return 0;
}
/* First try and coalesce this LMB with another. */
for (i = 0; i < rgn->cnt; i++) {
phys_addr_t rgnbase = rgn->region[i].base;
phys_size_t rgnsize = rgn->region[i].size;
phys_size_t rgnflags = rgn->region[i].flags;
if (rgnbase == base && rgnsize == size) {
if (flags == rgnflags)
/* Already have this region, so we're done */
return 0;
else
return -1; /* regions with new flags */
}
adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
if (adjacent > 0) {
if (flags != rgnflags)
break;
rgn->region[i].base -= size;
rgn->region[i].size += size;
coalesced++;
break;
} else if (adjacent < 0) {
if (flags != rgnflags)
break;
rgn->region[i].size += size;
coalesced++;
break;
} else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
/* regions overlap */
return -1;
}
}
if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
if (rgn->region[i].flags == rgn->region[i + 1].flags) {
lmb_coalesce_regions(rgn, i, i + 1);
coalesced++;
}
}
if (coalesced)
return coalesced;
if (rgn->cnt >= rgn->max)
return -1;
/* Couldn't coalesce the LMB, so add it to the sorted table. */
for (i = rgn->cnt-1; i >= 0; i--) {
if (base < rgn->region[i].base) {
rgn->region[i + 1].base = rgn->region[i].base;
rgn->region[i + 1].size = rgn->region[i].size;
rgn->region[i + 1].flags = rgn->region[i].flags;
} else {
rgn->region[i + 1].base = base;
rgn->region[i + 1].size = size;
rgn->region[i + 1].flags = flags;
break;
}
}
if (base < rgn->region[0].base) {
rgn->region[0].base = base;
rgn->region[0].size = size;
rgn->region[0].flags = flags;
}
rgn->cnt++;
return 0;
}
static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base,
phys_size_t size)
{
return lmb_add_region_flags(rgn, base, size, LMB_NONE);
}
/* This routine may be called with relocation disabled. */
long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
struct lmb_region *_rgn = &(lmb->memory);
return lmb_add_region(_rgn, base, size);
}
long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
struct lmb_region *rgn = &(lmb->reserved);
phys_addr_t rgnbegin, rgnend;
phys_addr_t end = base + size - 1;
int i;
rgnbegin = rgnend = 0; /* supress gcc warnings */
/* Find the region where (base, size) belongs to */
for (i = 0; i < rgn->cnt; i++) {
rgnbegin = rgn->region[i].base;
rgnend = rgnbegin + rgn->region[i].size - 1;
if ((rgnbegin <= base) && (end <= rgnend))
break;
}
/* Didn't find the region */
if (i == rgn->cnt)
return -1;
/* Check to see if we are removing entire region */
if ((rgnbegin == base) && (rgnend == end)) {
lmb_remove_region(rgn, i);
return 0;
}
/* Check to see if region is matching at the front */
if (rgnbegin == base) {
rgn->region[i].base = end + 1;
rgn->region[i].size -= size;
return 0;
}
/* Check to see if the region is matching at the end */
if (rgnend == end) {
rgn->region[i].size -= size;
return 0;
}
/*
* We need to split the entry - adjust the current one to the
* beginging of the hole and add the region after hole.
*/
rgn->region[i].size = base - rgn->region[i].base;
return lmb_add_region_flags(rgn, end + 1, rgnend - end,
rgn->region[i].flags);
}
long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base, phys_size_t size,
enum lmb_flags flags)
{
struct lmb_region *_rgn = &(lmb->reserved);
return lmb_add_region_flags(_rgn, base, size, flags);
}
long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
return lmb_reserve_flags(lmb, base, size, LMB_NONE);
}
static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
phys_size_t size)
{
unsigned long i;
for (i = 0; i < rgn->cnt; i++) {
phys_addr_t rgnbase = rgn->region[i].base;
phys_size_t rgnsize = rgn->region[i].size;
if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
break;
}
return (i < rgn->cnt) ? i : -1;
}
phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
{
return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
}
phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
{
phys_addr_t alloc;
alloc = __lmb_alloc_base(lmb, size, align, max_addr);
if (alloc == 0)
printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
(ulong)size, (ulong)max_addr);
return alloc;
}
static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
{
return addr & ~(size - 1);
}
phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
{
long i, rgn;
phys_addr_t base = 0;
phys_addr_t res_base;
for (i = lmb->memory.cnt - 1; i >= 0; i--) {
phys_addr_t lmbbase = lmb->memory.region[i].base;
phys_size_t lmbsize = lmb->memory.region[i].size;
if (lmbsize < size)
continue;
if (max_addr == LMB_ALLOC_ANYWHERE)
base = lmb_align_down(lmbbase + lmbsize - size, align);
else if (lmbbase < max_addr) {
base = lmbbase + lmbsize;
if (base < lmbbase)
base = -1;
base = min(base, max_addr);
base = lmb_align_down(base - size, align);
} else
continue;
while (base && lmbbase <= base) {
rgn = lmb_overlaps_region(&lmb->reserved, base, size);
if (rgn < 0) {
/* This area isn't reserved, take it */
if (lmb_add_region(&lmb->reserved, base,
size) < 0)
return 0;
return base;
}
res_base = lmb->reserved.region[rgn].base;
if (res_base < size)
break;
base = lmb_align_down(res_base - size, align);
}
}
return 0;
}
/*
* Try to allocate a specific address range: must be in defined memory but not
* reserved
*/
phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
{
long rgn;
/* Check if the requested address is in one of the memory regions */
rgn = lmb_overlaps_region(&lmb->memory, base, size);
if (rgn >= 0) {
/*
* Check if the requested end address is in the same memory
* region we found.
*/
if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
lmb->memory.region[rgn].size,
base + size - 1, 1)) {
/* ok, reserve the memory */
if (lmb_reserve(lmb, base, size) >= 0)
return base;
}
}
return 0;
}
/* Return number of bytes from a given address that are free */
phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
{
int i;
long rgn;
/* check if the requested address is in the memory regions */
rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
if (rgn >= 0) {
for (i = 0; i < lmb->reserved.cnt; i++) {
if (addr < lmb->reserved.region[i].base) {
/* first reserved range > requested address */
return lmb->reserved.region[i].base - addr;
}
if (lmb->reserved.region[i].base +
lmb->reserved.region[i].size > addr) {
/* requested addr is in this reserved range */
return 0;
}
}
/* if we come here: no reserved ranges above requested addr */
return lmb->memory.region[lmb->memory.cnt - 1].base +
lmb->memory.region[lmb->memory.cnt - 1].size - addr;
}
return 0;
}
int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags)
{
int i;
for (i = 0; i < lmb->reserved.cnt; i++) {
phys_addr_t upper = lmb->reserved.region[i].base +
lmb->reserved.region[i].size - 1;
if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
return (lmb->reserved.region[i].flags & flags) == flags;
}
return 0;
}
int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
{
return lmb_is_reserved_flags(lmb, addr, LMB_NONE);
}
__weak void board_lmb_reserve(struct lmb *lmb)
{
/* please define platform specific board_lmb_reserve() */
}
__weak void arch_lmb_reserve(struct lmb *lmb)
{
/* please define platform specific arch_lmb_reserve() */
}