| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * ENETC ethernet controller driver |
| * Copyright 2017-2021 NXP |
| */ |
| |
| #include <common.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <fdt_support.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <net.h> |
| #include <asm/cache.h> |
| #include <asm/io.h> |
| #include <pci.h> |
| #include <miiphy.h> |
| #include <linux/bug.h> |
| #include <linux/delay.h> |
| |
| #include "fsl_enetc.h" |
| |
| #define ENETC_DRIVER_NAME "enetc_eth" |
| |
| /* |
| * sets the MAC address in IERB registers, this setting is persistent and |
| * carried over to Linux. |
| */ |
| static void enetc_set_ierb_primary_mac(struct udevice *dev, int devfn, |
| const u8 *enetaddr) |
| { |
| #ifdef CONFIG_ARCH_LS1028A |
| /* |
| * LS1028A is the only part with IERB at this time and there are plans to change |
| * its structure, keep this LS1028A specific for now |
| */ |
| #define IERB_BASE 0x1f0800000ULL |
| #define IERB_PFMAC(pf, vf, n) (IERB_BASE + 0x8000 + (pf) * 0x100 + (vf) * 8 \ |
| + (n) * 4) |
| |
| static int ierb_fn_to_pf[] = {0, 1, 2, -1, -1, -1, 3}; |
| |
| u16 lower = *(const u16 *)(enetaddr + 4); |
| u32 upper = *(const u32 *)enetaddr; |
| |
| if (ierb_fn_to_pf[devfn] < 0) |
| return; |
| |
| out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 0), upper); |
| out_le32(IERB_PFMAC(ierb_fn_to_pf[devfn], 0, 1), (u32)lower); |
| #endif |
| } |
| |
| /* sets up primary MAC addresses in DT/IERB */ |
| void fdt_fixup_enetc_mac(void *blob) |
| { |
| struct pci_child_plat *ppdata; |
| struct eth_pdata *pdata; |
| struct udevice *dev; |
| struct uclass *uc; |
| char path[256]; |
| int offset; |
| int devfn; |
| |
| uclass_get(UCLASS_ETH, &uc); |
| uclass_foreach_dev(dev, uc) { |
| if (!dev->driver || !dev->driver->name || |
| strcmp(dev->driver->name, ENETC_DRIVER_NAME)) |
| continue; |
| |
| pdata = dev_get_plat(dev); |
| ppdata = dev_get_parent_plat(dev); |
| devfn = PCI_FUNC(ppdata->devfn); |
| |
| enetc_set_ierb_primary_mac(dev, devfn, pdata->enetaddr); |
| |
| snprintf(path, 256, "/soc/pcie@1f0000000/ethernet@%x,%x", |
| PCI_DEV(ppdata->devfn), PCI_FUNC(ppdata->devfn)); |
| offset = fdt_path_offset(blob, path); |
| if (offset < 0) |
| continue; |
| fdt_setprop(blob, offset, "mac-address", pdata->enetaddr, 6); |
| } |
| } |
| |
| /* |
| * Bind the device: |
| * - set a more explicit name on the interface |
| */ |
| static int enetc_bind(struct udevice *dev) |
| { |
| char name[16]; |
| static int eth_num_devices; |
| |
| /* |
| * prefer using PCI function numbers to number interfaces, but these |
| * are only available if dts nodes are present. For PCI they are |
| * optional, handle that case too. Just in case some nodes are present |
| * and some are not, use different naming scheme - enetc-N based on |
| * PCI function # and enetc#N based on interface count |
| */ |
| if (ofnode_valid(dev_ofnode(dev))) |
| sprintf(name, "enetc-%u", PCI_FUNC(pci_get_devfn(dev))); |
| else |
| sprintf(name, "enetc#%u", eth_num_devices++); |
| device_set_name(dev, name); |
| |
| return 0; |
| } |
| |
| /* MDIO wrappers, we're using these to drive internal MDIO to get to serdes */ |
| static int enetc_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) |
| { |
| struct enetc_mdio_priv priv; |
| |
| priv.regs_base = bus->priv; |
| return enetc_mdio_read_priv(&priv, addr, devad, reg); |
| } |
| |
| static int enetc_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, |
| u16 val) |
| { |
| struct enetc_mdio_priv priv; |
| |
| priv.regs_base = bus->priv; |
| return enetc_mdio_write_priv(&priv, addr, devad, reg, val); |
| } |
| |
| /* only interfaces that can pin out through serdes have internal MDIO */ |
| static bool enetc_has_imdio(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| |
| return !!(priv->imdio.priv); |
| } |
| |
| /* set up serdes for SGMII */ |
| static int enetc_init_sgmii(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| bool is2500 = false; |
| u16 reg; |
| |
| if (!enetc_has_imdio(dev)) |
| return 0; |
| |
| if (priv->if_type == PHY_INTERFACE_MODE_2500BASEX) |
| is2500 = true; |
| |
| /* |
| * Set to SGMII mode, for 1Gbps enable AN, for 2.5Gbps set fixed speed. |
| * Although fixed speed is 1Gbps, we could be running at 2.5Gbps based |
| * on PLL configuration. Setting 1G for 2.5G here is counter intuitive |
| * but intentional. |
| */ |
| reg = ENETC_PCS_IF_MODE_SGMII; |
| reg |= is2500 ? ENETC_PCS_IF_MODE_SPEED_1G : ENETC_PCS_IF_MODE_SGMII_AN; |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE, |
| ENETC_PCS_IF_MODE, reg); |
| |
| /* Dev ability - SGMII */ |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE, |
| ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SGMII); |
| |
| /* Adjust link timer for SGMII */ |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE, |
| ENETC_PCS_LINK_TIMER1, ENETC_PCS_LINK_TIMER1_VAL); |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE, |
| ENETC_PCS_LINK_TIMER2, ENETC_PCS_LINK_TIMER2_VAL); |
| |
| reg = ENETC_PCS_CR_DEF_VAL; |
| reg |= is2500 ? ENETC_PCS_CR_RST : ENETC_PCS_CR_RESET_AN; |
| /* restart PCS AN */ |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, MDIO_DEVAD_NONE, |
| ENETC_PCS_CR, reg); |
| |
| return 0; |
| } |
| |
| /* set up MAC for RGMII */ |
| static void enetc_init_rgmii(struct udevice *dev, struct phy_device *phydev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| u32 old_val, val; |
| |
| old_val = val = enetc_read_port(priv, ENETC_PM_IF_MODE); |
| |
| /* disable unreliable RGMII in-band signaling and force the MAC into |
| * the speed negotiated by the PHY. |
| */ |
| val &= ~ENETC_PM_IF_MODE_AN_ENA; |
| |
| if (phydev->speed == SPEED_1000) { |
| val &= ~ENETC_PM_IFM_SSP_MASK; |
| val |= ENETC_PM_IFM_SSP_1000; |
| } else if (phydev->speed == SPEED_100) { |
| val &= ~ENETC_PM_IFM_SSP_MASK; |
| val |= ENETC_PM_IFM_SSP_100; |
| } else if (phydev->speed == SPEED_10) { |
| val &= ~ENETC_PM_IFM_SSP_MASK; |
| val |= ENETC_PM_IFM_SSP_10; |
| } |
| |
| if (phydev->duplex == DUPLEX_FULL) |
| val |= ENETC_PM_IFM_FULL_DPX; |
| else |
| val &= ~ENETC_PM_IFM_FULL_DPX; |
| |
| if (val == old_val) |
| return; |
| |
| enetc_write_port(priv, ENETC_PM_IF_MODE, val); |
| } |
| |
| /* set up MAC configuration for the given interface type */ |
| static void enetc_setup_mac_iface(struct udevice *dev, |
| struct phy_device *phydev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| u32 if_mode; |
| |
| switch (priv->if_type) { |
| case PHY_INTERFACE_MODE_RGMII: |
| case PHY_INTERFACE_MODE_RGMII_ID: |
| case PHY_INTERFACE_MODE_RGMII_RXID: |
| case PHY_INTERFACE_MODE_RGMII_TXID: |
| enetc_init_rgmii(dev, phydev); |
| break; |
| case PHY_INTERFACE_MODE_USXGMII: |
| case PHY_INTERFACE_MODE_10GBASER: |
| /* set ifmode to (US)XGMII */ |
| if_mode = enetc_read_port(priv, ENETC_PM_IF_MODE); |
| if_mode &= ~ENETC_PM_IF_IFMODE_MASK; |
| enetc_write_port(priv, ENETC_PM_IF_MODE, if_mode); |
| break; |
| }; |
| } |
| |
| /* set up serdes for SXGMII */ |
| static int enetc_init_sxgmii(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| |
| if (!enetc_has_imdio(dev)) |
| return 0; |
| |
| /* Dev ability - SXGMII */ |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL, |
| ENETC_PCS_DEV_ABILITY, ENETC_PCS_DEV_ABILITY_SXGMII); |
| |
| /* Restart PCS AN */ |
| enetc_mdio_write(&priv->imdio, ENETC_PCS_PHY_ADDR, ENETC_PCS_DEVAD_REPL, |
| ENETC_PCS_CR, |
| ENETC_PCS_CR_RST | ENETC_PCS_CR_RESET_AN); |
| |
| return 0; |
| } |
| |
| /* Apply protocol specific configuration to MAC, serdes as needed */ |
| static void enetc_start_pcs(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| const char *if_str; |
| |
| priv->if_type = PHY_INTERFACE_MODE_NONE; |
| |
| /* register internal MDIO for debug purposes */ |
| if (enetc_read_port(priv, ENETC_PCAPR0) & ENETC_PCAPRO_MDIO) { |
| priv->imdio.read = enetc_mdio_read; |
| priv->imdio.write = enetc_mdio_write; |
| priv->imdio.priv = priv->port_regs + ENETC_PM_IMDIO_BASE; |
| strncpy(priv->imdio.name, dev->name, MDIO_NAME_LEN); |
| if (!miiphy_get_dev_by_name(priv->imdio.name)) |
| mdio_register(&priv->imdio); |
| } |
| |
| if (!ofnode_valid(dev_ofnode(dev))) { |
| enetc_dbg(dev, "no enetc ofnode found, skipping PCS set-up\n"); |
| return; |
| } |
| |
| if_str = ofnode_read_string(dev_ofnode(dev), "phy-mode"); |
| if (if_str) |
| priv->if_type = phy_get_interface_by_name(if_str); |
| else |
| enetc_dbg(dev, |
| "phy-mode property not found, defaulting to SGMII\n"); |
| if (priv->if_type < 0) |
| priv->if_type = PHY_INTERFACE_MODE_NONE; |
| |
| switch (priv->if_type) { |
| case PHY_INTERFACE_MODE_SGMII: |
| case PHY_INTERFACE_MODE_2500BASEX: |
| enetc_init_sgmii(dev); |
| break; |
| case PHY_INTERFACE_MODE_USXGMII: |
| case PHY_INTERFACE_MODE_10GBASER: |
| enetc_init_sxgmii(dev); |
| break; |
| }; |
| } |
| |
| /* Configure the actual/external ethernet PHY, if one is found */ |
| static int enetc_config_phy(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| int supported; |
| |
| priv->phy = dm_eth_phy_connect(dev); |
| if (!priv->phy) |
| return -ENODEV; |
| |
| supported = PHY_GBIT_FEATURES | SUPPORTED_2500baseX_Full; |
| priv->phy->supported &= supported; |
| priv->phy->advertising &= supported; |
| |
| return phy_config(priv->phy); |
| } |
| |
| /* |
| * Probe ENETC driver: |
| * - initialize port and station interface BARs |
| */ |
| static int enetc_probe(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| |
| if (ofnode_valid(dev_ofnode(dev)) && !ofnode_is_available(dev_ofnode(dev))) { |
| enetc_dbg(dev, "interface disabled\n"); |
| return -ENODEV; |
| } |
| |
| priv->enetc_txbd = memalign(ENETC_BD_ALIGN, |
| sizeof(struct enetc_tx_bd) * ENETC_BD_CNT); |
| priv->enetc_rxbd = memalign(ENETC_BD_ALIGN, |
| sizeof(union enetc_rx_bd) * ENETC_BD_CNT); |
| |
| if (!priv->enetc_txbd || !priv->enetc_rxbd) { |
| /* free should be able to handle NULL, just free all pointers */ |
| free(priv->enetc_txbd); |
| free(priv->enetc_rxbd); |
| |
| return -ENOMEM; |
| } |
| |
| /* initialize register */ |
| priv->regs_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0); |
| if (!priv->regs_base) { |
| enetc_dbg(dev, "failed to map BAR0\n"); |
| return -EINVAL; |
| } |
| priv->port_regs = priv->regs_base + ENETC_PORT_REGS_OFF; |
| |
| dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY); |
| |
| enetc_start_pcs(dev); |
| |
| return enetc_config_phy(dev); |
| } |
| |
| /* |
| * Remove the driver from an interface: |
| * - free up allocated memory |
| */ |
| static int enetc_remove(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| |
| free(priv->enetc_txbd); |
| free(priv->enetc_rxbd); |
| |
| return 0; |
| } |
| |
| /* |
| * LS1028A is the only part with IERB at this time and there are plans to |
| * change its structure, keep this LS1028A specific for now. |
| */ |
| #define LS1028A_IERB_BASE 0x1f0800000ULL |
| #define LS1028A_IERB_PSIPMAR0(pf, vf) (LS1028A_IERB_BASE + 0x8000 \ |
| + (pf) * 0x100 + (vf) * 8) |
| #define LS1028A_IERB_PSIPMAR1(pf, vf) (LS1028A_IERB_PSIPMAR0(pf, vf) + 4) |
| |
| static int enetc_ls1028a_write_hwaddr(struct udevice *dev) |
| { |
| struct pci_child_plat *ppdata = dev_get_parent_plat(dev); |
| const int devfn_to_pf[] = {0, 1, 2, -1, -1, -1, 3}; |
| struct eth_pdata *plat = dev_get_plat(dev); |
| int devfn = PCI_FUNC(ppdata->devfn); |
| u8 *addr = plat->enetaddr; |
| u32 lower, upper; |
| int pf; |
| |
| if (devfn >= ARRAY_SIZE(devfn_to_pf)) |
| return 0; |
| |
| pf = devfn_to_pf[devfn]; |
| if (pf < 0) |
| return 0; |
| |
| lower = *(const u16 *)(addr + 4); |
| upper = *(const u32 *)addr; |
| |
| out_le32(LS1028A_IERB_PSIPMAR0(pf, 0), upper); |
| out_le32(LS1028A_IERB_PSIPMAR1(pf, 0), lower); |
| |
| return 0; |
| } |
| |
| static int enetc_write_hwaddr(struct udevice *dev) |
| { |
| struct eth_pdata *plat = dev_get_plat(dev); |
| struct enetc_priv *priv = dev_get_priv(dev); |
| u8 *addr = plat->enetaddr; |
| |
| if (IS_ENABLED(CONFIG_ARCH_LS1028A)) |
| return enetc_ls1028a_write_hwaddr(dev); |
| |
| u16 lower = *(const u16 *)(addr + 4); |
| u32 upper = *(const u32 *)addr; |
| |
| enetc_write_port(priv, ENETC_PSIPMAR0, upper); |
| enetc_write_port(priv, ENETC_PSIPMAR1, lower); |
| |
| return 0; |
| } |
| |
| /* Configure port parameters (# of rings, frame size, enable port) */ |
| static void enetc_enable_si_port(struct enetc_priv *priv) |
| { |
| u32 val; |
| |
| /* set Rx/Tx BDR count */ |
| val = ENETC_PSICFGR_SET_TXBDR(ENETC_TX_BDR_CNT); |
| val |= ENETC_PSICFGR_SET_RXBDR(ENETC_RX_BDR_CNT); |
| enetc_write_port(priv, ENETC_PSICFGR(0), val); |
| /* set Rx max frame size */ |
| enetc_write_port(priv, ENETC_PM_MAXFRM, ENETC_RX_MAXFRM_SIZE); |
| /* enable MAC port */ |
| enetc_write_port(priv, ENETC_PM_CC, ENETC_PM_CC_RX_TX_EN); |
| /* enable port */ |
| enetc_write_port(priv, ENETC_PMR, ENETC_PMR_SI0_EN); |
| /* set SI cache policy */ |
| enetc_write(priv, ENETC_SICAR0, |
| ENETC_SICAR_RD_CFG | ENETC_SICAR_WR_CFG); |
| /* enable SI */ |
| enetc_write(priv, ENETC_SIMR, ENETC_SIMR_EN); |
| } |
| |
| /* returns DMA address for a given buffer index */ |
| static inline u64 enetc_rxb_address(struct udevice *dev, int i) |
| { |
| return cpu_to_le64(dm_pci_virt_to_mem(dev, net_rx_packets[i])); |
| } |
| |
| /* |
| * Setup a single Tx BD Ring (ID = 0): |
| * - set Tx buffer descriptor address |
| * - set the BD count |
| * - initialize the producer and consumer index |
| */ |
| static void enetc_setup_tx_bdr(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| struct bd_ring *tx_bdr = &priv->tx_bdr; |
| u64 tx_bd_add = (u64)priv->enetc_txbd; |
| |
| /* used later to advance to the next Tx BD */ |
| tx_bdr->bd_count = ENETC_BD_CNT; |
| tx_bdr->next_prod_idx = 0; |
| tx_bdr->next_cons_idx = 0; |
| tx_bdr->cons_idx = priv->regs_base + |
| ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBCIR); |
| tx_bdr->prod_idx = priv->regs_base + |
| ENETC_BDR(TX, ENETC_TX_BDR_ID, ENETC_TBPIR); |
| |
| /* set Tx BD address */ |
| enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR0, |
| lower_32_bits(tx_bd_add)); |
| enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBBAR1, |
| upper_32_bits(tx_bd_add)); |
| /* set Tx 8 BD count */ |
| enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBLENR, |
| tx_bdr->bd_count); |
| |
| /* reset both producer/consumer indexes */ |
| enetc_write_reg(tx_bdr->cons_idx, tx_bdr->next_cons_idx); |
| enetc_write_reg(tx_bdr->prod_idx, tx_bdr->next_prod_idx); |
| |
| /* enable TX ring */ |
| enetc_bdr_write(priv, TX, ENETC_TX_BDR_ID, ENETC_TBMR, ENETC_TBMR_EN); |
| } |
| |
| /* |
| * Setup a single Rx BD Ring (ID = 0): |
| * - set Rx buffer descriptors address (one descriptor per buffer) |
| * - set buffer size as max frame size |
| * - enable Rx ring |
| * - reset consumer and producer indexes |
| * - set buffer for each descriptor |
| */ |
| static void enetc_setup_rx_bdr(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| struct bd_ring *rx_bdr = &priv->rx_bdr; |
| u64 rx_bd_add = (u64)priv->enetc_rxbd; |
| int i; |
| |
| /* used later to advance to the next BD produced by ENETC HW */ |
| rx_bdr->bd_count = ENETC_BD_CNT; |
| rx_bdr->next_prod_idx = 0; |
| rx_bdr->next_cons_idx = 0; |
| rx_bdr->cons_idx = priv->regs_base + |
| ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBCIR); |
| rx_bdr->prod_idx = priv->regs_base + |
| ENETC_BDR(RX, ENETC_RX_BDR_ID, ENETC_RBPIR); |
| |
| /* set Rx BD address */ |
| enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR0, |
| lower_32_bits(rx_bd_add)); |
| enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBAR1, |
| upper_32_bits(rx_bd_add)); |
| /* set Rx BD count (multiple of 8) */ |
| enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBLENR, |
| rx_bdr->bd_count); |
| /* set Rx buffer size */ |
| enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBBSR, PKTSIZE_ALIGN); |
| |
| /* fill Rx BD */ |
| memset(priv->enetc_rxbd, 0, |
| rx_bdr->bd_count * sizeof(union enetc_rx_bd)); |
| for (i = 0; i < rx_bdr->bd_count; i++) { |
| priv->enetc_rxbd[i].w.addr = enetc_rxb_address(dev, i); |
| /* each RX buffer must be aligned to 64B */ |
| WARN_ON(priv->enetc_rxbd[i].w.addr & (ARCH_DMA_MINALIGN - 1)); |
| } |
| |
| /* reset producer (ENETC owned) and consumer (SW owned) index */ |
| enetc_write_reg(rx_bdr->cons_idx, rx_bdr->next_cons_idx); |
| enetc_write_reg(rx_bdr->prod_idx, rx_bdr->next_prod_idx); |
| |
| /* enable Rx ring */ |
| enetc_bdr_write(priv, RX, ENETC_RX_BDR_ID, ENETC_RBMR, ENETC_RBMR_EN); |
| } |
| |
| /* |
| * Start ENETC interface: |
| * - perform FLR |
| * - enable access to port and SI registers |
| * - set mac address |
| * - setup TX/RX buffer descriptors |
| * - enable Tx/Rx rings |
| */ |
| static int enetc_start(struct udevice *dev) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| |
| /* reset and enable the PCI device */ |
| dm_pci_flr(dev); |
| dm_pci_clrset_config16(dev, PCI_COMMAND, 0, |
| PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| |
| enetc_enable_si_port(priv); |
| |
| /* setup Tx/Rx buffer descriptors */ |
| enetc_setup_tx_bdr(dev); |
| enetc_setup_rx_bdr(dev); |
| |
| enetc_setup_mac_iface(dev, priv->phy); |
| |
| return phy_startup(priv->phy); |
| } |
| |
| /* |
| * Stop the network interface: |
| * - just quiesce it, we can wipe all configuration as _start starts from |
| * scratch each time |
| */ |
| static void enetc_stop(struct udevice *dev) |
| { |
| /* FLR is sufficient to quiesce the device */ |
| dm_pci_flr(dev); |
| /* leave the BARs accessible after we stop, this is needed to use |
| * internal MDIO in command line. |
| */ |
| dm_pci_clrset_config16(dev, PCI_COMMAND, 0, PCI_COMMAND_MEMORY); |
| } |
| |
| /* |
| * ENETC transmit packet: |
| * - check if Tx BD ring is full |
| * - set buffer/packet address (dma address) |
| * - set final fragment flag |
| * - try while producer index equals consumer index or timeout |
| */ |
| static int enetc_send(struct udevice *dev, void *packet, int length) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| struct bd_ring *txr = &priv->tx_bdr; |
| void *nv_packet = (void *)packet; |
| int tries = ENETC_POLL_TRIES; |
| u32 pi, ci; |
| |
| pi = txr->next_prod_idx; |
| ci = enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK; |
| /* Tx ring is full when */ |
| if (((pi + 1) % txr->bd_count) == ci) { |
| enetc_dbg(dev, "Tx BDR full\n"); |
| return -ETIMEDOUT; |
| } |
| enetc_dbg(dev, "TxBD[%d]send: pkt_len=%d, buff @0x%x%08x\n", pi, length, |
| upper_32_bits((u64)nv_packet), lower_32_bits((u64)nv_packet)); |
| |
| /* prepare Tx BD */ |
| memset(&priv->enetc_txbd[pi], 0x0, sizeof(struct enetc_tx_bd)); |
| priv->enetc_txbd[pi].addr = |
| cpu_to_le64(dm_pci_virt_to_mem(dev, nv_packet)); |
| priv->enetc_txbd[pi].buf_len = cpu_to_le16(length); |
| priv->enetc_txbd[pi].frm_len = cpu_to_le16(length); |
| priv->enetc_txbd[pi].flags = cpu_to_le16(ENETC_TXBD_FLAGS_F); |
| dmb(); |
| /* send frame: increment producer index */ |
| pi = (pi + 1) % txr->bd_count; |
| txr->next_prod_idx = pi; |
| enetc_write_reg(txr->prod_idx, pi); |
| while ((--tries >= 0) && |
| (pi != (enetc_read_reg(txr->cons_idx) & ENETC_BDR_IDX_MASK))) |
| udelay(10); |
| |
| return tries > 0 ? 0 : -ETIMEDOUT; |
| } |
| |
| /* |
| * Receive frame: |
| * - wait for the next BD to get ready bit set |
| * - clean up the descriptor |
| * - move on and indicate to HW that the cleaned BD is available for Rx |
| */ |
| static int enetc_recv(struct udevice *dev, int flags, uchar **packetp) |
| { |
| struct enetc_priv *priv = dev_get_priv(dev); |
| struct bd_ring *rxr = &priv->rx_bdr; |
| int tries = ENETC_POLL_TRIES; |
| int pi = rxr->next_prod_idx; |
| int ci = rxr->next_cons_idx; |
| u32 status; |
| int len; |
| u8 rdy; |
| |
| do { |
| dmb(); |
| status = le32_to_cpu(priv->enetc_rxbd[pi].r.lstatus); |
| /* check if current BD is ready to be consumed */ |
| rdy = ENETC_RXBD_STATUS_R(status); |
| } while (--tries >= 0 && !rdy); |
| |
| if (!rdy) |
| return -EAGAIN; |
| |
| dmb(); |
| len = le16_to_cpu(priv->enetc_rxbd[pi].r.buf_len); |
| *packetp = (uchar *)enetc_rxb_address(dev, pi); |
| enetc_dbg(dev, "RxBD[%d]: len=%d err=%d pkt=0x%x%08x\n", pi, len, |
| ENETC_RXBD_STATUS_ERRORS(status), |
| upper_32_bits((u64)*packetp), lower_32_bits((u64)*packetp)); |
| |
| /* BD clean up and advance to next in ring */ |
| memset(&priv->enetc_rxbd[pi], 0, sizeof(union enetc_rx_bd)); |
| priv->enetc_rxbd[pi].w.addr = enetc_rxb_address(dev, pi); |
| rxr->next_prod_idx = (pi + 1) % rxr->bd_count; |
| ci = (ci + 1) % rxr->bd_count; |
| rxr->next_cons_idx = ci; |
| dmb(); |
| /* free up the slot in the ring for HW */ |
| enetc_write_reg(rxr->cons_idx, ci); |
| |
| return len; |
| } |
| |
| static const struct eth_ops enetc_ops = { |
| .start = enetc_start, |
| .send = enetc_send, |
| .recv = enetc_recv, |
| .stop = enetc_stop, |
| .write_hwaddr = enetc_write_hwaddr, |
| }; |
| |
| U_BOOT_DRIVER(eth_enetc) = { |
| .name = ENETC_DRIVER_NAME, |
| .id = UCLASS_ETH, |
| .bind = enetc_bind, |
| .probe = enetc_probe, |
| .remove = enetc_remove, |
| .ops = &enetc_ops, |
| .priv_auto = sizeof(struct enetc_priv), |
| .plat_auto = sizeof(struct eth_pdata), |
| }; |
| |
| static struct pci_device_id enetc_ids[] = { |
| { PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, PCI_DEVICE_ID_ENETC_ETH) }, |
| {} |
| }; |
| |
| U_BOOT_PCI_DEVICE(eth_enetc, enetc_ids); |