| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2004-2007 Freescale Semiconductor, Inc. |
| * Copyright 2008 Sascha Hauer, kernel@pengutronix.de |
| * Copyright 2009 Ilya Yanok, <yanok@emcraft.com> |
| */ |
| |
| #include <common.h> |
| #include <log.h> |
| #include <nand.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/mtd/rawnand.h> |
| #include <asm/io.h> |
| #if defined(CONFIG_MX51) || defined(CONFIG_MX53) |
| #include <asm/arch/imx-regs.h> |
| #endif |
| #include "mxc_nand.h" |
| |
| #define DRIVER_NAME "mxc_nand" |
| |
| struct mxc_nand_host { |
| struct nand_chip *nand; |
| |
| struct mxc_nand_regs __iomem *regs; |
| #ifdef MXC_NFC_V3_2 |
| struct mxc_nand_ip_regs __iomem *ip_regs; |
| #endif |
| int spare_only; |
| int status_request; |
| int pagesize_2k; |
| int clk_act; |
| uint16_t col_addr; |
| unsigned int page_addr; |
| }; |
| |
| static struct mxc_nand_host mxc_host; |
| static struct mxc_nand_host *host = &mxc_host; |
| |
| /* Define delays in microsec for NAND device operations */ |
| #define TROP_US_DELAY 2000 |
| /* Macros to get byte and bit positions of ECC */ |
| #define COLPOS(x) ((x) >> 3) |
| #define BITPOS(x) ((x) & 0xf) |
| |
| /* Define single bit Error positions in Main & Spare area */ |
| #define MAIN_SINGLEBIT_ERROR 0x4 |
| #define SPARE_SINGLEBIT_ERROR 0x1 |
| |
| /* OOB placement block for use with hardware ecc generation */ |
| #if defined(MXC_NFC_V1) |
| #ifndef CFG_SYS_NAND_LARGEPAGE |
| static struct nand_ecclayout nand_hw_eccoob = { |
| .eccbytes = 5, |
| .eccpos = {6, 7, 8, 9, 10}, |
| .oobfree = { {0, 5}, {11, 5}, } |
| }; |
| #else |
| static struct nand_ecclayout nand_hw_eccoob2k = { |
| .eccbytes = 20, |
| .eccpos = { |
| 6, 7, 8, 9, 10, |
| 22, 23, 24, 25, 26, |
| 38, 39, 40, 41, 42, |
| 54, 55, 56, 57, 58, |
| }, |
| .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} }, |
| }; |
| #endif |
| #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) |
| #ifndef CFG_SYS_NAND_LARGEPAGE |
| static struct nand_ecclayout nand_hw_eccoob = { |
| .eccbytes = 9, |
| .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, |
| .oobfree = { {2, 5} } |
| }; |
| #else |
| static struct nand_ecclayout nand_hw_eccoob2k = { |
| .eccbytes = 36, |
| .eccpos = { |
| 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| }, |
| .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} }, |
| }; |
| #endif |
| #endif |
| |
| static int is_16bit_nand(void) |
| { |
| #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) |
| return 1; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size) |
| { |
| uint32_t *d = dest; |
| |
| size >>= 2; |
| while (size--) |
| __raw_writel(__raw_readl(source++), d++); |
| return dest; |
| } |
| |
| /* |
| * This function polls the NANDFC to wait for the basic operation to |
| * complete by checking the INT bit. |
| */ |
| static void wait_op_done(struct mxc_nand_host *host, int max_retries, |
| uint16_t param) |
| { |
| uint32_t tmp; |
| |
| while (max_retries-- > 0) { |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| tmp = readnfc(&host->regs->config2); |
| if (tmp & NFC_V1_V2_CONFIG2_INT) { |
| tmp &= ~NFC_V1_V2_CONFIG2_INT; |
| writenfc(tmp, &host->regs->config2); |
| #elif defined(MXC_NFC_V3_2) |
| tmp = readnfc(&host->ip_regs->ipc); |
| if (tmp & NFC_V3_IPC_INT) { |
| tmp &= ~NFC_V3_IPC_INT; |
| writenfc(tmp, &host->ip_regs->ipc); |
| #endif |
| break; |
| } |
| udelay(1); |
| } |
| if (max_retries < 0) { |
| pr_debug("%s(%d): INT not set\n", |
| __func__, param); |
| } |
| } |
| |
| /* |
| * This function issues the specified command to the NAND device and |
| * waits for completion. |
| */ |
| static void send_cmd(struct mxc_nand_host *host, uint16_t cmd) |
| { |
| pr_debug("send_cmd(host, 0x%x)\n", cmd); |
| |
| writenfc(cmd, &host->regs->flash_cmd); |
| writenfc(NFC_CMD, &host->regs->operation); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, cmd); |
| } |
| |
| /* |
| * This function sends an address (or partial address) to the |
| * NAND device. The address is used to select the source/destination for |
| * a NAND command. |
| */ |
| static void send_addr(struct mxc_nand_host *host, uint16_t addr) |
| { |
| pr_debug("send_addr(host, 0x%x)\n", addr); |
| |
| writenfc(addr, &host->regs->flash_addr); |
| writenfc(NFC_ADDR, &host->regs->operation); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, addr); |
| } |
| |
| /* |
| * This function requests the NANDFC to initiate the transfer |
| * of data currently in the NANDFC RAM buffer to the NAND device. |
| */ |
| static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, |
| int spare_only) |
| { |
| if (spare_only) |
| pr_debug("send_prog_page (%d)\n", spare_only); |
| |
| if (is_mxc_nfc_21() || is_mxc_nfc_32()) { |
| int i; |
| /* |
| * The controller copies the 64 bytes of spare data from |
| * the first 16 bytes of each of the 4 64 byte spare buffers. |
| * Copy the contiguous data starting in spare_area[0] to |
| * the four spare area buffers. |
| */ |
| for (i = 1; i < 4; i++) { |
| void __iomem *src = &host->regs->spare_area[0][i * 16]; |
| void __iomem *dst = &host->regs->spare_area[i][0]; |
| |
| mxc_nand_memcpy32(dst, src, 16); |
| } |
| } |
| |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| writenfc(buf_id, &host->regs->buf_addr); |
| #elif defined(MXC_NFC_V3_2) |
| uint32_t tmp = readnfc(&host->regs->config1); |
| tmp &= ~NFC_V3_CONFIG1_RBA_MASK; |
| tmp |= NFC_V3_CONFIG1_RBA(buf_id); |
| writenfc(tmp, &host->regs->config1); |
| #endif |
| |
| /* Configure spare or page+spare access */ |
| if (!host->pagesize_2k) { |
| uint32_t config1 = readnfc(&host->regs->config1); |
| if (spare_only) |
| config1 |= NFC_CONFIG1_SP_EN; |
| else |
| config1 &= ~NFC_CONFIG1_SP_EN; |
| writenfc(config1, &host->regs->config1); |
| } |
| |
| writenfc(NFC_INPUT, &host->regs->operation); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, spare_only); |
| } |
| |
| /* |
| * Requests NANDFC to initiate the transfer of data from the |
| * NAND device into in the NANDFC ram buffer. |
| */ |
| static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, |
| int spare_only) |
| { |
| pr_debug("send_read_page (%d)\n", spare_only); |
| |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| writenfc(buf_id, &host->regs->buf_addr); |
| #elif defined(MXC_NFC_V3_2) |
| uint32_t tmp = readnfc(&host->regs->config1); |
| tmp &= ~NFC_V3_CONFIG1_RBA_MASK; |
| tmp |= NFC_V3_CONFIG1_RBA(buf_id); |
| writenfc(tmp, &host->regs->config1); |
| #endif |
| |
| /* Configure spare or page+spare access */ |
| if (!host->pagesize_2k) { |
| uint32_t config1 = readnfc(&host->regs->config1); |
| if (spare_only) |
| config1 |= NFC_CONFIG1_SP_EN; |
| else |
| config1 &= ~NFC_CONFIG1_SP_EN; |
| writenfc(config1, &host->regs->config1); |
| } |
| |
| writenfc(NFC_OUTPUT, &host->regs->operation); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, spare_only); |
| |
| if (is_mxc_nfc_21() || is_mxc_nfc_32()) { |
| int i; |
| |
| /* |
| * The controller copies the 64 bytes of spare data to |
| * the first 16 bytes of each of the 4 spare buffers. |
| * Make the data contiguous starting in spare_area[0]. |
| */ |
| for (i = 1; i < 4; i++) { |
| void __iomem *src = &host->regs->spare_area[i][0]; |
| void __iomem *dst = &host->regs->spare_area[0][i * 16]; |
| |
| mxc_nand_memcpy32(dst, src, 16); |
| } |
| } |
| } |
| |
| /* Request the NANDFC to perform a read of the NAND device ID. */ |
| static void send_read_id(struct mxc_nand_host *host) |
| { |
| uint32_t tmp; |
| |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| /* NANDFC buffer 0 is used for device ID output */ |
| writenfc(0x0, &host->regs->buf_addr); |
| #elif defined(MXC_NFC_V3_2) |
| tmp = readnfc(&host->regs->config1); |
| tmp &= ~NFC_V3_CONFIG1_RBA_MASK; |
| writenfc(tmp, &host->regs->config1); |
| #endif |
| |
| /* Read ID into main buffer */ |
| tmp = readnfc(&host->regs->config1); |
| tmp &= ~NFC_CONFIG1_SP_EN; |
| writenfc(tmp, &host->regs->config1); |
| |
| writenfc(NFC_ID, &host->regs->operation); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, 0); |
| } |
| |
| /* |
| * This function requests the NANDFC to perform a read of the |
| * NAND device status and returns the current status. |
| */ |
| static uint16_t get_dev_status(struct mxc_nand_host *host) |
| { |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| void __iomem *main_buf = host->regs->main_area[1]; |
| uint32_t store; |
| #endif |
| uint32_t ret, tmp; |
| /* Issue status request to NAND device */ |
| |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| /* store the main area1 first word, later do recovery */ |
| store = readl(main_buf); |
| /* NANDFC buffer 1 is used for device status */ |
| writenfc(1, &host->regs->buf_addr); |
| #endif |
| |
| /* Read status into main buffer */ |
| tmp = readnfc(&host->regs->config1); |
| tmp &= ~NFC_CONFIG1_SP_EN; |
| writenfc(tmp, &host->regs->config1); |
| |
| writenfc(NFC_STATUS, &host->regs->operation); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, TROP_US_DELAY, 0); |
| |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| /* |
| * Status is placed in first word of main buffer |
| * get status, then recovery area 1 data |
| */ |
| ret = readw(main_buf); |
| writel(store, main_buf); |
| #elif defined(MXC_NFC_V3_2) |
| ret = readnfc(&host->regs->config1) >> 16; |
| #endif |
| |
| return ret; |
| } |
| |
| /* This function is used by upper layer to checks if device is ready */ |
| static int mxc_nand_dev_ready(struct mtd_info *mtd) |
| { |
| /* |
| * NFC handles R/B internally. Therefore, this function |
| * always returns status as ready. |
| */ |
| return 1; |
| } |
| |
| static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| uint16_t tmp = readnfc(&host->regs->config1); |
| |
| if (on) |
| tmp |= NFC_V1_V2_CONFIG1_ECC_EN; |
| else |
| tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN; |
| writenfc(tmp, &host->regs->config1); |
| #elif defined(MXC_NFC_V3_2) |
| uint32_t tmp = readnfc(&host->ip_regs->config2); |
| |
| if (on) |
| tmp |= NFC_V3_CONFIG2_ECC_EN; |
| else |
| tmp &= ~NFC_V3_CONFIG2_ECC_EN; |
| writenfc(tmp, &host->ip_regs->config2); |
| #endif |
| } |
| |
| #ifdef CONFIG_MXC_NAND_HWECC |
| static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| /* |
| * If HW ECC is enabled, we turn it on during init. There is |
| * no need to enable again here. |
| */ |
| } |
| |
| #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) |
| static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| uint8_t *buf = chip->oob_poi; |
| int length = mtd->oobsize; |
| int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| uint8_t *bufpoi = buf; |
| int i, toread; |
| |
| pr_debug("%s: Reading OOB area of page %u to oob %p\n", |
| __func__, page, buf); |
| |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); |
| for (i = 0; i < chip->ecc.steps; i++) { |
| toread = min_t(int, length, chip->ecc.prepad); |
| if (toread) { |
| chip->read_buf(mtd, bufpoi, toread); |
| bufpoi += toread; |
| length -= toread; |
| } |
| bufpoi += chip->ecc.bytes; |
| host->col_addr += chip->ecc.bytes; |
| length -= chip->ecc.bytes; |
| |
| toread = min_t(int, length, chip->ecc.postpad); |
| if (toread) { |
| chip->read_buf(mtd, bufpoi, toread); |
| bufpoi += toread; |
| length -= toread; |
| } |
| } |
| if (length > 0) |
| chip->read_buf(mtd, bufpoi, length); |
| |
| _mxc_nand_enable_hwecc(mtd, 0); |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, |
| mtd->writesize + chip->ecc.prepad, page); |
| bufpoi = buf + chip->ecc.prepad; |
| length = mtd->oobsize - chip->ecc.prepad; |
| for (i = 0; i < chip->ecc.steps; i++) { |
| toread = min_t(int, length, chip->ecc.bytes); |
| chip->read_buf(mtd, bufpoi, toread); |
| bufpoi += eccpitch; |
| length -= eccpitch; |
| host->col_addr += chip->ecc.postpad + chip->ecc.prepad; |
| } |
| _mxc_nand_enable_hwecc(mtd, 1); |
| return 1; |
| } |
| |
| static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint8_t *buf, |
| int oob_required, |
| int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| uint8_t *oob = chip->oob_poi; |
| int steps, size; |
| int n; |
| |
| _mxc_nand_enable_hwecc(mtd, 0); |
| chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); |
| |
| for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { |
| host->col_addr = n * eccsize; |
| chip->read_buf(mtd, buf, eccsize); |
| buf += eccsize; |
| |
| host->col_addr = mtd->writesize + n * eccpitch; |
| if (chip->ecc.prepad) { |
| chip->read_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->read_buf(mtd, oob, eccbytes); |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->read_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| size = mtd->oobsize - (oob - chip->oob_poi); |
| if (size) |
| chip->read_buf(mtd, oob, size); |
| _mxc_nand_enable_hwecc(mtd, 1); |
| |
| return 0; |
| } |
| |
| static int mxc_nand_read_page_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| uint8_t *buf, |
| int oob_required, |
| int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int n, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| |
| pr_debug("Reading page %u to buf %p oob %p\n", |
| page, buf, oob); |
| |
| /* first read the data area and the available portion of OOB */ |
| for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { |
| int stat; |
| |
| host->col_addr = n * eccsize; |
| |
| chip->read_buf(mtd, p, eccsize); |
| |
| host->col_addr = mtd->writesize + n * eccpitch; |
| |
| if (chip->ecc.prepad) { |
| chip->read_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| stat = chip->ecc.correct(mtd, p, oob, NULL); |
| |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->read_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| /* Calculate remaining oob bytes */ |
| n = mtd->oobsize - (oob - chip->oob_poi); |
| if (n) |
| chip->read_buf(mtd, oob, n); |
| |
| /* Then switch ECC off and read the OOB area to get the ECC code */ |
| _mxc_nand_enable_hwecc(mtd, 0); |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); |
| eccsteps = chip->ecc.steps; |
| oob = chip->oob_poi + chip->ecc.prepad; |
| for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { |
| host->col_addr = mtd->writesize + |
| n * eccpitch + |
| chip->ecc.prepad; |
| chip->read_buf(mtd, oob, eccbytes); |
| oob += eccbytes + chip->ecc.postpad; |
| } |
| _mxc_nand_enable_hwecc(mtd, 1); |
| return 0; |
| } |
| |
| static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; |
| int length = mtd->oobsize; |
| int i, len, status, steps = chip->ecc.steps; |
| const uint8_t *bufpoi = chip->oob_poi; |
| |
| chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); |
| for (i = 0; i < steps; i++) { |
| len = min_t(int, length, eccpitch); |
| |
| chip->write_buf(mtd, bufpoi, len); |
| bufpoi += len; |
| length -= len; |
| host->col_addr += chip->ecc.prepad + chip->ecc.postpad; |
| } |
| if (length > 0) |
| chip->write_buf(mtd, bufpoi, length); |
| |
| chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); |
| status = chip->waitfunc(mtd, chip); |
| return status & NAND_STATUS_FAIL ? -EIO : 0; |
| } |
| |
| static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| uint8_t *oob = chip->oob_poi; |
| int steps, size; |
| int n; |
| |
| for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { |
| host->col_addr = n * eccsize; |
| chip->write_buf(mtd, buf, eccsize); |
| buf += eccsize; |
| |
| host->col_addr = mtd->writesize + n * eccpitch; |
| |
| if (chip->ecc.prepad) { |
| chip->write_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| host->col_addr += eccbytes; |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->write_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| size = mtd->oobsize - (oob - chip->oob_poi); |
| if (size) |
| chip->write_buf(mtd, oob, size); |
| return 0; |
| } |
| |
| static int mxc_nand_write_page_syndrome(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, |
| int oob_required, int page) |
| { |
| struct mxc_nand_host *host = nand_get_controller_data(chip); |
| int i, n, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; |
| int eccsteps = chip->ecc.steps; |
| const uint8_t *p = buf; |
| uint8_t *oob = chip->oob_poi; |
| |
| chip->ecc.hwctl(mtd, NAND_ECC_WRITE); |
| |
| for (i = n = 0; |
| eccsteps; |
| n++, eccsteps--, i += eccbytes, p += eccsize) { |
| host->col_addr = n * eccsize; |
| |
| chip->write_buf(mtd, p, eccsize); |
| |
| host->col_addr = mtd->writesize + n * eccpitch; |
| |
| if (chip->ecc.prepad) { |
| chip->write_buf(mtd, oob, chip->ecc.prepad); |
| oob += chip->ecc.prepad; |
| } |
| |
| chip->write_buf(mtd, oob, eccbytes); |
| oob += eccbytes; |
| |
| if (chip->ecc.postpad) { |
| chip->write_buf(mtd, oob, chip->ecc.postpad); |
| oob += chip->ecc.postpad; |
| } |
| } |
| |
| /* Calculate remaining oob bytes */ |
| i = mtd->oobsize - (oob - chip->oob_poi); |
| if (i) |
| chip->write_buf(mtd, oob, i); |
| return 0; |
| } |
| |
| static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint32_t ecc_status = readl(&host->regs->ecc_status_result); |
| int subpages = mtd->writesize / nand_chip->subpagesize; |
| int pg2blk_shift = nand_chip->phys_erase_shift - |
| nand_chip->page_shift; |
| |
| do { |
| if ((ecc_status & 0xf) > 4) { |
| static int last_bad = -1; |
| |
| if (last_bad != host->page_addr >> pg2blk_shift) { |
| last_bad = host->page_addr >> pg2blk_shift; |
| printk(KERN_DEBUG |
| "MXC_NAND: HWECC uncorrectable ECC error" |
| " in block %u page %u subpage %d\n", |
| last_bad, host->page_addr, |
| mtd->writesize / nand_chip->subpagesize |
| - subpages); |
| } |
| return -EBADMSG; |
| } |
| ecc_status >>= 4; |
| subpages--; |
| } while (subpages > 0); |
| |
| return 0; |
| } |
| #else |
| #define mxc_nand_read_page_syndrome NULL |
| #define mxc_nand_read_page_raw_syndrome NULL |
| #define mxc_nand_read_oob_syndrome NULL |
| #define mxc_nand_write_page_syndrome NULL |
| #define mxc_nand_write_page_raw_syndrome NULL |
| #define mxc_nand_write_oob_syndrome NULL |
| |
| static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| /* |
| * 1-Bit errors are automatically corrected in HW. No need for |
| * additional correction. 2-Bit errors cannot be corrected by |
| * HW ECC, so we need to return failure |
| */ |
| uint16_t ecc_status = readnfc(&host->regs->ecc_status_result); |
| |
| if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { |
| pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); |
| return -EBADMSG; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| return 0; |
| } |
| #endif |
| |
| static u_char mxc_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint8_t ret = 0; |
| uint16_t col; |
| uint16_t __iomem *main_buf = |
| (uint16_t __iomem *)host->regs->main_area[0]; |
| uint16_t __iomem *spare_buf = |
| (uint16_t __iomem *)host->regs->spare_area[0]; |
| union { |
| uint16_t word; |
| uint8_t bytes[2]; |
| } nfc_word; |
| |
| /* Check for status request */ |
| if (host->status_request) |
| return get_dev_status(host) & 0xFF; |
| |
| /* Get column for 16-bit access */ |
| col = host->col_addr >> 1; |
| |
| /* If we are accessing the spare region */ |
| if (host->spare_only) |
| nfc_word.word = readw(&spare_buf[col]); |
| else |
| nfc_word.word = readw(&main_buf[col]); |
| |
| /* Pick upper/lower byte of word from RAM buffer */ |
| ret = nfc_word.bytes[host->col_addr & 0x1]; |
| |
| /* Update saved column address */ |
| if (nand_chip->options & NAND_BUSWIDTH_16) |
| host->col_addr += 2; |
| else |
| host->col_addr++; |
| |
| return ret; |
| } |
| |
| static uint16_t mxc_nand_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| uint16_t col, ret; |
| uint16_t __iomem *p; |
| |
| pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr); |
| |
| col = host->col_addr; |
| /* Adjust saved column address */ |
| if (col < mtd->writesize && host->spare_only) |
| col += mtd->writesize; |
| |
| if (col < mtd->writesize) { |
| p = (uint16_t __iomem *)(host->regs->main_area[0] + |
| (col >> 1)); |
| } else { |
| p = (uint16_t __iomem *)(host->regs->spare_area[0] + |
| ((col - mtd->writesize) >> 1)); |
| } |
| |
| if (col & 1) { |
| union { |
| uint16_t word; |
| uint8_t bytes[2]; |
| } nfc_word[3]; |
| |
| nfc_word[0].word = readw(p); |
| nfc_word[1].word = readw(p + 1); |
| |
| nfc_word[2].bytes[0] = nfc_word[0].bytes[1]; |
| nfc_word[2].bytes[1] = nfc_word[1].bytes[0]; |
| |
| ret = nfc_word[2].word; |
| } else { |
| ret = readw(p); |
| } |
| |
| /* Update saved column address */ |
| host->col_addr = col + 2; |
| |
| return ret; |
| } |
| |
| /* |
| * Write data of length len to buffer buf. The data to be |
| * written on NAND Flash is first copied to RAMbuffer. After the Data Input |
| * Operation by the NFC, the data is written to NAND Flash |
| */ |
| static void mxc_nand_write_buf(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| int n, col, i = 0; |
| |
| pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, |
| len); |
| |
| col = host->col_addr; |
| |
| /* Adjust saved column address */ |
| if (col < mtd->writesize && host->spare_only) |
| col += mtd->writesize; |
| |
| n = mtd->writesize + mtd->oobsize - col; |
| n = min(len, n); |
| |
| pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); |
| |
| while (n > 0) { |
| void __iomem *p; |
| |
| if (col < mtd->writesize) { |
| p = host->regs->main_area[0] + (col & ~3); |
| } else { |
| p = host->regs->spare_area[0] - |
| mtd->writesize + (col & ~3); |
| } |
| |
| pr_debug("%s:%d: p = %p\n", __func__, |
| __LINE__, p); |
| |
| if (((col | (unsigned long)&buf[i]) & 3) || n < 4) { |
| union { |
| uint32_t word; |
| uint8_t bytes[4]; |
| } nfc_word; |
| |
| nfc_word.word = readl(p); |
| nfc_word.bytes[col & 3] = buf[i++]; |
| n--; |
| col++; |
| |
| writel(nfc_word.word, p); |
| } else { |
| int m = mtd->writesize - col; |
| |
| if (col >= mtd->writesize) |
| m += mtd->oobsize; |
| |
| m = min(n, m) & ~3; |
| |
| pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n", |
| __func__, __LINE__, n, m, i, col); |
| |
| mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m); |
| col += m; |
| i += m; |
| n -= m; |
| } |
| } |
| /* Update saved column address */ |
| host->col_addr = col; |
| } |
| |
| /* |
| * Read the data buffer from the NAND Flash. To read the data from NAND |
| * Flash first the data output cycle is initiated by the NFC, which copies |
| * the data to RAMbuffer. This data of length len is then copied to buffer buf. |
| */ |
| static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| int n, col, i = 0; |
| |
| pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, |
| len); |
| |
| col = host->col_addr; |
| |
| /* Adjust saved column address */ |
| if (col < mtd->writesize && host->spare_only) |
| col += mtd->writesize; |
| |
| n = mtd->writesize + mtd->oobsize - col; |
| n = min(len, n); |
| |
| while (n > 0) { |
| void __iomem *p; |
| |
| if (col < mtd->writesize) { |
| p = host->regs->main_area[0] + (col & ~3); |
| } else { |
| p = host->regs->spare_area[0] - |
| mtd->writesize + (col & ~3); |
| } |
| |
| if (((col | (int)&buf[i]) & 3) || n < 4) { |
| union { |
| uint32_t word; |
| uint8_t bytes[4]; |
| } nfc_word; |
| |
| nfc_word.word = readl(p); |
| buf[i++] = nfc_word.bytes[col & 3]; |
| n--; |
| col++; |
| } else { |
| int m = mtd->writesize - col; |
| |
| if (col >= mtd->writesize) |
| m += mtd->oobsize; |
| |
| m = min(n, m) & ~3; |
| mxc_nand_memcpy32((uint32_t *)&buf[i], p, m); |
| |
| col += m; |
| i += m; |
| n -= m; |
| } |
| } |
| /* Update saved column address */ |
| host->col_addr = col; |
| } |
| |
| /* |
| * This function is used by upper layer for select and |
| * deselect of the NAND chip |
| */ |
| static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| switch (chip) { |
| case -1: |
| /* TODO: Disable the NFC clock */ |
| if (host->clk_act) |
| host->clk_act = 0; |
| break; |
| case 0: |
| /* TODO: Enable the NFC clock */ |
| if (!host->clk_act) |
| host->clk_act = 1; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Used by the upper layer to write command to NAND Flash for |
| * different operations to be carried out on NAND Flash |
| */ |
| void mxc_nand_command(struct mtd_info *mtd, unsigned command, |
| int column, int page_addr) |
| { |
| struct nand_chip *nand_chip = mtd_to_nand(mtd); |
| struct mxc_nand_host *host = nand_get_controller_data(nand_chip); |
| |
| pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", |
| command, column, page_addr); |
| |
| /* Reset command state information */ |
| host->status_request = false; |
| |
| /* Command pre-processing step */ |
| switch (command) { |
| |
| case NAND_CMD_STATUS: |
| host->col_addr = 0; |
| host->status_request = true; |
| break; |
| |
| case NAND_CMD_READ0: |
| host->page_addr = page_addr; |
| host->col_addr = column; |
| host->spare_only = false; |
| break; |
| |
| case NAND_CMD_READOOB: |
| host->col_addr = column; |
| host->spare_only = true; |
| if (host->pagesize_2k) |
| command = NAND_CMD_READ0; /* only READ0 is valid */ |
| break; |
| |
| case NAND_CMD_SEQIN: |
| if (column >= mtd->writesize) { |
| /* |
| * before sending SEQIN command for partial write, |
| * we need read one page out. FSL NFC does not support |
| * partial write. It always sends out 512+ecc+512+ecc |
| * for large page nand flash. But for small page nand |
| * flash, it does support SPARE ONLY operation. |
| */ |
| if (host->pagesize_2k) { |
| /* call ourself to read a page */ |
| mxc_nand_command(mtd, NAND_CMD_READ0, 0, |
| page_addr); |
| } |
| |
| host->col_addr = column - mtd->writesize; |
| host->spare_only = true; |
| |
| /* Set program pointer to spare region */ |
| if (!host->pagesize_2k) |
| send_cmd(host, NAND_CMD_READOOB); |
| } else { |
| host->spare_only = false; |
| host->col_addr = column; |
| |
| /* Set program pointer to page start */ |
| if (!host->pagesize_2k) |
| send_cmd(host, NAND_CMD_READ0); |
| } |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| send_prog_page(host, 0, host->spare_only); |
| |
| if (host->pagesize_2k && is_mxc_nfc_1()) { |
| /* data in 4 areas */ |
| send_prog_page(host, 1, host->spare_only); |
| send_prog_page(host, 2, host->spare_only); |
| send_prog_page(host, 3, host->spare_only); |
| } |
| |
| break; |
| } |
| |
| /* Write out the command to the device. */ |
| send_cmd(host, command); |
| |
| /* Write out column address, if necessary */ |
| if (column != -1) { |
| /* |
| * MXC NANDFC can only perform full page+spare or |
| * spare-only read/write. When the upper layers perform |
| * a read/write buffer operation, we will use the saved |
| * column address to index into the full page. |
| */ |
| send_addr(host, 0); |
| if (host->pagesize_2k) |
| /* another col addr cycle for 2k page */ |
| send_addr(host, 0); |
| } |
| |
| /* Write out page address, if necessary */ |
| if (page_addr != -1) { |
| u32 page_mask = nand_chip->pagemask; |
| do { |
| send_addr(host, page_addr & 0xFF); |
| page_addr >>= 8; |
| page_mask >>= 8; |
| } while (page_mask); |
| } |
| |
| /* Command post-processing step */ |
| switch (command) { |
| |
| case NAND_CMD_RESET: |
| break; |
| |
| case NAND_CMD_READOOB: |
| case NAND_CMD_READ0: |
| if (host->pagesize_2k) { |
| /* send read confirm command */ |
| send_cmd(host, NAND_CMD_READSTART); |
| /* read for each AREA */ |
| send_read_page(host, 0, host->spare_only); |
| if (is_mxc_nfc_1()) { |
| send_read_page(host, 1, host->spare_only); |
| send_read_page(host, 2, host->spare_only); |
| send_read_page(host, 3, host->spare_only); |
| } |
| } else { |
| send_read_page(host, 0, host->spare_only); |
| } |
| break; |
| |
| case NAND_CMD_READID: |
| host->col_addr = 0; |
| send_read_id(host); |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| break; |
| |
| case NAND_CMD_STATUS: |
| break; |
| |
| case NAND_CMD_ERASE2: |
| break; |
| } |
| } |
| |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| |
| static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 4, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | |
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 4, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| #endif |
| |
| int board_nand_init(struct nand_chip *this) |
| { |
| struct mtd_info *mtd; |
| #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) |
| uint32_t tmp; |
| #endif |
| |
| #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT |
| this->bbt_options |= NAND_BBT_USE_FLASH; |
| this->bbt_td = &bbt_main_descr; |
| this->bbt_md = &bbt_mirror_descr; |
| #endif |
| |
| /* structures must be linked */ |
| mtd = &this->mtd; |
| host->nand = this; |
| |
| /* 5 us command delay time */ |
| this->chip_delay = 5; |
| |
| nand_set_controller_data(this, host); |
| this->dev_ready = mxc_nand_dev_ready; |
| this->cmdfunc = mxc_nand_command; |
| this->select_chip = mxc_nand_select_chip; |
| this->read_byte = mxc_nand_read_byte; |
| this->read_word = mxc_nand_read_word; |
| this->write_buf = mxc_nand_write_buf; |
| this->read_buf = mxc_nand_read_buf; |
| |
| host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE; |
| #ifdef MXC_NFC_V3_2 |
| host->ip_regs = |
| (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE; |
| #endif |
| host->clk_act = 1; |
| |
| #ifdef CONFIG_MXC_NAND_HWECC |
| this->ecc.calculate = mxc_nand_calculate_ecc; |
| this->ecc.hwctl = mxc_nand_enable_hwecc; |
| this->ecc.correct = mxc_nand_correct_data; |
| if (is_mxc_nfc_21() || is_mxc_nfc_32()) { |
| this->ecc.mode = NAND_ECC_HW_SYNDROME; |
| this->ecc.read_page = mxc_nand_read_page_syndrome; |
| this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome; |
| this->ecc.read_oob = mxc_nand_read_oob_syndrome; |
| this->ecc.write_page = mxc_nand_write_page_syndrome; |
| this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome; |
| this->ecc.write_oob = mxc_nand_write_oob_syndrome; |
| this->ecc.bytes = 9; |
| this->ecc.prepad = 7; |
| } else { |
| this->ecc.mode = NAND_ECC_HW; |
| } |
| |
| if (is_mxc_nfc_1()) |
| this->ecc.strength = 1; |
| else |
| this->ecc.strength = 4; |
| |
| host->pagesize_2k = 0; |
| |
| this->ecc.size = 512; |
| _mxc_nand_enable_hwecc(mtd, 1); |
| #else |
| this->ecc.layout = &nand_soft_eccoob; |
| this->ecc.mode = NAND_ECC_SOFT; |
| _mxc_nand_enable_hwecc(mtd, 0); |
| #endif |
| /* Reset NAND */ |
| this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| /* NAND bus width determines access functions used by upper layer */ |
| if (is_16bit_nand()) |
| this->options |= NAND_BUSWIDTH_16; |
| |
| #ifdef CFG_SYS_NAND_LARGEPAGE |
| host->pagesize_2k = 1; |
| this->ecc.layout = &nand_hw_eccoob2k; |
| #else |
| host->pagesize_2k = 0; |
| this->ecc.layout = &nand_hw_eccoob; |
| #endif |
| |
| #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) |
| #ifdef MXC_NFC_V2_1 |
| tmp = readnfc(&host->regs->config1); |
| tmp |= NFC_V2_CONFIG1_ONE_CYCLE; |
| tmp |= NFC_V2_CONFIG1_ECC_MODE_4; |
| writenfc(tmp, &host->regs->config1); |
| if (host->pagesize_2k) |
| writenfc(64/2, &host->regs->spare_area_size); |
| else |
| writenfc(16/2, &host->regs->spare_area_size); |
| #endif |
| |
| /* |
| * preset operation |
| * Unlock the internal RAM Buffer |
| */ |
| writenfc(0x2, &host->regs->config); |
| |
| /* Blocks to be unlocked */ |
| writenfc(0x0, &host->regs->unlockstart_blkaddr); |
| /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the |
| * unlockend_blkaddr, but the magic 0x4000 does not always work |
| * when writing more than some 32 megabytes (on 2k page nands) |
| * However 0xFFFF doesn't seem to have this kind |
| * of limitation (tried it back and forth several times). |
| * The linux kernel driver sets this to 0xFFFF for the v2 controller |
| * only, but probably this was not tested there for v1. |
| * The very same limitation seems to apply to this kernel driver. |
| * This might be NAND chip specific and the i.MX31 datasheet is |
| * extremely vague about the semantics of this register. |
| */ |
| writenfc(0xFFFF, &host->regs->unlockend_blkaddr); |
| |
| /* Unlock Block Command for given address range */ |
| writenfc(0x4, &host->regs->wrprot); |
| #elif defined(MXC_NFC_V3_2) |
| writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1); |
| writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc); |
| |
| /* Unlock the internal RAM Buffer */ |
| writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, |
| &host->ip_regs->wrprot); |
| |
| /* Blocks to be unlocked */ |
| for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++) |
| writenfc(0x0 | 0xFFFF << 16, |
| &host->ip_regs->wrprot_unlock_blkaddr[tmp]); |
| |
| writenfc(0, &host->ip_regs->ipc); |
| |
| tmp = readnfc(&host->ip_regs->config2); |
| tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK | |
| NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK); |
| tmp |= NFC_V3_CONFIG2_ONE_CYCLE; |
| |
| if (host->pagesize_2k) { |
| tmp |= NFC_V3_CONFIG2_SPAS(64/2); |
| tmp |= NFC_V3_CONFIG2_PS_2048; |
| } else { |
| tmp |= NFC_V3_CONFIG2_SPAS(16/2); |
| tmp |= NFC_V3_CONFIG2_PS_512; |
| } |
| |
| writenfc(tmp, &host->ip_regs->config2); |
| |
| tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) | |
| NFC_V3_CONFIG3_NO_SDMA | |
| NFC_V3_CONFIG3_RBB_MODE | |
| NFC_V3_CONFIG3_SBB(6) | /* Reset default */ |
| NFC_V3_CONFIG3_ADD_OP(0); |
| |
| if (!(this->options & NAND_BUSWIDTH_16)) |
| tmp |= NFC_V3_CONFIG3_FW8; |
| |
| writenfc(tmp, &host->ip_regs->config3); |
| |
| writenfc(0, &host->ip_regs->delay_line); |
| #endif |
| |
| return 0; |
| } |