blob: 5a8e58a741ca917481466440e7ae0a8598400c7a [file] [log] [blame]
/*
* drivers/nand/nand_util.c
*
* Copyright (C) 2006 by Weiss-Electronic GmbH.
* All rights reserved.
*
* @author: Guido Classen <clagix@gmail.com>
* @descr: NAND Flash support
* @references: borrowed heavily from Linux mtd-utils code:
* flash_eraseall.c by Arcom Control System Ltd
* nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
* and Thomas Gleixner (tglx@linutronix.de)
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
#include <common.h>
#if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY)
#include <command.h>
#include <watchdog.h>
#include <malloc.h>
#include <nand.h>
#include <jffs2/jffs2.h>
typedef struct erase_info erase_info_t;
typedef struct mtd_info mtd_info_t;
/* support only for native endian JFFS2 */
#define cpu_to_je16(x) (x)
#define cpu_to_je32(x) (x)
/*****************************************************************************/
static int nand_block_bad_scrub(struct mtd_info *mtd, loff_t ofs, int getchip)
{
return 0;
}
/**
* nand_erase_opts: - erase NAND flash with support for various options
* (jffs2 formating)
*
* @param meminfo NAND device to erase
* @param opts options, @see struct nand_erase_options
* @return 0 in case of success
*
* This code is ported from flash_eraseall.c from Linux mtd utils by
* Arcom Control System Ltd.
*/
int nand_erase_opts(nand_info_t *meminfo, const nand_erase_options_t *opts)
{
struct jffs2_unknown_node cleanmarker;
int clmpos = 0;
int clmlen = 8;
erase_info_t erase;
ulong erase_length;
int isNAND;
int bbtest = 1;
int result;
int percent_complete = -1;
int (*nand_block_bad_old)(struct mtd_info *, loff_t, int) = NULL;
const char *mtd_device = meminfo->name;
memset(&erase, 0, sizeof(erase));
erase.mtd = meminfo;
erase.len = meminfo->erasesize;
if (opts->offset == 0 && opts->length == 0) {
/* erase complete chip */
erase.addr = 0;
erase_length = meminfo->size;
} else {
/* erase specified region */
erase.addr = opts->offset;
erase_length = opts->length;
}
isNAND = meminfo->type == MTD_NANDFLASH ? 1 : 0;
if (opts->jffs2) {
cleanmarker.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
cleanmarker.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
if (isNAND) {
struct nand_oobinfo *oobinfo = &meminfo->oobinfo;
/* check for autoplacement */
if (oobinfo->useecc == MTD_NANDECC_AUTOPLACE) {
/* get the position of the free bytes */
if (!oobinfo->oobfree[0][1]) {
printf(" Eeep. Autoplacement selected "
"and no empty space in oob\n");
return -1;
}
clmpos = oobinfo->oobfree[0][0];
clmlen = oobinfo->oobfree[0][1];
if (clmlen > 8)
clmlen = 8;
} else {
/* legacy mode */
switch (meminfo->oobsize) {
case 8:
clmpos = 6;
clmlen = 2;
break;
case 16:
clmpos = 8;
clmlen = 8;
break;
case 64:
clmpos = 16;
clmlen = 8;
break;
}
}
cleanmarker.totlen = cpu_to_je32(8);
} else {
cleanmarker.totlen =
cpu_to_je32(sizeof(struct jffs2_unknown_node));
}
cleanmarker.hdr_crc = cpu_to_je32(
crc32_no_comp(0, (unsigned char *) &cleanmarker,
sizeof(struct jffs2_unknown_node) - 4));
}
/* scrub option allows to erase badblock. To prevent internal
* check from erase() method, set block check method to dummy
* and disable bad block table while erasing.
*/
if (opts->scrub) {
struct nand_chip *priv_nand = meminfo->priv;
nand_block_bad_old = priv_nand->block_bad;
priv_nand->block_bad = nand_block_bad_scrub;
/* we don't need the bad block table anymore...
* after scrub, there are no bad blocks left!
*/
if (priv_nand->bbt) {
kfree(priv_nand->bbt);
}
priv_nand->bbt = NULL;
}
for (;
erase.addr < opts->offset + erase_length;
erase.addr += meminfo->erasesize) {
WATCHDOG_RESET ();
if (!opts->scrub && bbtest) {
int ret = meminfo->block_isbad(meminfo, erase.addr);
if (ret > 0) {
if (!opts->quiet)
printf("\rSkipping bad block at "
"0x%08x "
" \n",
erase.addr);
continue;
} else if (ret < 0) {
printf("\n%s: MTD get bad block failed: %d\n",
mtd_device,
ret);
return -1;
}
}
result = meminfo->erase(meminfo, &erase);
if (result != 0) {
printf("\n%s: MTD Erase failure: %d\n",
mtd_device, result);
continue;
}
/* format for JFFS2 ? */
if (opts->jffs2) {
/* write cleanmarker */
if (isNAND) {
size_t written;
result = meminfo->write_oob(meminfo,
erase.addr + clmpos,
clmlen,
&written,
(unsigned char *)
&cleanmarker);
if (result != 0) {
printf("\n%s: MTD writeoob failure: %d\n",
mtd_device, result);
continue;
}
} else {
printf("\n%s: this erase routine only supports"
" NAND devices!\n",
mtd_device);
}
}
if (!opts->quiet) {
int percent = (int)
((unsigned long long)
(erase.addr+meminfo->erasesize-opts->offset)
* 100 / erase_length);
/* output progress message only at whole percent
* steps to reduce the number of messages printed
* on (slow) serial consoles
*/
if (percent != percent_complete) {
percent_complete = percent;
printf("\rErasing at 0x%x -- %3d%% complete.",
erase.addr, percent);
if (opts->jffs2 && result == 0)
printf(" Cleanmarker written at 0x%x.",
erase.addr);
}
}
}
if (!opts->quiet)
printf("\n");
if (nand_block_bad_old) {
struct nand_chip *priv_nand = meminfo->priv;
priv_nand->block_bad = nand_block_bad_old;
priv_nand->scan_bbt(meminfo);
}
return 0;
}
#define MAX_PAGE_SIZE 2048
#define MAX_OOB_SIZE 64
/*
* buffer array used for writing data
*/
static unsigned char data_buf[MAX_PAGE_SIZE];
static unsigned char oob_buf[MAX_OOB_SIZE];
/* OOB layouts to pass into the kernel as default */
static struct nand_oobinfo none_oobinfo = {
.useecc = MTD_NANDECC_OFF,
};
static struct nand_oobinfo jffs2_oobinfo = {
.useecc = MTD_NANDECC_PLACE,
.eccbytes = 6,
.eccpos = { 0, 1, 2, 3, 6, 7 }
};
static struct nand_oobinfo yaffs_oobinfo = {
.useecc = MTD_NANDECC_PLACE,
.eccbytes = 6,
.eccpos = { 8, 9, 10, 13, 14, 15}
};
static struct nand_oobinfo autoplace_oobinfo = {
.useecc = MTD_NANDECC_AUTOPLACE
};
/**
* nand_write_opts: - write image to NAND flash with support for various options
*
* @param meminfo NAND device to erase
* @param opts write options (@see nand_write_options)
* @return 0 in case of success
*
* This code is ported from nandwrite.c from Linux mtd utils by
* Steven J. Hill and Thomas Gleixner.
*/
int nand_write_opts(nand_info_t *meminfo, const nand_write_options_t *opts)
{
int imglen = 0;
int pagelen;
int baderaseblock;
int blockstart = -1;
loff_t offs;
int readlen;
int oobinfochanged = 0;
int percent_complete = -1;
struct nand_oobinfo old_oobinfo;
ulong mtdoffset = opts->offset;
ulong erasesize_blockalign;
u_char *buffer = opts->buffer;
size_t written;
int result;
if (opts->pad && opts->writeoob) {
printf("Can't pad when oob data is present.\n");
return -1;
}
/* set erasesize to specified number of blocks - to match
* jffs2 (virtual) block size */
if (opts->blockalign == 0) {
erasesize_blockalign = meminfo->erasesize;
} else {
erasesize_blockalign = meminfo->erasesize * opts->blockalign;
}
/* make sure device page sizes are valid */
if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
&& !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
&& !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
printf("Unknown flash (not normal NAND)\n");
return -1;
}
/* read the current oob info */
memcpy(&old_oobinfo, &meminfo->oobinfo, sizeof(old_oobinfo));
/* write without ecc? */
if (opts->noecc) {
memcpy(&meminfo->oobinfo, &none_oobinfo,
sizeof(meminfo->oobinfo));
oobinfochanged = 1;
}
/* autoplace ECC? */
if (opts->autoplace && (old_oobinfo.useecc != MTD_NANDECC_AUTOPLACE)) {
memcpy(&meminfo->oobinfo, &autoplace_oobinfo,
sizeof(meminfo->oobinfo));
oobinfochanged = 1;
}
/* force OOB layout for jffs2 or yaffs? */
if (opts->forcejffs2 || opts->forceyaffs) {
struct nand_oobinfo *oobsel =
opts->forcejffs2 ? &jffs2_oobinfo : &yaffs_oobinfo;
if (meminfo->oobsize == 8) {
if (opts->forceyaffs) {
printf("YAFSS cannot operate on "
"256 Byte page size\n");
goto restoreoob;
}
/* Adjust number of ecc bytes */
jffs2_oobinfo.eccbytes = 3;
}
memcpy(&meminfo->oobinfo, oobsel, sizeof(meminfo->oobinfo));
}
/* get image length */
imglen = opts->length;
pagelen = meminfo->oobblock
+ ((opts->writeoob != 0) ? meminfo->oobsize : 0);
/* check, if file is pagealigned */
if ((!opts->pad) && ((imglen % pagelen) != 0)) {
printf("Input block length is not page aligned\n");
goto restoreoob;
}
/* check, if length fits into device */
if (((imglen / pagelen) * meminfo->oobblock)
> (meminfo->size - opts->offset)) {
printf("Image %d bytes, NAND page %d bytes, "
"OOB area %u bytes, device size %u bytes\n",
imglen, pagelen, meminfo->oobblock, meminfo->size);
printf("Input block does not fit into device\n");
goto restoreoob;
}
if (!opts->quiet)
printf("\n");
/* get data from input and write to the device */
while (imglen && (mtdoffset < meminfo->size)) {
WATCHDOG_RESET ();
/*
* new eraseblock, check for bad block(s). Stay in the
* loop to be sure if the offset changes because of
* a bad block, that the next block that will be
* written to is also checked. Thus avoiding errors if
* the block(s) after the skipped block(s) is also bad
* (number of blocks depending on the blockalign
*/
while (blockstart != (mtdoffset & (~erasesize_blockalign+1))) {
blockstart = mtdoffset & (~erasesize_blockalign+1);
offs = blockstart;
baderaseblock = 0;
/* check all the blocks in an erase block for
* bad blocks */
do {
int ret = meminfo->block_isbad(meminfo, offs);
if (ret < 0) {
printf("Bad block check failed\n");
goto restoreoob;
}
if (ret == 1) {
baderaseblock = 1;
if (!opts->quiet)
printf("\rBad block at 0x%lx "
"in erase block from "
"0x%x will be skipped\n",
(long) offs,
blockstart);
}
if (baderaseblock) {
mtdoffset = blockstart
+ erasesize_blockalign;
}
offs += erasesize_blockalign
/ opts->blockalign;
} while (offs < blockstart + erasesize_blockalign);
}
readlen = meminfo->oobblock;
if (opts->pad && (imglen < readlen)) {
readlen = imglen;
memset(data_buf + readlen, 0xff,
meminfo->oobblock - readlen);
}
/* read page data from input memory buffer */
memcpy(data_buf, buffer, readlen);
buffer += readlen;
if (opts->writeoob) {
/* read OOB data from input memory block, exit
* on failure */
memcpy(oob_buf, buffer, meminfo->oobsize);
buffer += meminfo->oobsize;
/* write OOB data first, as ecc will be placed
* in there*/
result = meminfo->write_oob(meminfo,
mtdoffset,
meminfo->oobsize,
&written,
(unsigned char *)
&oob_buf);
if (result != 0) {
printf("\nMTD writeoob failure: %d\n",
result);
goto restoreoob;
}
imglen -= meminfo->oobsize;
}
/* write out the page data */
result = meminfo->write(meminfo,
mtdoffset,
meminfo->oobblock,
&written,
(unsigned char *) &data_buf);
if (result != 0) {
printf("writing NAND page at offset 0x%lx failed\n",
mtdoffset);
goto restoreoob;
}
imglen -= readlen;
if (!opts->quiet) {
int percent = (int)
((unsigned long long)
(opts->length-imglen) * 100
/ opts->length);
/* output progress message only at whole percent
* steps to reduce the number of messages printed
* on (slow) serial consoles
*/
if (percent != percent_complete) {
printf("\rWriting data at 0x%x "
"-- %3d%% complete.",
mtdoffset, percent);
percent_complete = percent;
}
}
mtdoffset += meminfo->oobblock;
}
if (!opts->quiet)
printf("\n");
restoreoob:
if (oobinfochanged) {
memcpy(&meminfo->oobinfo, &old_oobinfo,
sizeof(meminfo->oobinfo));
}
if (imglen > 0) {
printf("Data did not fit into device, due to bad blocks\n");
return -1;
}
/* return happy */
return 0;
}
/**
* nand_read_opts: - read image from NAND flash with support for various options
*
* @param meminfo NAND device to erase
* @param opts read options (@see struct nand_read_options)
* @return 0 in case of success
*
*/
int nand_read_opts(nand_info_t *meminfo, const nand_read_options_t *opts)
{
int imglen = opts->length;
int pagelen;
int baderaseblock;
int blockstart = -1;
int percent_complete = -1;
loff_t offs;
size_t readlen;
ulong mtdoffset = opts->offset;
u_char *buffer = opts->buffer;
int result;
/* make sure device page sizes are valid */
if (!(meminfo->oobsize == 16 && meminfo->oobblock == 512)
&& !(meminfo->oobsize == 8 && meminfo->oobblock == 256)
&& !(meminfo->oobsize == 64 && meminfo->oobblock == 2048)) {
printf("Unknown flash (not normal NAND)\n");
return -1;
}
pagelen = meminfo->oobblock
+ ((opts->readoob != 0) ? meminfo->oobsize : 0);
/* check, if length is not larger than device */
if (((imglen / pagelen) * meminfo->oobblock)
> (meminfo->size - opts->offset)) {
printf("Image %d bytes, NAND page %d bytes, "
"OOB area %u bytes, device size %u bytes\n",
imglen, pagelen, meminfo->oobblock, meminfo->size);
printf("Input block is larger than device\n");
return -1;
}
if (!opts->quiet)
printf("\n");
/* get data from input and write to the device */
while (imglen && (mtdoffset < meminfo->size)) {
WATCHDOG_RESET ();
/*
* new eraseblock, check for bad block(s). Stay in the
* loop to be sure if the offset changes because of
* a bad block, that the next block that will be
* written to is also checked. Thus avoiding errors if
* the block(s) after the skipped block(s) is also bad
* (number of blocks depending on the blockalign
*/
while (blockstart != (mtdoffset & (~meminfo->erasesize+1))) {
blockstart = mtdoffset & (~meminfo->erasesize+1);
offs = blockstart;
baderaseblock = 0;
/* check all the blocks in an erase block for
* bad blocks */
do {
int ret = meminfo->block_isbad(meminfo, offs);
if (ret < 0) {
printf("Bad block check failed\n");
return -1;
}
if (ret == 1) {
baderaseblock = 1;
if (!opts->quiet)
printf("\rBad block at 0x%lx "
"in erase block from "
"0x%x will be skipped\n",
(long) offs,
blockstart);
}
if (baderaseblock) {
mtdoffset = blockstart
+ meminfo->erasesize;
}
offs += meminfo->erasesize;
} while (offs < blockstart + meminfo->erasesize);
}
/* read page data to memory buffer */
result = meminfo->read(meminfo,
mtdoffset,
meminfo->oobblock,
&readlen,
(unsigned char *) &data_buf);
if (result != 0) {
printf("reading NAND page at offset 0x%lx failed\n",
mtdoffset);
return -1;
}
if (imglen < readlen) {
readlen = imglen;
}
memcpy(buffer, data_buf, readlen);
buffer += readlen;
imglen -= readlen;
if (opts->readoob) {
result = meminfo->read_oob(meminfo,
mtdoffset,
meminfo->oobsize,
&readlen,
(unsigned char *)
&oob_buf);
if (result != 0) {
printf("\nMTD readoob failure: %d\n",
result);
return -1;
}
if (imglen < readlen) {
readlen = imglen;
}
memcpy(buffer, oob_buf, readlen);
buffer += readlen;
imglen -= readlen;
}
if (!opts->quiet) {
int percent = (int)
((unsigned long long)
(opts->length-imglen) * 100
/ opts->length);
/* output progress message only at whole percent
* steps to reduce the number of messages printed
* on (slow) serial consoles
*/
if (percent != percent_complete) {
if (!opts->quiet)
printf("\rReading data from 0x%x "
"-- %3d%% complete.",
mtdoffset, percent);
percent_complete = percent;
}
}
mtdoffset += meminfo->oobblock;
}
if (!opts->quiet)
printf("\n");
if (imglen > 0) {
printf("Could not read entire image due to bad blocks\n");
return -1;
}
/* return happy */
return 0;
}
/******************************************************************************
* Support for locking / unlocking operations of some NAND devices
*****************************************************************************/
#define NAND_CMD_LOCK 0x2a
#define NAND_CMD_LOCK_TIGHT 0x2c
#define NAND_CMD_UNLOCK1 0x23
#define NAND_CMD_UNLOCK2 0x24
#define NAND_CMD_LOCK_STATUS 0x7a
/**
* nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
* state
*
* @param meminfo nand mtd instance
* @param tight bring device in lock tight mode
*
* @return 0 on success, -1 in case of error
*
* The lock / lock-tight command only applies to the whole chip. To get some
* parts of the chip lock and others unlocked use the following sequence:
*
* - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
* - Call nand_unlock() once for each consecutive area to be unlocked
* - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
*
* If the device is in lock-tight state software can't change the
* current active lock/unlock state of all pages. nand_lock() / nand_unlock()
* calls will fail. It is only posible to leave lock-tight state by
* an hardware signal (low pulse on _WP pin) or by power down.
*/
int nand_lock(nand_info_t *meminfo, int tight)
{
int ret = 0;
int status;
struct nand_chip *this = meminfo->priv;
/* select the NAND device */
this->select_chip(meminfo, 0);
this->cmdfunc(meminfo,
(tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
-1, -1);
/* call wait ready function */
status = this->waitfunc(meminfo, this, FL_WRITING);
/* see if device thinks it succeeded */
if (status & 0x01) {
ret = -1;
}
/* de-select the NAND device */
this->select_chip(meminfo, -1);
return ret;
}
/**
* nand_get_lock_status: - query current lock state from one page of NAND
* flash
*
* @param meminfo nand mtd instance
* @param offset page address to query (muss be page aligned!)
*
* @return -1 in case of error
* >0 lock status:
* bitfield with the following combinations:
* NAND_LOCK_STATUS_TIGHT: page in tight state
* NAND_LOCK_STATUS_LOCK: page locked
* NAND_LOCK_STATUS_UNLOCK: page unlocked
*
*/
int nand_get_lock_status(nand_info_t *meminfo, ulong offset)
{
int ret = 0;
int chipnr;
int page;
struct nand_chip *this = meminfo->priv;
/* select the NAND device */
chipnr = (int)(offset >> this->chip_shift);
this->select_chip(meminfo, chipnr);
if ((offset & (meminfo->oobblock - 1)) != 0) {
printf ("nand_get_lock_status: "
"Start address must be beginning of "
"nand page!\n");
ret = -1;
goto out;
}
/* check the Lock Status */
page = (int)(offset >> this->page_shift);
this->cmdfunc(meminfo, NAND_CMD_LOCK_STATUS, -1, page & this->pagemask);
ret = this->read_byte(meminfo) & (NAND_LOCK_STATUS_TIGHT
| NAND_LOCK_STATUS_LOCK
| NAND_LOCK_STATUS_UNLOCK);
out:
/* de-select the NAND device */
this->select_chip(meminfo, -1);
return ret;
}
/**
* nand_unlock: - Unlock area of NAND pages
* only one consecutive area can be unlocked at one time!
*
* @param meminfo nand mtd instance
* @param start start byte address
* @param length number of bytes to unlock (must be a multiple of
* page size nand->oobblock)
*
* @return 0 on success, -1 in case of error
*/
int nand_unlock(nand_info_t *meminfo, ulong start, ulong length)
{
int ret = 0;
int chipnr;
int status;
int page;
struct nand_chip *this = meminfo->priv;
printf ("nand_unlock: start: %08x, length: %d!\n",
(int)start, (int)length);
/* select the NAND device */
chipnr = (int)(start >> this->chip_shift);
this->select_chip(meminfo, chipnr);
/* check the WP bit */
this->cmdfunc(meminfo, NAND_CMD_STATUS, -1, -1);
if ((this->read_byte(meminfo) & 0x80) == 0) {
printf ("nand_unlock: Device is write protected!\n");
ret = -1;
goto out;
}
if ((start & (meminfo->oobblock - 1)) != 0) {
printf ("nand_unlock: Start address must be beginning of "
"nand page!\n");
ret = -1;
goto out;
}
if (length == 0 || (length & (meminfo->oobblock - 1)) != 0) {
printf ("nand_unlock: Length must be a multiple of nand page "
"size!\n");
ret = -1;
goto out;
}
/* submit address of first page to unlock */
page = (int)(start >> this->page_shift);
this->cmdfunc(meminfo, NAND_CMD_UNLOCK1, -1, page & this->pagemask);
/* submit ADDRESS of LAST page to unlock */
page += (int)(length >> this->page_shift) - 1;
this->cmdfunc(meminfo, NAND_CMD_UNLOCK2, -1, page & this->pagemask);
/* call wait ready function */
status = this->waitfunc(meminfo, this, FL_WRITING);
/* see if device thinks it succeeded */
if (status & 0x01) {
/* there was an error */
ret = -1;
goto out;
}
out:
/* de-select the NAND device */
this->select_chip(meminfo, -1);
return ret;
}
#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) */