blob: 360be758bb2e71469a0f7bbb98ef3894061095e7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015-2019 Variscite Ltd.
* Copyright (C) 2019 Parthiban Nallathambi <parthitce@gmail.com>
*/
#include <init.h>
#include <net.h>
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/mx6-pins.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/iomux-v3.h>
#include <asm/mach-imx/mxc_i2c.h>
#include <dm.h>
#include <fsl_esdhc_imx.h>
#include <i2c_eeprom.h>
#include <linux/bitops.h>
#include <malloc.h>
#include <miiphy.h>
#include <netdev.h>
#include <usb.h>
#include <usb/ehci-ci.h>
DECLARE_GLOBAL_DATA_PTR;
int dram_init(void)
{
gd->ram_size = imx_ddr_size();
return 0;
}
#ifdef CONFIG_NAND_MXS
#define GPMI_PAD_CTRL0 (PAD_CTL_PKE | PAD_CTL_PUE | PAD_CTL_PUS_100K_UP)
#define GPMI_PAD_CTRL1 (PAD_CTL_DSE_40ohm | PAD_CTL_SPEED_MED | \
PAD_CTL_SRE_FAST)
#define GPMI_PAD_CTRL2 (GPMI_PAD_CTRL0 | GPMI_PAD_CTRL1)
static iomux_v3_cfg_t const nand_pads[] = {
MX6_PAD_NAND_DATA00__RAWNAND_DATA00 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA01__RAWNAND_DATA01 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA02__RAWNAND_DATA02 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA03__RAWNAND_DATA03 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA04__RAWNAND_DATA04 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA05__RAWNAND_DATA05 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA06__RAWNAND_DATA06 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DATA07__RAWNAND_DATA07 | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_CLE__RAWNAND_CLE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_ALE__RAWNAND_ALE | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_CE0_B__RAWNAND_CE0_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_RE_B__RAWNAND_RE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_WE_B__RAWNAND_WE_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_WP_B__RAWNAND_WP_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_READY_B__RAWNAND_READY_B | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
MX6_PAD_NAND_DQS__RAWNAND_DQS | MUX_PAD_CTRL(GPMI_PAD_CTRL2),
};
static void setup_gpmi_nand(void)
{
struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
/* config gpmi nand iomux */
imx_iomux_v3_setup_multiple_pads(nand_pads, ARRAY_SIZE(nand_pads));
clrbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
/*
* config gpmi and bch clock to 100 MHz
* bch/gpmi select PLL2 PFD2 400M
* 100M = 400M / 4
*/
clrbits_le32(&mxc_ccm->cscmr1,
MXC_CCM_CSCMR1_BCH_CLK_SEL |
MXC_CCM_CSCMR1_GPMI_CLK_SEL);
clrsetbits_le32(&mxc_ccm->cscdr1,
MXC_CCM_CSCDR1_BCH_PODF_MASK |
MXC_CCM_CSCDR1_GPMI_PODF_MASK,
(3 << MXC_CCM_CSCDR1_BCH_PODF_OFFSET) |
(3 << MXC_CCM_CSCDR1_GPMI_PODF_OFFSET));
/* enable gpmi and bch clock gating */
setbits_le32(&mxc_ccm->CCGR4,
MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
/* enable apbh clock gating */
setbits_le32(&mxc_ccm->CCGR0, MXC_CCM_CCGR0_APBHDMA_MASK);
}
#endif
#ifdef CONFIG_FEC_MXC
#define ENET_CLK_PAD_CTRL (PAD_CTL_DSE_40ohm | PAD_CTL_SRE_FAST)
#define ENET_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_SPEED_HIGH | PAD_CTL_DSE_48ohm | \
PAD_CTL_SRE_FAST)
#define MDIO_PAD_CTRL (PAD_CTL_PUS_100K_UP | PAD_CTL_PUE | \
PAD_CTL_DSE_48ohm | PAD_CTL_SRE_FAST | \
PAD_CTL_ODE)
/*
* pin conflicts for fec1 and fec2, GPIO1_IO06 and GPIO1_IO07 can only
* be used for ENET1 or ENET2, cannot be used for both.
*/
static iomux_v3_cfg_t const fec1_pads[] = {
MX6_PAD_GPIO1_IO06__ENET1_MDIO | MUX_PAD_CTRL(MDIO_PAD_CTRL),
MX6_PAD_GPIO1_IO07__ENET1_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_DATA0__ENET1_TDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_DATA1__ENET1_TDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_EN__ENET1_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_TX_CLK__ENET1_REF_CLK1 | MUX_PAD_CTRL(ENET_CLK_PAD_CTRL),
MX6_PAD_ENET1_RX_DATA0__ENET1_RDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_DATA1__ENET1_RDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_ER__ENET1_RX_ER | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET1_RX_EN__ENET1_RX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
};
static iomux_v3_cfg_t const fec2_pads[] = {
MX6_PAD_GPIO1_IO06__ENET2_MDIO | MUX_PAD_CTRL(MDIO_PAD_CTRL),
MX6_PAD_GPIO1_IO07__ENET2_MDC | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_DATA0__ENET2_TDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_DATA1__ENET2_TDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_EN__ENET2_TX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_TX_CLK__ENET2_REF_CLK2 | MUX_PAD_CTRL(ENET_CLK_PAD_CTRL),
MX6_PAD_ENET2_RX_DATA0__ENET2_RDATA00 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_RX_DATA1__ENET2_RDATA01 | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_RX_ER__ENET2_RX_ER | MUX_PAD_CTRL(ENET_PAD_CTRL),
MX6_PAD_ENET2_RX_EN__ENET2_RX_EN | MUX_PAD_CTRL(ENET_PAD_CTRL),
};
static void setup_iomux_fec(int fec_id)
{
if (fec_id == 0)
imx_iomux_v3_setup_multiple_pads(fec1_pads,
ARRAY_SIZE(fec1_pads));
else
imx_iomux_v3_setup_multiple_pads(fec2_pads,
ARRAY_SIZE(fec2_pads));
}
int board_eth_init(struct bd_info *bis)
{
int ret = 0;
ret = fecmxc_initialize_multi(bis, CONFIG_FEC_ENET_DEV,
CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE);
#if defined(CONFIG_CI_UDC) && defined(CONFIG_USB_ETHER)
/* USB Ethernet Gadget */
usb_eth_initialize(bis);
#endif
return ret;
}
static int setup_fec(int fec_id)
{
struct iomuxc *const iomuxc_regs = (struct iomuxc *)IOMUXC_BASE_ADDR;
int ret;
if (fec_id == 0) {
/*
* Use 50M anatop loopback REF_CLK1 for ENET1,
* clear gpr1[13], set gpr1[17].
*/
clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC1_MASK,
IOMUX_GPR1_FEC1_CLOCK_MUX1_SEL_MASK);
} else {
/*
* Use 50M anatop loopback REF_CLK2 for ENET2,
* clear gpr1[14], set gpr1[18].
*/
clrsetbits_le32(&iomuxc_regs->gpr[1], IOMUX_GPR1_FEC2_MASK,
IOMUX_GPR1_FEC2_CLOCK_MUX1_SEL_MASK);
}
ret = enable_fec_anatop_clock(fec_id, ENET_50MHZ);
if (ret)
return ret;
enable_enet_clk(1);
return 0;
}
int board_phy_config(struct phy_device *phydev)
{
/*
* Defaults + Enable status LEDs (LED1: Activity, LED0: Link) & select
* 50 MHz RMII clock mode.
*/
phy_write(phydev, MDIO_DEVAD_NONE, 0x1f, 0x8190);
if (phydev->drv->config)
phydev->drv->config(phydev);
return 0;
}
#endif /* CONFIG_FEC_MXC */
int board_early_init_f(void)
{
setup_iomux_fec(CONFIG_FEC_ENET_DEV);
return 0;
}
int board_init(void)
{
/* Address of boot parameters */
gd->bd->bi_boot_params = PHYS_SDRAM + 0x100;
#ifdef CONFIG_FEC_MXC
setup_fec(CONFIG_FEC_ENET_DEV);
#endif
#ifdef CONFIG_NAND_MXS
setup_gpmi_nand();
#endif
return 0;
}
/* length of strings stored in the eeprom */
#define DART6UL_PN_LEN 16
#define DART6UL_ASSY_LEN 16
#define DART6UL_DATE_LEN 12
/* eeprom content, 512 bytes */
struct dart6ul_info {
u32 magic;
u8 partnumber[DART6UL_PN_LEN];
u8 assy[DART6UL_ASSY_LEN];
u8 date[DART6UL_DATE_LEN];
u32 custom_addr_val[32];
struct cmd {
u8 addr;
u8 index;
} custom_cmd[150];
u8 res[33];
u8 som_info;
u8 ddr_size;
u8 crc;
} __attribute__ ((__packed__));
#define DART6UL_INFO_STORAGE_GET(n) ((n) & 0x3)
#define DART6UL_INFO_WIFI_GET(n) ((n) >> 2 & 0x1)
#define DART6UL_INFO_REV_GET(n) ((n) >> 3 & 0x3)
#define DART6UL_DDRSIZE_IN_MIB(n) ((n) << 8)
#define DART6UL_INFO_MAGIC 0x32524156
static const char *som_info_storage_to_str(u8 som_info)
{
switch (DART6UL_INFO_STORAGE_GET(som_info)) {
case 0x0: return "none (SD only)";
case 0x1: return "NAND";
case 0x2: return "eMMC";
default: return "unknown";
}
}
static const char *som_info_rev_to_str(u8 som_info)
{
switch (DART6UL_INFO_REV_GET(som_info)) {
case 0x0: return "2.4G";
case 0x1: return "5G";
default: return "unknown";
}
}
int checkboard(void)
{
const char *path = "eeprom0";
struct dart6ul_info *info;
struct udevice *dev;
int ret, off;
off = fdt_path_offset(gd->fdt_blob, path);
if (off < 0) {
printf("%s: fdt_path_offset() failed: %d\n", __func__, off);
return off;
}
ret = uclass_get_device_by_of_offset(UCLASS_I2C_EEPROM, off, &dev);
if (ret) {
printf("%s: uclass_get_device_by_of_offset() failed: %d\n", __func__, ret);
return ret;
}
info = malloc(sizeof(struct dart6ul_info));
if (!info)
return -ENOMEM;
ret = i2c_eeprom_read(dev, 0, (uint8_t *)info,
sizeof(struct dart6ul_info));
if (ret) {
printf("%s: i2c_eeprom_read() failed: %d\n", __func__, ret);
free(info);
return ret;
}
if (info->magic != DART6UL_INFO_MAGIC) {
printf("Board: Invalid board info magic: 0x%08x, expected 0x%08x\n",
info->magic, DART6UL_INFO_MAGIC);
/* do not fail if the content is invalid */
free(info);
return 0;
}
/* make sure strings are null terminated */
info->partnumber[DART6UL_PN_LEN - 1] = '\0';
info->assy[DART6UL_ASSY_LEN - 1] = '\0';
info->date[DART6UL_DATE_LEN - 1] = '\0';
printf("Board: PN: %s, Assy: %s, Date: %s\n"
" Storage: %s, Wifi: %s, DDR: %d MiB, Rev: %s\n",
info->partnumber,
info->assy,
info->date,
som_info_storage_to_str(info->som_info),
DART6UL_INFO_WIFI_GET(info->som_info) ? "yes" : "no",
DART6UL_DDRSIZE_IN_MIB(info->ddr_size),
som_info_rev_to_str(info->som_info));
free(info);
return 0;
}