blob: 8ad7c09efdd858039e0107023f45ebfdb0a4e824 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Linaro Limited
*/
#include <dm.h>
#include <sandboxtee.h>
#include <tee.h>
#include <tee/optee_ta_avb.h>
#include <tee/optee_ta_rpc_test.h>
#include <tee/optee_ta_scp03.h>
#include "optee/optee_msg.h"
#include "optee/optee_private.h"
/*
* The sandbox tee driver tries to emulate a generic Trusted Execution
* Environment (TEE) with the Trusted Applications (TA) OPTEE_TA_AVB and
* OPTEE_TA_RPC_TEST available.
*/
static const u32 pstorage_max = 16;
/**
* struct ta_entry - TA entries
* @uuid: UUID of an emulated TA
* @open_session Called when a session is opened to the TA
* @invoke_func Called when a function in the TA is to be invoked
*
* This struct is used to register TAs in this sandbox emulation of a TEE.
*/
struct ta_entry {
struct tee_optee_ta_uuid uuid;
u32 (*open_session)(struct udevice *dev, uint num_params,
struct tee_param *params);
u32 (*invoke_func)(struct udevice *dev,
u32 func, uint num_params,
struct tee_param *params);
};
static int get_msg_arg(struct udevice *dev, uint num_params,
struct tee_shm **shmp, struct optee_msg_arg **msg_arg)
{
int rc;
struct optee_msg_arg *ma;
rc = __tee_shm_add(dev, OPTEE_MSG_NONCONTIG_PAGE_SIZE, NULL,
OPTEE_MSG_GET_ARG_SIZE(num_params), TEE_SHM_ALLOC,
shmp);
if (rc)
return rc;
ma = (*shmp)->addr;
memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
ma->num_params = num_params;
*msg_arg = ma;
return 0;
}
void *optee_alloc_and_init_page_list(void *buf, ulong len,
u64 *phys_buf_ptr)
{
/*
* An empty stub is added just to fix linking issues.
* This function isn't supposed to be called in sandbox
* setup, otherwise replace this with a proper
* implementation from optee/core.c
*/
return NULL;
}
#if defined(CONFIG_OPTEE_TA_SCP03) || defined(CONFIG_OPTEE_TA_AVB)
static u32 get_attr(uint n, uint num_params, struct tee_param *params)
{
if (n >= num_params)
return TEE_PARAM_ATTR_TYPE_NONE;
return params[n].attr;
}
static u32 check_params(u8 p0, u8 p1, u8 p2, u8 p3, uint num_params,
struct tee_param *params)
{
u8 p[] = { p0, p1, p2, p3 };
uint n;
for (n = 0; n < ARRAY_SIZE(p); n++)
if (p[n] != get_attr(n, num_params, params))
goto bad_params;
for (; n < num_params; n++)
if (get_attr(n, num_params, params))
goto bad_params;
return TEE_SUCCESS;
bad_params:
printf("Bad param attrs\n");
return TEE_ERROR_BAD_PARAMETERS;
}
#endif
#ifdef CONFIG_OPTEE_TA_SCP03
static u32 pta_scp03_open_session(struct udevice *dev, uint num_params,
struct tee_param *params)
{
/*
* We don't expect additional parameters when opening a session to
* this TA.
*/
return check_params(TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
}
static u32 pta_scp03_invoke_func(struct udevice *dev, u32 func, uint num_params,
struct tee_param *params)
{
u32 res;
static bool enabled;
static bool provisioned;
switch (func) {
case PTA_CMD_ENABLE_SCP03:
res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
/* If SCP03 was not enabled, enable it */
if (!enabled)
enabled = true;
/* If SCP03 was not provisioned, provision new keys */
if (params[0].u.value.a && !provisioned)
provisioned = true;
/*
* Either way, we assume both operations succeeded and that
* the communication channel has now been established
*/
return TEE_SUCCESS;
default:
return TEE_ERROR_NOT_SUPPORTED;
}
}
#endif
#ifdef CONFIG_OPTEE_TA_AVB
static u32 ta_avb_open_session(struct udevice *dev, uint num_params,
struct tee_param *params)
{
/*
* We don't expect additional parameters when opening a session to
* this TA.
*/
return check_params(TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
}
static u32 ta_avb_invoke_func(struct udevice *dev, u32 func, uint num_params,
struct tee_param *params)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
struct env_entry e, *ep;
char *name;
u32 res;
uint slot;
u64 val;
char *value;
u32 value_sz;
switch (func) {
case TA_AVB_CMD_READ_ROLLBACK_INDEX:
res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT,
TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
slot = params[0].u.value.a;
if (slot >= ARRAY_SIZE(state->ta_avb_rollback_indexes)) {
printf("Rollback index slot out of bounds %u\n", slot);
return TEE_ERROR_BAD_PARAMETERS;
}
val = state->ta_avb_rollback_indexes[slot];
params[1].u.value.a = val >> 32;
params[1].u.value.b = val;
return TEE_SUCCESS;
case TA_AVB_CMD_WRITE_ROLLBACK_INDEX:
res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT,
TEE_PARAM_ATTR_TYPE_VALUE_INPUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
slot = params[0].u.value.a;
if (slot >= ARRAY_SIZE(state->ta_avb_rollback_indexes)) {
printf("Rollback index slot out of bounds %u\n", slot);
return TEE_ERROR_BAD_PARAMETERS;
}
val = (u64)params[1].u.value.a << 32 | params[1].u.value.b;
if (val < state->ta_avb_rollback_indexes[slot])
return TEE_ERROR_SECURITY;
state->ta_avb_rollback_indexes[slot] = val;
return TEE_SUCCESS;
case TA_AVB_CMD_READ_LOCK_STATE:
res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_OUTPUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
params[0].u.value.a = state->ta_avb_lock_state;
return TEE_SUCCESS;
case TA_AVB_CMD_WRITE_LOCK_STATE:
res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
if (state->ta_avb_lock_state != params[0].u.value.a) {
state->ta_avb_lock_state = params[0].u.value.a;
memset(state->ta_avb_rollback_indexes, 0,
sizeof(state->ta_avb_rollback_indexes));
}
return TEE_SUCCESS;
case TA_AVB_CMD_READ_PERSIST_VALUE:
res = check_params(TEE_PARAM_ATTR_TYPE_MEMREF_INPUT,
TEE_PARAM_ATTR_TYPE_MEMREF_INOUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
name = params[0].u.memref.shm->addr;
value = params[1].u.memref.shm->addr;
value_sz = params[1].u.memref.size;
e.key = name;
e.data = NULL;
hsearch_r(e, ENV_FIND, &ep, &state->pstorage_htab, 0);
if (!ep)
return TEE_ERROR_ITEM_NOT_FOUND;
value_sz = strlen(ep->data) + 1;
memcpy(value, ep->data, value_sz);
return TEE_SUCCESS;
case TA_AVB_CMD_WRITE_PERSIST_VALUE:
res = check_params(TEE_PARAM_ATTR_TYPE_MEMREF_INPUT,
TEE_PARAM_ATTR_TYPE_MEMREF_INPUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return res;
name = params[0].u.memref.shm->addr;
value = params[1].u.memref.shm->addr;
value_sz = params[1].u.memref.size;
e.key = name;
e.data = NULL;
hsearch_r(e, ENV_FIND, &ep, &state->pstorage_htab, 0);
if (ep)
hdelete_r(e.key, &state->pstorage_htab, 0);
e.key = name;
e.data = value;
hsearch_r(e, ENV_ENTER, &ep, &state->pstorage_htab, 0);
if (!ep)
return TEE_ERROR_OUT_OF_MEMORY;
return TEE_SUCCESS;
default:
return TEE_ERROR_NOT_SUPPORTED;
}
}
#endif /* OPTEE_TA_AVB */
#ifdef CONFIG_OPTEE_TA_RPC_TEST
static u32 ta_rpc_test_open_session(struct udevice *dev, uint num_params,
struct tee_param *params)
{
/*
* We don't expect additional parameters when opening a session to
* this TA.
*/
return check_params(TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE, TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
}
static void fill_i2c_rpc_params(struct optee_msg_arg *msg_arg, u64 bus_num,
u64 chip_addr, u64 xfer_flags, u64 op,
struct tee_param_memref memref)
{
msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT;
msg_arg->params[2].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INOUT;
msg_arg->params[3].attr = OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT;
/* trigger I2C services of TEE supplicant */
msg_arg->cmd = OPTEE_MSG_RPC_CMD_I2C_TRANSFER;
msg_arg->params[0].u.value.a = op;
msg_arg->params[0].u.value.b = bus_num;
msg_arg->params[0].u.value.c = chip_addr;
msg_arg->params[1].u.value.a = xfer_flags;
/* buffer to read/write data */
msg_arg->params[2].u.rmem.shm_ref = (ulong)memref.shm;
msg_arg->params[2].u.rmem.size = memref.size;
msg_arg->params[2].u.rmem.offs = memref.shm_offs;
msg_arg->num_params = 4;
}
static u32 ta_rpc_test_invoke_func(struct udevice *dev, u32 func,
uint num_params,
struct tee_param *params)
{
struct tee_shm *shm;
struct tee_param_memref memref_data;
struct optee_msg_arg *msg_arg;
int chip_addr, bus_num, op, xfer_flags;
int res;
res = check_params(TEE_PARAM_ATTR_TYPE_VALUE_INPUT,
TEE_PARAM_ATTR_TYPE_MEMREF_INOUT,
TEE_PARAM_ATTR_TYPE_NONE,
TEE_PARAM_ATTR_TYPE_NONE,
num_params, params);
if (res)
return TEE_ERROR_BAD_PARAMETERS;
bus_num = params[0].u.value.a;
chip_addr = params[0].u.value.b;
xfer_flags = params[0].u.value.c;
memref_data = params[1].u.memref;
switch (func) {
case TA_RPC_TEST_CMD_I2C_READ:
op = OPTEE_MSG_RPC_CMD_I2C_TRANSFER_RD;
break;
case TA_RPC_TEST_CMD_I2C_WRITE:
op = OPTEE_MSG_RPC_CMD_I2C_TRANSFER_WR;
break;
default:
return TEE_ERROR_NOT_SUPPORTED;
}
/*
* Fill params for an RPC call to tee supplicant
*/
res = get_msg_arg(dev, 4, &shm, &msg_arg);
if (res)
goto out;
fill_i2c_rpc_params(msg_arg, bus_num, chip_addr, xfer_flags, op,
memref_data);
/* Make an RPC call to tee supplicant */
optee_suppl_cmd(dev, shm, 0);
res = msg_arg->ret;
out:
tee_shm_free(shm);
return res;
}
#endif /* CONFIG_OPTEE_TA_RPC_TEST */
static const struct ta_entry ta_entries[] = {
#ifdef CONFIG_OPTEE_TA_AVB
{ .uuid = TA_AVB_UUID,
.open_session = ta_avb_open_session,
.invoke_func = ta_avb_invoke_func,
},
#endif
#ifdef CONFIG_OPTEE_TA_RPC_TEST
{ .uuid = TA_RPC_TEST_UUID,
.open_session = ta_rpc_test_open_session,
.invoke_func = ta_rpc_test_invoke_func,
},
#endif
#ifdef CONFIG_OPTEE_TA_SCP03
{ .uuid = PTA_SCP03_UUID,
.open_session = pta_scp03_open_session,
.invoke_func = pta_scp03_invoke_func,
},
#endif
};
static void sandbox_tee_get_version(struct udevice *dev,
struct tee_version_data *vers)
{
struct tee_version_data v = {
.gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM,
};
*vers = v;
}
static int sandbox_tee_close_session(struct udevice *dev, u32 session)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
if (!state->ta || state->session != session)
return -EINVAL;
state->session = 0;
state->ta = NULL;
return 0;
}
static const struct ta_entry *find_ta_entry(u8 uuid[TEE_UUID_LEN])
{
struct tee_optee_ta_uuid u;
uint n;
tee_optee_ta_uuid_from_octets(&u, uuid);
for (n = 0; n < ARRAY_SIZE(ta_entries); n++)
if (!memcmp(&u, &ta_entries[n].uuid, sizeof(u)))
return ta_entries + n;
return NULL;
}
static int sandbox_tee_open_session(struct udevice *dev,
struct tee_open_session_arg *arg,
uint num_params, struct tee_param *params)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
const struct ta_entry *ta;
if (state->ta) {
printf("A session is already open\n");
return -EBUSY;
}
ta = find_ta_entry(arg->uuid);
if (!ta) {
printf("Cannot find TA\n");
arg->ret = TEE_ERROR_ITEM_NOT_FOUND;
arg->ret_origin = TEE_ORIGIN_TEE;
return 0;
}
arg->ret = ta->open_session(dev, num_params, params);
arg->ret_origin = TEE_ORIGIN_TRUSTED_APP;
if (!arg->ret) {
state->ta = (void *)ta;
state->session = 1;
arg->session = state->session;
} else {
printf("Cannot open session, TA returns error\n");
}
return 0;
}
static int sandbox_tee_invoke_func(struct udevice *dev,
struct tee_invoke_arg *arg,
uint num_params, struct tee_param *params)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
struct ta_entry *ta = state->ta;
if (!arg->session) {
printf("Missing session\n");
return -EINVAL;
}
if (!ta) {
printf("TA session not available\n");
return -EINVAL;
}
if (arg->session != state->session) {
printf("Session mismatch\n");
return -EINVAL;
}
arg->ret = ta->invoke_func(dev, arg->func, num_params, params);
arg->ret_origin = TEE_ORIGIN_TRUSTED_APP;
return 0;
}
static int sandbox_tee_shm_register(struct udevice *dev, struct tee_shm *shm)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
state->num_shms++;
return 0;
}
static int sandbox_tee_shm_unregister(struct udevice *dev, struct tee_shm *shm)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
state->num_shms--;
return 0;
}
static int sandbox_tee_remove(struct udevice *dev)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
hdestroy_r(&state->pstorage_htab);
return 0;
}
static int sandbox_tee_probe(struct udevice *dev)
{
struct sandbox_tee_state *state = dev_get_priv(dev);
/*
* With this hastable we emulate persistent storage,
* which should contain persistent values
* between different sessions/command invocations.
*/
if (!hcreate_r(pstorage_max, &state->pstorage_htab))
return TEE_ERROR_OUT_OF_MEMORY;
return 0;
}
static const struct tee_driver_ops sandbox_tee_ops = {
.get_version = sandbox_tee_get_version,
.open_session = sandbox_tee_open_session,
.close_session = sandbox_tee_close_session,
.invoke_func = sandbox_tee_invoke_func,
.shm_register = sandbox_tee_shm_register,
.shm_unregister = sandbox_tee_shm_unregister,
};
static const struct udevice_id sandbox_tee_match[] = {
{ .compatible = "sandbox,tee" },
{},
};
U_BOOT_DRIVER(sandbox_tee) = {
.name = "sandbox_tee",
.id = UCLASS_TEE,
.of_match = sandbox_tee_match,
.ops = &sandbox_tee_ops,
.priv_auto = sizeof(struct sandbox_tee_state),
.probe = sandbox_tee_probe,
.remove = sandbox_tee_remove,
};