blob: 0aee57cb2f4a44af7b483e0e609e39ba584a06c0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2015-2017 Google, Inc
*
* USB Power Delivery protocol stack.
*/
#include <asm/gpio.h>
#include <asm/io.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/devres.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iopoll.h>
#include <time.h>
#include <usb/tcpm.h>
#include "tcpm-internal.h"
DECLARE_GLOBAL_DATA_PTR;
const char * const tcpm_states[] = {
FOREACH_TCPM_STATE(GENERATE_TCPM_STRING)
};
const char * const typec_pd_rev_name[] = {
[PD_REV10] = "rev1",
[PD_REV20] = "rev2",
[PD_REV30] = "rev3",
};
const char * const typec_role_name[] = {
[TYPEC_SINK] = "sink",
[TYPEC_SOURCE] = "source",
};
const char * const typec_data_role_name[] = {
[TYPEC_DEVICE] = "device",
[TYPEC_HOST] = "host",
};
const char * const typec_orientation_name[] = {
[TYPEC_ORIENTATION_NONE] = "none",
[TYPEC_ORIENTATION_NORMAL] = "normal",
[TYPEC_ORIENTATION_REVERSE] = "reverse",
};
const char * const typec_cc_status_name[] = {
[TYPEC_CC_OPEN] = "open",
[TYPEC_CC_RA] = "ra",
[TYPEC_CC_RD] = "rd",
[TYPEC_CC_RP_DEF] = "rp-def",
[TYPEC_CC_RP_1_5] = "rp-1.5",
[TYPEC_CC_RP_3_0] = "rp-3.0",
};
static inline bool tcpm_cc_is_sink(enum typec_cc_status cc)
{
return cc == TYPEC_CC_RP_DEF ||
cc == TYPEC_CC_RP_1_5 ||
cc == TYPEC_CC_RP_3_0;
}
static inline bool tcpm_port_is_sink(struct tcpm_port *port)
{
bool cc1_is_snk = tcpm_cc_is_sink(port->cc1);
bool cc2_is_snk = tcpm_cc_is_sink(port->cc2);
return (cc1_is_snk && !cc2_is_snk) ||
(cc2_is_snk && !cc1_is_snk);
}
static inline bool tcpm_cc_is_source(enum typec_cc_status cc)
{
return cc == TYPEC_CC_RD;
}
static inline bool tcpm_port_is_source(struct tcpm_port *port)
{
bool cc1_is_src = tcpm_cc_is_source(port->cc1);
bool cc2_is_src = tcpm_cc_is_source(port->cc2);
return (cc1_is_src && !cc2_is_src) ||
(cc2_is_src && !cc1_is_src);
}
static inline bool tcpm_try_src(struct tcpm_port *port)
{
return port->try_role == TYPEC_SOURCE &&
port->port_type == TYPEC_PORT_DRP;
}
static inline void tcpm_reset_event_cnt(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
port->poll_event_cnt = 0;
}
static enum tcpm_state tcpm_default_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->try_role == TYPEC_SINK)
return SNK_UNATTACHED;
else if (port->try_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
} else if (port->port_type == TYPEC_PORT_SNK) {
return SNK_UNATTACHED;
}
return SRC_UNATTACHED;
}
static bool tcpm_port_is_disconnected(struct tcpm_port *port)
{
return (!port->attached && port->cc1 == TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN) ||
(port->attached && ((port->polarity == TYPEC_POLARITY_CC1 &&
port->cc1 == TYPEC_CC_OPEN) ||
(port->polarity == TYPEC_POLARITY_CC2 &&
port->cc2 == TYPEC_CC_OPEN)));
}
static void tcpm_set_cc(struct udevice *dev, enum typec_cc_status cc)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: set cc = %d\n", cc);
port->cc_req = cc;
drvops->set_cc(dev, cc);
}
/*
* Determine RP value to set based on maximum current supported
* by a port if configured as source.
* Returns CC value to report to link partner.
*/
static enum typec_cc_status tcpm_rp_cc(struct tcpm_port *port)
{
const u32 *src_pdo = port->src_pdo;
int nr_pdo = port->nr_src_pdo;
int i;
/*
* Search for first entry with matching voltage.
* It should report the maximum supported current.
*/
for (i = 0; i < nr_pdo; i++) {
const u32 pdo = src_pdo[i];
if (pdo_type(pdo) == PDO_TYPE_FIXED &&
pdo_fixed_voltage(pdo) == 5000) {
unsigned int curr = pdo_max_current(pdo);
if (curr >= 3000)
return TYPEC_CC_RP_3_0;
else if (curr >= 1500)
return TYPEC_CC_RP_1_5;
return TYPEC_CC_RP_DEF;
}
}
return TYPEC_CC_RP_DEF;
}
static void tcpm_check_and_run_delayed_work(struct udevice *dev);
static bool tcpm_transmit_helper(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
drvops->poll_event(dev);
udelay(500);
tcpm_check_and_run_delayed_work(dev);
return port->tx_complete;
}
static int tcpm_pd_transmit(struct udevice *dev,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
u32 timeout_us = PD_T_TCPC_TX_TIMEOUT * 1000;
bool tx_complete;
int ret;
if (msg)
dev_dbg(dev, "TCPM: PD TX, header: %#x\n",
le16_to_cpu(msg->header));
else
dev_dbg(dev, "TCPM: PD TX, type: %#x\n", type);
port->tx_complete = false;
ret = drvops->pd_transmit(dev, type, msg, port->negotiated_rev);
if (ret < 0)
return ret;
/*
* At this point we basically need to block until the TCPM controller
* returns successful transmission. Since this is usually done using
* the generic interrupt status bits, we poll for any events. That
* will clear the interrupt status, so we also need to process any
* of the incoming events. This means we will do more processing and
* thus let's give everything a bit more time.
*/
timeout_us *= 5;
ret = read_poll_timeout(tcpm_transmit_helper, tx_complete,
!tx_complete, false, timeout_us, dev);
if (ret < 0) {
dev_err(dev, "TCPM: PD transmit data failed: %d\n", ret);
return ret;
}
switch (port->tx_status) {
case TCPC_TX_SUCCESS:
port->message_id = (port->message_id + 1) & PD_HEADER_ID_MASK;
break;
case TCPC_TX_DISCARDED:
ret = -EAGAIN;
break;
case TCPC_TX_FAILED:
default:
ret = -EIO;
break;
}
return ret;
}
void tcpm_pd_transmit_complete(struct udevice *dev,
enum tcpm_transmit_status status)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: PD TX complete, status: %u\n", status);
tcpm_reset_event_cnt(dev);
port->tx_status = status;
port->tx_complete = true;
}
static int tcpm_set_polarity(struct udevice *dev,
enum typec_cc_polarity polarity)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
int ret;
dev_dbg(dev, "TCPM: set polarity = %d\n", polarity);
if (drvops->set_polarity) {
ret = drvops->set_polarity(dev, polarity);
if (ret < 0)
return ret;
}
port->polarity = polarity;
return 0;
}
static int tcpm_set_vconn(struct udevice *dev, bool enable)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
dev_dbg(dev, "TCPM: set vconn = %d\n", enable);
ret = drvops->set_vconn(dev, enable);
if (!ret)
port->vconn_role = enable ? TYPEC_SOURCE : TYPEC_SINK;
return ret;
}
static inline u32 tcpm_get_current_limit(struct tcpm_port *port)
{
switch (port->polarity ? port->cc2 : port->cc1) {
case TYPEC_CC_RP_1_5:
return 1500;
case TYPEC_CC_RP_3_0:
return 3000;
case TYPEC_CC_RP_DEF:
default:
return 0;
}
}
static int tcpm_set_current_limit(struct udevice *dev, u32 max_ma, u32 mv)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret = -EOPNOTSUPP;
dev_info(dev, "TCPM: set voltage limit = %u mV\n", mv);
dev_info(dev, "TCPM: set current limit = %u mA\n", max_ma);
port->supply_voltage = mv;
port->current_limit = max_ma;
return ret;
}
static int tcpm_set_attached_state(struct udevice *dev, bool attached)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
return drvops->set_roles(dev, attached, port->pwr_role,
port->data_role);
}
static int tcpm_set_roles(struct udevice *dev, bool attached,
enum typec_role role, enum typec_data_role data)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
ret = drvops->set_roles(dev, attached, role, data);
if (ret < 0)
return ret;
port->pwr_role = role;
port->data_role = data;
return 0;
}
static int tcpm_pd_send_source_caps(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_src_pdo) {
/* No source capabilities defined, sink only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SOURCE_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_src_pdo);
}
for (i = 0; i < port->nr_src_pdo; i++)
msg.payload[i] = cpu_to_le32(port->src_pdo[i]);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
static int tcpm_pd_send_sink_caps(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
unsigned int i;
memset(&msg, 0, sizeof(msg));
if (!port->nr_snk_pdo) {
/* No sink capabilities defined, source only */
msg.header = PD_HEADER_LE(PD_CTRL_REJECT,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
} else {
msg.header = PD_HEADER_LE(PD_DATA_SINK_CAP,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id,
port->nr_snk_pdo);
}
for (i = 0; i < port->nr_snk_pdo; i++)
msg.payload[i] = cpu_to_le32(port->snk_pdo[i]);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
static void tcpm_state_machine(struct udevice *dev);
static inline void tcpm_timer_uninit(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
port->delay_target = 0;
}
static void tcpm_timer_init(struct udevice *dev, uint32_t ms)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned long time_us = ms * 1000;
port->delay_target = timer_get_us() + time_us;
}
static void tcpm_check_and_run_delayed_work(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
/* no delayed state changes scheduled */
if (port->delay_target == 0)
return;
/* it's not yet time */
if (timer_get_us() < port->delay_target)
return;
tcpm_timer_uninit(dev);
tcpm_state_machine(dev);
}
static void mod_tcpm_delayed_work(struct udevice *dev, unsigned int delay_ms)
{
if (delay_ms) {
tcpm_timer_init(dev, delay_ms);
} else {
tcpm_timer_uninit(dev);
tcpm_state_machine(dev);
}
}
static void tcpm_set_state(struct udevice *dev, enum tcpm_state state,
unsigned int delay_ms)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (delay_ms) {
dev_dbg(dev, "TCPM: pending state change %s -> %s @ %u ms [%s]\n",
tcpm_states[port->state], tcpm_states[state], delay_ms,
typec_pd_rev_name[port->negotiated_rev]);
port->delayed_state = state;
mod_tcpm_delayed_work(dev, delay_ms);
port->delay_ms = delay_ms;
} else {
dev_dbg(dev, "TCPM: state change %s -> %s\n",
tcpm_states[port->state], tcpm_states[state]);
port->delayed_state = INVALID_STATE;
port->prev_state = port->state;
port->state = state;
/*
* Don't re-queue the state machine work item if we're currently
* in the state machine and we're immediately changing states.
* tcpm_state_machine_work() will continue running the state
* machine.
*/
if (!port->state_machine_running)
mod_tcpm_delayed_work(dev, 0);
}
}
static void tcpm_set_state_cond(struct udevice *dev, enum tcpm_state state,
unsigned int delay_ms)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (port->enter_state == port->state)
tcpm_set_state(dev, state, delay_ms);
else
dev_dbg(dev, "TCPM: skipped %sstate change %s -> %s [%u ms], context state %s [%s]\n",
delay_ms ? "delayed " : "",
tcpm_states[port->state], tcpm_states[state],
delay_ms, tcpm_states[port->enter_state],
typec_pd_rev_name[port->negotiated_rev]);
}
static void tcpm_queue_message(struct udevice *dev,
enum pd_msg_request message)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
port->queued_message = message;
mod_tcpm_delayed_work(dev, 0);
}
enum pdo_err {
PDO_NO_ERR,
PDO_ERR_NO_VSAFE5V,
PDO_ERR_VSAFE5V_NOT_FIRST,
PDO_ERR_PDO_TYPE_NOT_IN_ORDER,
PDO_ERR_FIXED_NOT_SORTED,
PDO_ERR_VARIABLE_BATT_NOT_SORTED,
PDO_ERR_DUPE_PDO,
PDO_ERR_PPS_APDO_NOT_SORTED,
PDO_ERR_DUPE_PPS_APDO,
};
static const char * const pdo_err_msg[] = {
[PDO_ERR_NO_VSAFE5V] =
" err: source/sink caps should at least have vSafe5V",
[PDO_ERR_VSAFE5V_NOT_FIRST] =
" err: vSafe5V Fixed Supply Object Shall always be the first object",
[PDO_ERR_PDO_TYPE_NOT_IN_ORDER] =
" err: PDOs should be in the following order: Fixed; Battery; Variable",
[PDO_ERR_FIXED_NOT_SORTED] =
" err: Fixed supply pdos should be in increasing order of their fixed voltage",
[PDO_ERR_VARIABLE_BATT_NOT_SORTED] =
" err: Variable/Battery supply pdos should be in increasing order of their minimum voltage",
[PDO_ERR_DUPE_PDO] =
" err: Variable/Batt supply pdos cannot have same min/max voltage",
[PDO_ERR_PPS_APDO_NOT_SORTED] =
" err: Programmable power supply apdos should be in increasing order of their maximum voltage",
[PDO_ERR_DUPE_PPS_APDO] =
" err: Programmable power supply apdos cannot have same min/max voltage and max current",
};
static enum pdo_err tcpm_caps_err(struct udevice *dev, const u32 *pdo,
unsigned int nr_pdo)
{
unsigned int i;
/* Should at least contain vSafe5v */
if (nr_pdo < 1)
return PDO_ERR_NO_VSAFE5V;
/* The vSafe5V Fixed Supply Object Shall always be the first object */
if (pdo_type(pdo[0]) != PDO_TYPE_FIXED ||
pdo_fixed_voltage(pdo[0]) != VSAFE5V)
return PDO_ERR_VSAFE5V_NOT_FIRST;
for (i = 1; i < nr_pdo; i++) {
if (pdo_type(pdo[i]) < pdo_type(pdo[i - 1])) {
return PDO_ERR_PDO_TYPE_NOT_IN_ORDER;
} else if (pdo_type(pdo[i]) == pdo_type(pdo[i - 1])) {
enum pd_pdo_type type = pdo_type(pdo[i]);
switch (type) {
/*
* The remaining Fixed Supply Objects, if
* present, shall be sent in voltage order;
* lowest to highest.
*/
case PDO_TYPE_FIXED:
if (pdo_fixed_voltage(pdo[i]) <=
pdo_fixed_voltage(pdo[i - 1]))
return PDO_ERR_FIXED_NOT_SORTED;
break;
/*
* The Battery Supply Objects and Variable
* supply, if present shall be sent in Minimum
* Voltage order; lowest to highest.
*/
case PDO_TYPE_VAR:
case PDO_TYPE_BATT:
if (pdo_min_voltage(pdo[i]) <
pdo_min_voltage(pdo[i - 1]))
return PDO_ERR_VARIABLE_BATT_NOT_SORTED;
else if ((pdo_min_voltage(pdo[i]) ==
pdo_min_voltage(pdo[i - 1])) &&
(pdo_max_voltage(pdo[i]) ==
pdo_max_voltage(pdo[i - 1])))
return PDO_ERR_DUPE_PDO;
break;
/*
* The Programmable Power Supply APDOs, if present,
* shall be sent in Maximum Voltage order;
* lowest to highest.
*/
case PDO_TYPE_APDO:
if (pdo_apdo_type(pdo[i]) != APDO_TYPE_PPS)
break;
if (pdo_pps_apdo_max_voltage(pdo[i]) <
pdo_pps_apdo_max_voltage(pdo[i - 1]))
return PDO_ERR_PPS_APDO_NOT_SORTED;
else if (pdo_pps_apdo_min_voltage(pdo[i]) ==
pdo_pps_apdo_min_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_voltage(pdo[i]) ==
pdo_pps_apdo_max_voltage(pdo[i - 1]) &&
pdo_pps_apdo_max_current(pdo[i]) ==
pdo_pps_apdo_max_current(pdo[i - 1]))
return PDO_ERR_DUPE_PPS_APDO;
break;
default:
dev_err(dev, "TCPM: Unknown pdo type\n");
}
}
}
return PDO_NO_ERR;
}
static int tcpm_validate_caps(struct udevice *dev, const u32 *pdo,
unsigned int nr_pdo)
{
enum pdo_err err_index = tcpm_caps_err(dev, pdo, nr_pdo);
if (err_index != PDO_NO_ERR) {
dev_err(dev, "TCPM:%s\n", pdo_err_msg[err_index]);
return -EINVAL;
}
return 0;
}
/*
* PD (data, control) command handling functions
*/
static inline enum tcpm_state ready_state(struct tcpm_port *port)
{
if (port->pwr_role == TYPEC_SOURCE)
return SRC_READY;
else
return SNK_READY;
}
static void tcpm_pd_data_request(struct udevice *dev,
const struct pd_message *msg)
{
enum pd_data_msg_type type = pd_header_type_le(msg->header);
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int cnt = pd_header_cnt_le(msg->header);
unsigned int rev = pd_header_rev_le(msg->header);
unsigned int i;
switch (type) {
case PD_DATA_SOURCE_CAP:
for (i = 0; i < cnt; i++)
port->source_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_source_caps = cnt;
tcpm_validate_caps(dev, port->source_caps,
port->nr_source_caps);
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just do nothing in that scenario.
*/
if (rev == PD_REV10)
break;
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
if ((pdo_type(port->source_caps[0]) == PDO_TYPE_FIXED) &&
(port->source_caps[0] & PDO_FIXED_DUAL_ROLE) &&
(port->source_caps[0] & PDO_FIXED_DATA_SWAP)) {
/* Dual role power and data, eg: self-powered Type-C */
port->wait_dr_swap_message = true;
} else {
/* Non-Dual role power, eg: adapter */
port->wait_dr_swap_message = false;
}
/*
* This message may be received even if VBUS is not
* present. This is quite unexpected; see USB PD
* specification, sections 8.3.3.6.3.1 and 8.3.3.6.3.2.
* However, at the same time, we must be ready to
* receive this message and respond to it 15ms after
* receiving PS_RDY during power swap operations, no matter
* if VBUS is available or not (USB PD specification,
* section 6.5.9.2).
* So we need to accept the message either way,
* but be prepared to keep waiting for VBUS after it was
* handled.
*/
tcpm_set_state(dev, SNK_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_REQUEST:
/*
* Adjust revision in subsequent message headers, as required,
* to comply with 6.2.1.1.5 of the USB PD 3.0 spec. We don't
* support Rev 1.0 so just reject in that scenario.
*/
if (rev == PD_REV10) {
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
if (rev < PD_MAX_REV)
port->negotiated_rev = rev;
port->sink_request = le32_to_cpu(msg->payload[0]);
tcpm_set_state(dev, SRC_NEGOTIATE_CAPABILITIES, 0);
break;
case PD_DATA_SINK_CAP:
/* We don't do anything with this at the moment... */
for (i = 0; i < cnt; i++)
port->sink_caps[i] = le32_to_cpu(msg->payload[i]);
port->nr_sink_caps = cnt;
break;
default:
break;
}
}
static void tcpm_pd_ctrl_request(struct udevice *dev,
const struct pd_message *msg)
{
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum tcpm_state next_state;
switch (type) {
case PD_CTRL_GOOD_CRC:
case PD_CTRL_PING:
break;
case PD_CTRL_GET_SOURCE_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(dev, PD_MSG_DATA_SOURCE_CAP);
break;
default:
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GET_SINK_CAP:
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_queue_message(dev, PD_MSG_DATA_SINK_CAP);
break;
default:
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
break;
case PD_CTRL_GOTO_MIN:
break;
case PD_CTRL_PS_RDY:
switch (port->state) {
case SNK_TRANSITION_SINK:
if (port->vbus_present) {
tcpm_set_current_limit(dev,
port->req_current_limit,
port->req_supply_voltage);
port->explicit_contract = true;
tcpm_set_state(dev, SNK_READY, 0);
} else {
/*
* Seen after power swap. Keep waiting for VBUS
* in a transitional state.
*/
tcpm_set_state(dev,
SNK_TRANSITION_SINK_VBUS, 0);
}
break;
default:
break;
}
break;
case PD_CTRL_REJECT:
case PD_CTRL_WAIT:
case PD_CTRL_NOT_SUPP:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
/* USB PD specification, Figure 8-43 */
if (port->explicit_contract)
next_state = SNK_READY;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(dev, next_state, 0);
break;
default:
break;
}
break;
case PD_CTRL_ACCEPT:
switch (port->state) {
case SNK_NEGOTIATE_CAPABILITIES:
tcpm_set_state(dev, SNK_TRANSITION_SINK, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (port->pwr_role == TYPEC_SOURCE)
next_state = SRC_SEND_CAPABILITIES;
else
next_state = SNK_WAIT_CAPABILITIES;
tcpm_set_state(dev, next_state, 0);
break;
default:
break;
}
break;
case PD_CTRL_SOFT_RESET:
tcpm_set_state(dev, SOFT_RESET, 0);
break;
case PD_CTRL_DR_SWAP:
if (port->port_type != TYPEC_PORT_DRP) {
tcpm_queue_message(dev, PD_MSG_CTRL_REJECT);
break;
}
/*
* 6.3.9: If an alternate mode is active, a request to swap
* alternate modes shall trigger a port reset.
*/
switch (port->state) {
case SRC_READY:
case SNK_READY:
tcpm_set_state(dev, DR_SWAP_ACCEPT, 0);
break;
default:
tcpm_queue_message(dev, PD_MSG_CTRL_WAIT);
break;
}
break;
case PD_CTRL_PR_SWAP:
case PD_CTRL_VCONN_SWAP:
case PD_CTRL_GET_SOURCE_CAP_EXT:
case PD_CTRL_GET_STATUS:
case PD_CTRL_FR_SWAP:
case PD_CTRL_GET_PPS_STATUS:
case PD_CTRL_GET_COUNTRY_CODES:
/* Currently not supported */
dev_err(dev, "TCPM: Currently not supported type %#x\n", type);
tcpm_queue_message(dev, PD_MSG_CTRL_NOT_SUPP);
break;
default:
dev_err(dev, "TCPM: Unrecognized ctrl message type %#x\n", type);
break;
}
}
static void tcpm_pd_rx_handler(struct udevice *dev,
const struct pd_message *msg)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int cnt = pd_header_cnt_le(msg->header);
bool remote_is_host, local_is_host;
dev_dbg(dev, "TCPM: PD RX, header: %#x [%d]\n",
le16_to_cpu(msg->header), port->attached);
if (port->attached) {
enum pd_ctrl_msg_type type = pd_header_type_le(msg->header);
unsigned int msgid = pd_header_msgid_le(msg->header);
/*
* USB PD standard, 6.6.1.2:
* "... if MessageID value in a received Message is the
* same as the stored value, the receiver shall return a
* GoodCRC Message with that MessageID value and drop
* the Message (this is a retry of an already received
* Message). Note: this shall not apply to the Soft_Reset
* Message which always has a MessageID value of zero."
*/
if (msgid == port->rx_msgid && type != PD_CTRL_SOFT_RESET)
return;
port->rx_msgid = msgid;
/*
* If both ends believe to be DFP/host, we have a data role
* mismatch.
*/
remote_is_host = !!(le16_to_cpu(msg->header) & PD_HEADER_DATA_ROLE);
local_is_host = port->data_role == TYPEC_HOST;
if (remote_is_host == local_is_host) {
dev_err(dev, "TCPM: data role mismatch, initiating error recovery\n");
tcpm_set_state(dev, ERROR_RECOVERY, 0);
} else {
if (cnt)
tcpm_pd_data_request(dev, msg);
else
tcpm_pd_ctrl_request(dev, msg);
}
}
}
void tcpm_pd_receive(struct udevice *dev, const struct pd_message *msg)
{
tcpm_reset_event_cnt(dev);
tcpm_pd_rx_handler(dev, msg);
}
static int tcpm_pd_send_control(struct udevice *dev,
enum pd_ctrl_msg_type type)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(type, port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 0);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
/*
* Send queued message without affecting state.
* Return true if state machine should go back to sleep,
* false otherwise.
*/
static bool tcpm_send_queued_message(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum pd_msg_request queued_message;
int max_messages = 100;
do {
queued_message = port->queued_message;
port->queued_message = PD_MSG_NONE;
max_messages--;
switch (queued_message) {
case PD_MSG_CTRL_WAIT:
tcpm_pd_send_control(dev, PD_CTRL_WAIT);
break;
case PD_MSG_CTRL_REJECT:
tcpm_pd_send_control(dev, PD_CTRL_REJECT);
break;
case PD_MSG_CTRL_NOT_SUPP:
tcpm_pd_send_control(dev, PD_CTRL_NOT_SUPP);
break;
case PD_MSG_DATA_SINK_CAP:
tcpm_pd_send_sink_caps(dev);
break;
case PD_MSG_DATA_SOURCE_CAP:
tcpm_pd_send_source_caps(dev);
break;
default:
break;
}
} while (max_messages > 0 && port->queued_message != PD_MSG_NONE);
if (!max_messages)
dev_err(dev, "Aborted sending of too many queued messages\n");
return false;
}
static int tcpm_pd_check_request(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
u32 pdo, rdo = port->sink_request;
unsigned int max, op, pdo_max, index;
enum pd_pdo_type type;
index = rdo_index(rdo);
if (!index || index > port->nr_src_pdo)
return -EINVAL;
pdo = port->src_pdo[index - 1];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
max = rdo_max_current(rdo);
op = rdo_op_current(rdo);
pdo_max = pdo_max_current(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
if (type == PDO_TYPE_FIXED)
dev_dbg(dev, "TCPM: Requested %u mV, %u mA for %u / %u mA\n",
pdo_fixed_voltage(pdo), pdo_max, op, max);
else
dev_dbg(dev, "TCPM: Requested %u -> %u mV, %u mA for %u / %u mA\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
case PDO_TYPE_BATT:
max = rdo_max_power(rdo);
op = rdo_op_power(rdo);
pdo_max = pdo_max_power(pdo);
if (op > pdo_max)
return -EINVAL;
if (max > pdo_max && !(rdo & RDO_CAP_MISMATCH))
return -EINVAL;
dev_info(dev, "TCPM: Requested %u -> %u mV, %u mW for %u / %u mW\n",
pdo_min_voltage(pdo), pdo_max_voltage(pdo),
pdo_max, op, max);
break;
default:
return -EINVAL;
}
return 0;
}
#define min_power(x, y) min(pdo_max_power(x), pdo_max_power(y))
#define min_current(x, y) min(pdo_max_current(x), pdo_max_current(y))
static int tcpm_pd_select_pdo(struct udevice *dev, int *sink_pdo,
int *src_pdo)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int i, j, max_src_mv = 0, min_src_mv = 0, max_mw = 0,
max_mv = 0, src_mw = 0, src_ma = 0, max_snk_mv = 0,
min_snk_mv = 0;
int ret = -EINVAL;
/*
* Select the source PDO providing the most power which has a
* matchig sink cap.
*/
for (i = 0; i < port->nr_source_caps; i++) {
u32 pdo = port->source_caps[i];
enum pd_pdo_type type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
max_src_mv = pdo_fixed_voltage(pdo);
min_src_mv = max_src_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_src_mv = pdo_max_voltage(pdo);
min_src_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
dev_err(dev, "TCPM: Invalid source PDO type, ignoring\n");
continue;
}
switch (type) {
case PDO_TYPE_FIXED:
case PDO_TYPE_VAR:
src_ma = pdo_max_current(pdo);
src_mw = src_ma * min_src_mv / 1000;
break;
case PDO_TYPE_BATT:
src_mw = pdo_max_power(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
dev_err(dev, "TCPM: Invalid source PDO type, ignoring\n");
continue;
}
for (j = 0; j < port->nr_snk_pdo; j++) {
pdo = port->snk_pdo[j];
switch (pdo_type(pdo)) {
case PDO_TYPE_FIXED:
max_snk_mv = pdo_fixed_voltage(pdo);
min_snk_mv = max_snk_mv;
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
max_snk_mv = pdo_max_voltage(pdo);
min_snk_mv = pdo_min_voltage(pdo);
break;
case PDO_TYPE_APDO:
continue;
default:
dev_err(dev, "TCPM: Invalid sink PDO type, ignoring\n");
continue;
}
if (max_src_mv <= max_snk_mv && min_src_mv >= min_snk_mv) {
/* Prefer higher voltages if available */
if ((src_mw == max_mw && min_src_mv > max_mv) ||
src_mw > max_mw) {
*src_pdo = i;
*sink_pdo = j;
max_mw = src_mw;
max_mv = min_src_mv;
ret = 0;
}
}
}
}
return ret;
}
static int tcpm_pd_build_request(struct udevice *dev, u32 *rdo)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
unsigned int mv, ma, mw, flags;
unsigned int max_ma, max_mw;
enum pd_pdo_type type;
u32 pdo, matching_snk_pdo;
int src_pdo_index = 0;
int snk_pdo_index = 0;
int ret;
ret = tcpm_pd_select_pdo(dev, &snk_pdo_index, &src_pdo_index);
if (ret < 0)
return ret;
pdo = port->source_caps[src_pdo_index];
matching_snk_pdo = port->snk_pdo[snk_pdo_index];
type = pdo_type(pdo);
switch (type) {
case PDO_TYPE_FIXED:
mv = pdo_fixed_voltage(pdo);
break;
case PDO_TYPE_BATT:
case PDO_TYPE_VAR:
mv = pdo_min_voltage(pdo);
break;
default:
dev_err(dev, "TCPM: Invalid PDO selected!\n");
return -EINVAL;
}
/* Select maximum available current within the sink pdo's limit */
if (type == PDO_TYPE_BATT) {
mw = min_power(pdo, matching_snk_pdo);
ma = 1000 * mw / mv;
} else {
ma = min_current(pdo, matching_snk_pdo);
mw = ma * mv / 1000;
}
flags = RDO_USB_COMM | RDO_NO_SUSPEND;
/* Set mismatch bit if offered power is less than operating power */
max_ma = ma;
max_mw = mw;
if (mw < port->operating_snk_mw) {
flags |= RDO_CAP_MISMATCH;
if (type == PDO_TYPE_BATT &&
(pdo_max_power(matching_snk_pdo) > pdo_max_power(pdo)))
max_mw = pdo_max_power(matching_snk_pdo);
else if (pdo_max_current(matching_snk_pdo) >
pdo_max_current(pdo))
max_ma = pdo_max_current(matching_snk_pdo);
}
dev_dbg(dev, "TCPM: cc=%d cc1=%d cc2=%d vbus=%d vconn=%s polarity=%d\n",
port->cc_req, port->cc1, port->cc2, port->vbus_source,
port->vconn_role == TYPEC_SOURCE ? "source" : "sink",
port->polarity);
if (type == PDO_TYPE_BATT) {
*rdo = RDO_BATT(src_pdo_index + 1, mw, max_mw, flags);
dev_info(dev, "TCPM: requesting PDO %d: %u mV, %u mW%s\n",
src_pdo_index, mv, mw,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
} else {
*rdo = RDO_FIXED(src_pdo_index + 1, ma, max_ma, flags);
dev_info(dev, "TCPM: requesting PDO %d: %u mV, %u mA%s\n",
src_pdo_index, mv, ma,
flags & RDO_CAP_MISMATCH ? " [mismatch]" : "");
}
port->req_current_limit = ma;
port->req_supply_voltage = mv;
return 0;
}
static int tcpm_pd_send_request(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
struct pd_message msg;
int ret;
u32 rdo;
ret = tcpm_pd_build_request(dev, &rdo);
if (ret < 0)
return ret;
memset(&msg, 0, sizeof(msg));
msg.header = PD_HEADER_LE(PD_DATA_REQUEST,
port->pwr_role,
port->data_role,
port->negotiated_rev,
port->message_id, 1);
msg.payload[0] = cpu_to_le32(rdo);
return tcpm_pd_transmit(dev, TCPC_TX_SOP, &msg);
}
static int tcpm_set_vbus(struct udevice *dev, bool enable)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
int ret;
if (enable && port->vbus_charge)
return -EINVAL;
dev_dbg(dev, "TCPM: set vbus = %d charge = %d\n",
enable, port->vbus_charge);
ret = drvops->set_vbus(dev, enable, port->vbus_charge);
if (ret < 0)
return ret;
port->vbus_source = enable;
return 0;
}
static int tcpm_set_charge(struct udevice *dev, bool charge)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
if (charge && port->vbus_source)
return -EINVAL;
if (charge != port->vbus_charge) {
dev_dbg(dev, "TCPM: set vbus = %d charge = %d\n",
port->vbus_source, charge);
ret = drvops->set_vbus(dev, port->vbus_source,
charge);
if (ret < 0)
return ret;
}
port->vbus_charge = charge;
return 0;
}
static bool tcpm_start_toggling(struct udevice *dev, enum typec_cc_status cc)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
if (!drvops->start_toggling)
return false;
dev_dbg(dev, "TCPM: Start toggling\n");
ret = drvops->start_toggling(dev, port->port_type, cc);
return ret == 0;
}
static int tcpm_init_vbus(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
ret = drvops->set_vbus(dev, false, false);
port->vbus_source = false;
port->vbus_charge = false;
return ret;
}
static int tcpm_init_vconn(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
ret = drvops->set_vconn(dev, false);
port->vconn_role = TYPEC_SINK;
return ret;
}
static inline void tcpm_typec_connect(struct tcpm_port *port)
{
if (!port->connected)
port->connected = true;
}
static int tcpm_src_attach(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum typec_cc_polarity polarity =
port->cc2 == TYPEC_CC_RD ? TYPEC_POLARITY_CC2
: TYPEC_POLARITY_CC1;
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(dev, polarity);
if (ret < 0)
return ret;
ret = tcpm_set_roles(dev, true, TYPEC_SOURCE, TYPEC_HOST);
if (ret < 0)
return ret;
ret = drvops->set_pd_rx(dev, true);
if (ret < 0)
goto out_disable_mux;
/*
* USB Type-C specification, version 1.2,
* chapter 4.5.2.2.8.1 (Attached.SRC Requirements)
* Enable VCONN only if the non-RD port is set to RA.
*/
if ((polarity == TYPEC_POLARITY_CC1 && port->cc2 == TYPEC_CC_RA) ||
(polarity == TYPEC_POLARITY_CC2 && port->cc1 == TYPEC_CC_RA)) {
ret = tcpm_set_vconn(dev, true);
if (ret < 0)
goto out_disable_pd;
}
ret = tcpm_set_vbus(dev, true);
if (ret < 0)
goto out_disable_vconn;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
return 0;
out_disable_vconn:
tcpm_set_vconn(dev, false);
out_disable_pd:
drvops->set_pd_rx(dev, false);
out_disable_mux:
dev_err(dev, "TCPM: CC connected in %s as DFP\n",
polarity ? "CC2" : "CC1");
return 0;
}
static inline void tcpm_typec_disconnect(struct tcpm_port *port)
{
if (port->connected) {
port->partner = NULL;
port->connected = false;
}
}
static void tcpm_reset_port(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
tcpm_timer_uninit(dev);
tcpm_typec_disconnect(port);
tcpm_reset_event_cnt(dev);
port->wait_dr_swap_message = false;
port->attached = false;
port->pd_capable = false;
/*
* First Rx ID should be 0; set this to a sentinel of -1 so that
* we can check tcpm_pd_rx_handler() if we had seen it before.
*/
port->rx_msgid = -1;
drvops->set_pd_rx(dev, false);
tcpm_init_vbus(dev); /* also disables charging */
tcpm_init_vconn(dev);
tcpm_set_current_limit(dev, 0, 0);
tcpm_set_polarity(dev, TYPEC_POLARITY_CC1);
tcpm_set_attached_state(dev, false);
port->nr_sink_caps = 0;
}
static void tcpm_detach(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (tcpm_port_is_disconnected(port))
port->hard_reset_count = 0;
if (!port->attached)
return;
tcpm_reset_port(dev);
}
static void tcpm_src_detach(struct udevice *dev)
{
tcpm_detach(dev);
}
static int tcpm_snk_attach(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
if (port->attached)
return 0;
ret = tcpm_set_polarity(dev, port->cc2 != TYPEC_CC_OPEN ?
TYPEC_POLARITY_CC2 : TYPEC_POLARITY_CC1);
if (ret < 0)
return ret;
ret = tcpm_set_roles(dev, true, TYPEC_SINK, TYPEC_DEVICE);
if (ret < 0)
return ret;
port->pd_capable = false;
port->partner = NULL;
port->attached = true;
dev_info(dev, "TCPM: CC connected in %s as UFP\n",
port->cc1 != TYPEC_CC_OPEN ? "CC1" : "CC2");
return 0;
}
static void tcpm_snk_detach(struct udevice *dev)
{
tcpm_detach(dev);
}
static inline enum tcpm_state hard_reset_state(struct tcpm_port *port)
{
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT)
return HARD_RESET_SEND;
if (port->pd_capable)
return ERROR_RECOVERY;
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
if (port->state == SNK_WAIT_CAPABILITIES)
return SNK_READY;
return SNK_UNATTACHED;
}
static inline enum tcpm_state unattached_state(struct tcpm_port *port)
{
if (port->port_type == TYPEC_PORT_DRP) {
if (port->pwr_role == TYPEC_SOURCE)
return SRC_UNATTACHED;
else
return SNK_UNATTACHED;
} else if (port->port_type == TYPEC_PORT_SRC) {
return SRC_UNATTACHED;
}
return SNK_UNATTACHED;
}
static void run_state_machine(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
int ret;
port->enter_state = port->state;
switch (port->state) {
case TOGGLING:
break;
/* SRC states */
case SRC_UNATTACHED:
tcpm_src_detach(dev);
if (tcpm_start_toggling(dev, tcpm_rp_cc(port))) {
tcpm_set_state(dev, TOGGLING, 0);
break;
}
tcpm_set_cc(dev, tcpm_rp_cc(port));
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(dev, SNK_UNATTACHED, PD_T_DRP_SNK);
break;
case SRC_ATTACH_WAIT:
if (tcpm_port_is_source(port))
tcpm_set_state(dev, SRC_ATTACHED, PD_T_CC_DEBOUNCE);
break;
case SRC_ATTACHED:
ret = tcpm_src_attach(dev);
/*
* Currently, vbus control is not implemented,
* and the SRC detection process cannot be fully implemented.
*/
tcpm_set_state(dev, SRC_READY, 0);
break;
case SRC_STARTUP:
port->caps_count = 0;
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0);
break;
case SRC_SEND_CAPABILITIES:
port->caps_count++;
if (port->caps_count > PD_N_CAPS_COUNT) {
tcpm_set_state(dev, SRC_READY, 0);
break;
}
ret = tcpm_pd_send_source_caps(dev);
if (ret < 0) {
tcpm_set_state(dev, SRC_SEND_CAPABILITIES,
PD_T_SEND_SOURCE_CAP);
} else {
/*
* Per standard, we should clear the reset counter here.
* However, that can result in state machine hang-ups.
* Reset it only in READY state to improve stability.
*/
/* port->hard_reset_count = 0; */
port->caps_count = 0;
port->pd_capable = true;
tcpm_set_state_cond(dev, SRC_SEND_CAPABILITIES_TIMEOUT,
PD_T_SEND_SOURCE_CAP);
}
break;
case SRC_SEND_CAPABILITIES_TIMEOUT:
/*
* Error recovery for a PD_DATA_SOURCE_CAP reply timeout.
*
* PD 2.0 sinks are supposed to accept src-capabilities with a
* 3.0 header and simply ignore any src PDOs which the sink does
* not understand such as PPS but some 2.0 sinks instead ignore
* the entire PD_DATA_SOURCE_CAP message, causing contract
* negotiation to fail.
*
* After PD_N_HARD_RESET_COUNT hard-reset attempts, we try
* sending src-capabilities with a lower PD revision to
* make these broken sinks work.
*/
if (port->hard_reset_count < PD_N_HARD_RESET_COUNT) {
tcpm_set_state(dev, HARD_RESET_SEND, 0);
} else if (port->negotiated_rev > PD_REV20) {
port->negotiated_rev--;
port->hard_reset_count = 0;
tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0);
} else {
tcpm_set_state(dev, hard_reset_state(port), 0);
}
break;
case SRC_NEGOTIATE_CAPABILITIES:
ret = tcpm_pd_check_request(dev);
if (ret < 0) {
tcpm_pd_send_control(dev, PD_CTRL_REJECT);
if (!port->explicit_contract) {
tcpm_set_state(dev,
SRC_WAIT_NEW_CAPABILITIES, 0);
} else {
tcpm_set_state(dev, SRC_READY, 0);
}
} else {
tcpm_pd_send_control(dev, PD_CTRL_ACCEPT);
tcpm_set_state(dev, SRC_TRANSITION_SUPPLY,
PD_T_SRC_TRANSITION);
}
break;
case SRC_TRANSITION_SUPPLY:
/* XXX: regulator_set_voltage(vbus, ...) */
tcpm_pd_send_control(dev, PD_CTRL_PS_RDY);
port->explicit_contract = true;
tcpm_set_state_cond(dev, SRC_READY, 0);
break;
case SRC_READY:
port->hard_reset_count = 0;
tcpm_typec_connect(port);
break;
case SRC_WAIT_NEW_CAPABILITIES:
/* Nothing to do... */
break;
/* SNK states */
case SNK_UNATTACHED:
tcpm_snk_detach(dev);
if (tcpm_start_toggling(dev, TYPEC_CC_RD)) {
tcpm_set_state(dev, TOGGLING, 0);
break;
}
tcpm_set_cc(dev, TYPEC_CC_RD);
if (port->port_type == TYPEC_PORT_DRP)
tcpm_set_state(dev, SRC_UNATTACHED, PD_T_DRP_SRC);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
tcpm_set_state(dev, SNK_DEBOUNCED,
PD_T_CC_DEBOUNCE);
else if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SNK_UNATTACHED,
PD_T_CC_DEBOUNCE);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SNK_UNATTACHED, PD_T_PD_DEBOUNCE);
else if (port->vbus_present)
tcpm_set_state(dev, SNK_ATTACHED, 0);
else
/* Wait for VBUS, but not forever */
tcpm_set_state(dev, PORT_RESET, PD_T_PS_SOURCE_ON);
break;
case SNK_ATTACHED:
ret = tcpm_snk_attach(dev);
if (ret < 0)
tcpm_set_state(dev, SNK_UNATTACHED, 0);
else
tcpm_set_state(dev, SNK_STARTUP, 0);
break;
case SNK_STARTUP:
port->negotiated_rev = PD_MAX_REV;
port->message_id = 0;
port->rx_msgid = -1;
port->explicit_contract = false;
tcpm_set_state(dev, SNK_DISCOVERY, 0);
break;
case SNK_DISCOVERY:
if (port->vbus_present) {
tcpm_set_current_limit(dev,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(dev, true);
tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0);
break;
}
/*
* For DRP, timeouts differ. Also, handling is supposed to be
* different and much more complex (dead battery detection;
* see USB power delivery specification, section 8.3.3.6.1.5.1).
*/
tcpm_set_state(dev, hard_reset_state(port),
port->port_type == TYPEC_PORT_DRP ?
PD_T_DB_DETECT : PD_T_NO_RESPONSE);
break;
case SNK_DISCOVERY_DEBOUNCE:
tcpm_set_state(dev, SNK_DISCOVERY_DEBOUNCE_DONE,
PD_T_CC_DEBOUNCE);
break;
case SNK_DISCOVERY_DEBOUNCE_DONE:
tcpm_set_state(dev, unattached_state(port), 0);
break;
case SNK_WAIT_CAPABILITIES:
ret = drvops->set_pd_rx(dev, true);
if (ret < 0) {
tcpm_set_state(dev, SNK_READY, 0);
break;
}
/*
* If VBUS has never been low, and we time out waiting
* for source cap, try a soft reset first, in case we
* were already in a stable contract before this boot.
* Do this only once.
*/
if (port->vbus_never_low) {
port->vbus_never_low = false;
tcpm_set_state(dev, SOFT_RESET_SEND,
PD_T_SINK_WAIT_CAP);
} else {
tcpm_set_state(dev, hard_reset_state(port),
PD_T_SINK_WAIT_CAP);
}
break;
case SNK_NEGOTIATE_CAPABILITIES:
port->pd_capable = true;
port->hard_reset_count = 0;
ret = tcpm_pd_send_request(dev);
if (ret < 0) {
/* Let the Source send capabilities again. */
tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0);
} else {
tcpm_set_state_cond(dev, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
}
break;
case SNK_TRANSITION_SINK:
case SNK_TRANSITION_SINK_VBUS:
tcpm_set_state(dev, hard_reset_state(port),
PD_T_PS_TRANSITION);
break;
case SNK_READY:
port->update_sink_caps = false;
tcpm_typec_connect(port);
/*
* Here poll_event_cnt is cleared, waiting for self-powered Type-C devices
* to send DR_swap Messge until 1s (TCPM_POLL_EVENT_TIME_OUT * 500us)timeout
*/
if (port->wait_dr_swap_message)
tcpm_reset_event_cnt(dev);
break;
/* Hard_Reset states */
case HARD_RESET_SEND:
tcpm_pd_transmit(dev, TCPC_TX_HARD_RESET, NULL);
tcpm_set_state(dev, HARD_RESET_START, 0);
port->wait_dr_swap_message = false;
break;
case HARD_RESET_START:
port->hard_reset_count++;
drvops->set_pd_rx(dev, false);
port->nr_sink_caps = 0;
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(dev, SRC_HARD_RESET_VBUS_OFF,
PD_T_PS_HARD_RESET);
else
tcpm_set_state(dev, SNK_HARD_RESET_SINK_OFF, 0);
break;
case SRC_HARD_RESET_VBUS_OFF:
tcpm_set_vconn(dev, true);
tcpm_set_vbus(dev, false);
tcpm_set_roles(dev, port->self_powered, TYPEC_SOURCE,
TYPEC_HOST);
tcpm_set_state(dev, SRC_HARD_RESET_VBUS_ON, PD_T_SRC_RECOVER);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_vconn(dev, true);
tcpm_set_vbus(dev, true);
drvops->set_pd_rx(dev, true);
tcpm_set_attached_state(dev, true);
tcpm_set_state(dev, SRC_UNATTACHED, PD_T_PS_SOURCE_ON);
break;
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_vconn(dev, false);
if (port->pd_capable)
tcpm_set_charge(dev, false);
tcpm_set_roles(dev, port->self_powered, TYPEC_SINK,
TYPEC_DEVICE);
/*
* VBUS may or may not toggle, depending on the adapter.
* If it doesn't toggle, transition to SNK_HARD_RESET_SINK_ON
* directly after timeout.
*/
tcpm_set_state(dev, SNK_HARD_RESET_SINK_ON, PD_T_SAFE_0V);
break;
case SNK_HARD_RESET_WAIT_VBUS:
/* Assume we're disconnected if VBUS doesn't come back. */
tcpm_set_state(dev, SNK_UNATTACHED,
PD_T_SRC_RECOVER_MAX + PD_T_SRC_TURN_ON);
break;
case SNK_HARD_RESET_SINK_ON:
/* Note: There is no guarantee that VBUS is on in this state */
/*
* XXX:
* The specification suggests that dual mode ports in sink
* mode should transition to state PE_SRC_Transition_to_default.
* See USB power delivery specification chapter 8.3.3.6.1.3.
* This would mean to
* - turn off VCONN, reset power supply
* - request hardware reset
* - turn on VCONN
* - Transition to state PE_Src_Startup
* SNK only ports shall transition to state Snk_Startup
* (see chapter 8.3.3.3.8).
* Similar, dual-mode ports in source mode should transition
* to PE_SNK_Transition_to_default.
*/
if (port->pd_capable) {
tcpm_set_current_limit(dev,
tcpm_get_current_limit(port),
5000);
tcpm_set_charge(dev, true);
}
tcpm_set_attached_state(dev, true);
tcpm_set_state(dev, SNK_STARTUP, 0);
break;
/* Soft_Reset states */
case SOFT_RESET:
port->message_id = 0;
port->rx_msgid = -1;
tcpm_pd_send_control(dev, PD_CTRL_ACCEPT);
if (port->pwr_role == TYPEC_SOURCE)
tcpm_set_state(dev, SRC_SEND_CAPABILITIES, 0);
else
tcpm_set_state(dev, SNK_WAIT_CAPABILITIES, 0);
break;
case SOFT_RESET_SEND:
port->message_id = 0;
port->rx_msgid = -1;
if (tcpm_pd_send_control(dev, PD_CTRL_SOFT_RESET))
tcpm_set_state_cond(dev, hard_reset_state(port), 0);
else
tcpm_set_state_cond(dev, hard_reset_state(port),
PD_T_SENDER_RESPONSE);
break;
/* DR_Swap states */
case DR_SWAP_ACCEPT:
tcpm_pd_send_control(dev, PD_CTRL_ACCEPT);
tcpm_set_state_cond(dev, DR_SWAP_CHANGE_DR, 0);
break;
case DR_SWAP_CHANGE_DR:
if (port->data_role == TYPEC_HOST) {
tcpm_set_roles(dev, true, port->pwr_role,
TYPEC_DEVICE);
} else {
tcpm_set_roles(dev, true, port->pwr_role,
TYPEC_HOST);
}
/* DR_swap process complete, wait_dr_swap_message is cleared */
port->wait_dr_swap_message = false;
tcpm_set_state(dev, ready_state(port), 0);
break;
case ERROR_RECOVERY:
tcpm_set_state(dev, PORT_RESET, 0);
break;
case PORT_RESET:
tcpm_reset_port(dev);
if (port->self_powered)
tcpm_set_cc(dev, TYPEC_CC_OPEN);
else
tcpm_set_cc(dev, tcpm_default_state(port) == SNK_UNATTACHED ?
TYPEC_CC_RD : tcpm_rp_cc(port));
tcpm_set_state(dev, PORT_RESET_WAIT_OFF,
PD_T_ERROR_RECOVERY);
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(dev,
tcpm_default_state(port),
port->vbus_present ? PD_T_PS_SOURCE_OFF : 0);
break;
default:
dev_err(dev, "TCPM: Unexpected port state %d\n", port->state);
break;
}
}
static void tcpm_state_machine(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum tcpm_state prev_state;
mutex_lock(&port->lock);
port->state_machine_running = true;
if (port->queued_message && tcpm_send_queued_message(dev))
goto done;
/* If we were queued due to a delayed state change, update it now */
if (port->delayed_state) {
dev_dbg(dev, "TCPM: state change %s -> %s [delayed %ld ms]\n",
tcpm_states[port->state],
tcpm_states[port->delayed_state], port->delay_ms);
port->prev_state = port->state;
port->state = port->delayed_state;
port->delayed_state = INVALID_STATE;
}
/*
* Continue running as long as we have (non-delayed) state changes
* to make.
*/
do {
prev_state = port->state;
run_state_machine(dev);
if (port->queued_message)
tcpm_send_queued_message(dev);
} while (port->state != prev_state && !port->delayed_state);
done:
port->state_machine_running = false;
mutex_unlock(&port->lock);
}
static void _tcpm_cc_change(struct udevice *dev, enum typec_cc_status cc1,
enum typec_cc_status cc2)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum typec_cc_status old_cc1, old_cc2;
enum tcpm_state new_state;
old_cc1 = port->cc1;
old_cc2 = port->cc2;
port->cc1 = cc1;
port->cc2 = cc2;
dev_dbg(dev, "TCPM: CC1: %u -> %u, CC2: %u -> %u [state %s, polarity %d, %s]\n",
old_cc1, cc1, old_cc2, cc2, tcpm_states[port->state],
port->polarity,
tcpm_port_is_disconnected(port) ? "disconnected" : "connected");
switch (port->state) {
case TOGGLING:
if (tcpm_port_is_source(port))
tcpm_set_state(dev, SRC_ATTACH_WAIT, 0);
else if (tcpm_port_is_sink(port))
tcpm_set_state(dev, SNK_ATTACH_WAIT, 0);
break;
case SRC_UNATTACHED:
case SRC_ATTACH_WAIT:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SRC_UNATTACHED, 0);
else if (cc1 != old_cc1 || cc2 != old_cc2)
tcpm_set_state(dev, SRC_ATTACH_WAIT, 0);
break;
case SRC_ATTACHED:
case SRC_SEND_CAPABILITIES:
case SRC_READY:
if (tcpm_port_is_disconnected(port) ||
!tcpm_port_is_source(port))
tcpm_set_state(dev, SRC_UNATTACHED, 0);
break;
case SNK_UNATTACHED:
if (tcpm_port_is_sink(port))
tcpm_set_state(dev, SNK_ATTACH_WAIT, 0);
break;
case SNK_ATTACH_WAIT:
if ((port->cc1 == TYPEC_CC_OPEN &&
port->cc2 != TYPEC_CC_OPEN) ||
(port->cc1 != TYPEC_CC_OPEN &&
port->cc2 == TYPEC_CC_OPEN))
new_state = SNK_DEBOUNCED;
else if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else
break;
if (new_state != port->delayed_state)
tcpm_set_state(dev, SNK_ATTACH_WAIT, 0);
break;
case SNK_DEBOUNCED:
if (tcpm_port_is_disconnected(port))
new_state = SNK_UNATTACHED;
else if (port->vbus_present)
new_state = tcpm_try_src(port) ? INVALID_STATE : SNK_ATTACHED;
else
new_state = SNK_UNATTACHED;
if (new_state != port->delayed_state)
tcpm_set_state(dev, SNK_DEBOUNCED, 0);
break;
case SNK_READY:
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, unattached_state(port), 0);
else if (!port->pd_capable &&
(cc1 != old_cc1 || cc2 != old_cc2))
tcpm_set_current_limit(dev,
tcpm_get_current_limit(port),
5000);
break;
case SNK_DISCOVERY:
/* CC line is unstable, wait for debounce */
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, SNK_DISCOVERY_DEBOUNCE, 0);
break;
case SNK_DISCOVERY_DEBOUNCE:
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore CC changes here.
*/
break;
default:
/*
* While acting as sink and auto vbus discharge is enabled, Allow disconnect
* to be driven by vbus disconnect.
*/
if (tcpm_port_is_disconnected(port))
tcpm_set_state(dev, unattached_state(port), 0);
break;
}
}
static void _tcpm_pd_vbus_on(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: VBUS on event\n");
port->vbus_present = true;
/*
* When vbus_present is true i.e. Voltage at VBUS is greater than VSAFE5V implicitly
* states that vbus is not at VSAFE0V, hence clear the vbus_vsafe0v flag here.
*/
port->vbus_vsafe0v = false;
switch (port->state) {
case SNK_TRANSITION_SINK_VBUS:
port->explicit_contract = true;
tcpm_set_state(dev, SNK_READY, 0);
break;
case SNK_DISCOVERY:
tcpm_set_state(dev, SNK_DISCOVERY, 0);
break;
case SNK_DEBOUNCED:
tcpm_set_state(dev, SNK_ATTACHED, 0);
break;
case SNK_HARD_RESET_WAIT_VBUS:
tcpm_set_state(dev, SNK_HARD_RESET_SINK_ON, 0);
break;
case SRC_ATTACHED:
tcpm_set_state(dev, SRC_STARTUP, 0);
break;
case SRC_HARD_RESET_VBUS_ON:
tcpm_set_state(dev, SRC_STARTUP, 0);
break;
case PORT_RESET:
case PORT_RESET_WAIT_OFF:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
break;
}
}
static void _tcpm_pd_vbus_off(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
dev_dbg(dev, "TCPM: VBUS off event\n");
port->vbus_present = false;
port->vbus_never_low = false;
switch (port->state) {
case SNK_HARD_RESET_SINK_OFF:
tcpm_set_state(dev, SNK_HARD_RESET_WAIT_VBUS, 0);
break;
case HARD_RESET_SEND:
break;
case SNK_ATTACH_WAIT:
tcpm_set_state(dev, SNK_UNATTACHED, 0);
break;
case SNK_NEGOTIATE_CAPABILITIES:
break;
case PORT_RESET_WAIT_OFF:
tcpm_set_state(dev, tcpm_default_state(port), 0);
break;
case PORT_RESET:
/*
* State set back to default mode once the timer completes.
* Ignore vbus changes here.
*/
break;
default:
if (port->pwr_role == TYPEC_SINK && port->attached)
tcpm_set_state(dev, SNK_UNATTACHED, 0);
break;
}
}
void tcpm_cc_change(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
enum typec_cc_status cc1, cc2;
tcpm_reset_event_cnt(dev);
if (drvops->get_cc(dev, &cc1, &cc2) == 0)
_tcpm_cc_change(dev, cc1, cc2);
}
void tcpm_vbus_change(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
bool vbus;
tcpm_reset_event_cnt(dev);
vbus = drvops->get_vbus(dev);
if (vbus)
_tcpm_pd_vbus_on(dev);
else
_tcpm_pd_vbus_off(dev);
}
void tcpm_pd_hard_reset(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
tcpm_reset_event_cnt(dev);
dev_dbg(dev, "TCPM: Received hard reset\n");
/* If a hard reset message is received during the port reset process,
* we should ignore it, that is, do not set port->state to HARD_RESET_START.
*/
if (port->state == PORT_RESET || port->state == PORT_RESET_WAIT_OFF)
return;
/*
* If we keep receiving hard reset requests, executing the hard reset
* must have failed. Revert to error recovery if that happens.
*/
tcpm_set_state(dev,
port->hard_reset_count < PD_N_HARD_RESET_COUNT ?
HARD_RESET_START : ERROR_RECOVERY,
0);
}
static void tcpm_init(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
enum typec_cc_status cc1, cc2;
drvops->init(dev);
tcpm_reset_port(dev);
/*
* XXX
* Should possibly wait for VBUS to settle if it was enabled locally
* since tcpm_reset_port() will disable VBUS.
*/
port->vbus_present = drvops->get_vbus(dev);
if (port->vbus_present)
port->vbus_never_low = true;
/*
* 1. When vbus_present is true, voltage on VBUS is already at VSAFE5V.
* So implicitly vbus_vsafe0v = false.
*
* 2. When vbus_present is false and TCPC does NOT support querying
* vsafe0v status, then, it's best to assume vbus is at VSAFE0V i.e.
* vbus_vsafe0v is true.
*
* 3. When vbus_present is false and TCPC does support querying vsafe0v,
* then, query tcpc for vsafe0v status.
*/
if (port->vbus_present)
port->vbus_vsafe0v = false;
else
port->vbus_vsafe0v = true;
tcpm_set_state(dev, tcpm_default_state(port), 0);
if (drvops->get_cc(dev, &cc1, &cc2) == 0)
_tcpm_cc_change(dev, cc1, cc2);
}
static int tcpm_fw_get_caps(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
ofnode node;
const char *cap_str;
int ret;
u32 mw;
ret = drvops->get_connector_node(dev, &node);
if (ret)
return ret;
cap_str = ofnode_read_string(node, "power-role");
if (!cap_str)
return -EINVAL;
if (!strcmp("dual", cap_str))
port->typec_type = TYPEC_PORT_DRP;
else if (!strcmp("source", cap_str))
port->typec_type = TYPEC_PORT_SRC;
else if (!strcmp("sink", cap_str))
port->typec_type = TYPEC_PORT_SNK;
else
return -EINVAL;
port->port_type = port->typec_type;
if (port->port_type == TYPEC_PORT_SNK)
goto sink;
/* Get source pdos */
ret = ofnode_read_size(node, "source-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_src_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "source-pdos",
port->src_pdo, port->nr_src_pdo);
if (ret || tcpm_validate_caps(dev, port->src_pdo, port->nr_src_pdo))
return -EINVAL;
if (port->port_type == TYPEC_PORT_SRC)
return 0;
/* Get the preferred power role for DRP */
cap_str = ofnode_read_string(node, "try-power-role");
if (!cap_str)
return -EINVAL;
if (!strcmp("sink", cap_str))
port->typec_prefer_role = TYPEC_SINK;
else if (!strcmp("source", cap_str))
port->typec_prefer_role = TYPEC_SOURCE;
else
return -EINVAL;
if (port->typec_prefer_role < 0)
return -EINVAL;
sink:
/* Get sink pdos */
ret = ofnode_read_size(node, "sink-pdos") / sizeof(u32);
if (ret <= 0)
return -EINVAL;
port->nr_snk_pdo = min(ret, PDO_MAX_OBJECTS);
ret = ofnode_read_u32_array(node, "sink-pdos",
port->snk_pdo, port->nr_snk_pdo);
if (ret || tcpm_validate_caps(dev, port->snk_pdo, port->nr_snk_pdo))
return -EINVAL;
if (ofnode_read_u32_array(node, "op-sink-microwatt", &mw, 1))
return -EINVAL;
port->operating_snk_mw = mw / 1000;
port->self_powered = ofnode_read_bool(node, "self-powered");
return 0;
}
static int tcpm_port_init(struct udevice *dev)
{
struct tcpm_port *port = dev_get_uclass_plat(dev);
int err;
err = tcpm_fw_get_caps(dev);
if (err < 0) {
dev_err(dev, "TCPM: please check the dts config: %d\n", err);
return err;
}
port->try_role = port->typec_prefer_role;
port->port_type = port->typec_type;
tcpm_init(dev);
dev_info(dev, "TCPM: init finished\n");
return 0;
}
static void tcpm_poll_event(struct udevice *dev)
{
const struct dm_tcpm_ops *drvops = dev_get_driver_ops(dev);
struct tcpm_port *port = dev_get_uclass_plat(dev);
if (!drvops->get_vbus(dev))
return;
while (port->poll_event_cnt < TCPM_POLL_EVENT_TIME_OUT) {
if (!port->wait_dr_swap_message &&
(port->state == SNK_READY || port->state == SRC_READY))
break;
drvops->poll_event(dev);
port->poll_event_cnt++;
udelay(500);
tcpm_check_and_run_delayed_work(dev);
}
if (port->state != SNK_READY && port->state != SRC_READY)
dev_warn(dev, "TCPM: exit in state %s\n",
tcpm_states[port->state]);
/*
* At this time, call the callback function of the respective pd chip
* to enter the low-power mode. In order to reduce the time spent on
* the PD chip driver as much as possible, the tcpm framework does not
* fully process the communication initiated by the device,so it should
* be noted that we can disable the internal oscillator, etc., but do
* not turn off the power of the transceiver module, otherwise the
* self-powered Type-C device will initiate a Message(eg: self-powered
* Type-C hub initiates a SINK capability request(PD_CTRL_GET_SINK_CAP))
* and the pd chip cannot reply to GoodCRC, causing the self-powered Type-C
* device to switch vbus to vSafe5v, or even turn off vbus.
*/
if (!drvops->enter_low_power_mode)
return;
if (drvops->enter_low_power_mode(dev, port->attached, port->pd_capable))
dev_err(dev, "TCPM: failed to enter low power\n");
else
dev_info(dev, "TCPM: PD chip enter low power mode\n");
}
int tcpm_post_probe(struct udevice *dev)
{
int ret = tcpm_port_init(dev);
if (ret < 0) {
dev_err(dev, "failed to tcpm port init\n");
return ret;
}
tcpm_poll_event(dev);
return 0;
}