blob: a612ce89447c345d70883776a2992418f0833797 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (c) 2011-2012 The Chromium OS Authors.
*/
#ifndef __SANDBOX_STATE_H
#define __SANDBOX_STATE_H
#include <config.h>
#include <sysreset.h>
#include <stdbool.h>
#include <linux/list.h>
#include <linux/stringify.h>
/**
* Selects the behavior of the serial terminal.
*
* If Ctrl-C is processed by U-Boot, then the only way to quit sandbox is with
* the 'reset' command, or equivalent.
*
* If the terminal is cooked, then Ctrl-C will terminate U-Boot, and the
* command line will not be quite such a faithful emulation.
*
* Options are:
*
* raw-with-sigs - Raw, but allow signals (Ctrl-C will quit)
* raw - Terminal is always raw
* cooked - Terminal is always cooked
*/
enum state_terminal_raw {
STATE_TERM_RAW_WITH_SIGS, /* Default */
STATE_TERM_RAW,
STATE_TERM_COOKED,
STATE_TERM_COUNT,
};
struct sandbox_spi_info {
const char *spec;
struct udevice *emul;
};
struct sandbox_wdt_info {
unsigned long long counter;
uint reset_count;
bool running;
};
/**
* struct sandbox_mapmem_entry - maps pointers to/from U-Boot addresses
*
* When map_to_sysmem() is called with an address outside sandbox's emulated
* RAM, a record is created with a tag that can be used to reference that
* pointer. When map_sysmem() is called later with that tag, the pointer will
* be returned, just as it would for a normal sandbox address.
*
* @tag: Address tag (a value which U-Boot uses to refer to the address)
* @ptr: Associated pointer for that tag
*/
struct sandbox_mapmem_entry {
ulong tag;
void *ptr;
struct list_head sibling_node;
};
/* The complete state of the test system */
struct sandbox_state {
const char *cmd; /* Command to execute */
bool interactive; /* Enable cmdline after execute */
bool run_distro_boot; /* Automatically run distro bootcommands */
const char *fdt_fname; /* Filename of FDT binary */
const char *parse_err; /* Error to report from parsing */
int argc; /* Program arguments */
char **argv; /* Command line arguments */
const char *jumped_fname; /* Jumped from previous U_Boot */
uint8_t *ram_buf; /* Emulated RAM buffer */
unsigned int ram_size; /* Size of RAM buffer */
const char *ram_buf_fname; /* Filename to use for RAM buffer */
bool ram_buf_rm; /* Remove RAM buffer file after read */
bool write_ram_buf; /* Write RAM buffer on exit */
const char *state_fname; /* File containing sandbox state */
void *state_fdt; /* Holds saved state for sandbox */
bool read_state; /* Read sandbox state on startup */
bool write_state; /* Write sandbox state on exit */
bool ignore_missing_state_on_read; /* No error if state missing */
bool show_lcd; /* Show LCD on start-up */
enum sysreset_t last_sysreset; /* Last system reset type */
bool sysreset_allowed[SYSRESET_COUNT]; /* Allowed system reset types */
enum state_terminal_raw term_raw; /* Terminal raw/cooked */
bool skip_delays; /* Ignore any time delays (for test) */
bool show_test_output; /* Don't suppress stdout in tests */
/* Pointer to information for each SPI bus/cs */
struct sandbox_spi_info spi[CONFIG_SANDBOX_SPI_MAX_BUS]
[CONFIG_SANDBOX_SPI_MAX_CS];
/* Information about Watchdog */
struct sandbox_wdt_info wdt;
ulong next_tag; /* Next address tag to allocate */
struct list_head mapmem_head; /* struct sandbox_mapmem_entry */
};
/* Minimum space we guarantee in the state FDT when calling read/write*/
#define SANDBOX_STATE_MIN_SPACE 0x1000
/**
* struct sandbox_state_io - methods to saved/restore sandbox state
* @name: Name of of the device tree node, also the name of the variable
* holding this data so it should be an identifier (use underscore
* instead of minus)
* @compat: Compatible string for the node containing this state
*
* @read: Function to read state from FDT
* If data is available, then blob and node will provide access to it. If
* not (blob == NULL and node == -1) this function should set up an empty
* data set for start-of-day.
* @param blob: Pointer to device tree blob, or NULL if no data to read
* @param node: Node offset to read from
* @return 0 if OK, -ve on error
*
* @write: Function to write state to FDT
* The caller will ensure that there is a node ready for the state. The
* node may already contain the old state, in which case it should be
* overridden. There is guaranteed to be SANDBOX_STATE_MIN_SPACE bytes
* of free space, so error checking is not required for fdt_setprop...()
* calls which add up to less than this much space.
*
* For adding larger properties, use state_setprop().
*
* @param blob: Device tree blob holding state
* @param node: Node to write our state into
*
* Note that it is possible to save data as large blobs or as individual
* hierarchical properties. However, unless you intend to keep state files
* around for a long time and be able to run an old state file on a new
* sandbox, it might not be worth using individual properties for everything.
* This is certainly supported, it is just a matter of the effort you wish
* to put into the state read/write feature.
*/
struct sandbox_state_io {
const char *name;
const char *compat;
int (*write)(void *blob, int node);
int (*read)(const void *blob, int node);
};
/**
* SANDBOX_STATE_IO - Declare sandbox state to read/write
*
* Sandbox permits saving state from one run and restoring it in another. This
* allows the test system to retain state between runs and thus better
* emulate a real system. Examples of state that might be useful to save are
* the emulated GPIOs pin settings, flash memory contents and TPM private
* data. U-Boot memory contents is dealth with separately since it is large
* and it is not normally useful to save it (since a normal system does not
* preserve DRAM between runs). See the '-m' option for this.
*
* See struct sandbox_state_io above for member documentation.
*/
#define SANDBOX_STATE_IO(_name, _compat, _read, _write) \
ll_entry_declare(struct sandbox_state_io, _name, state_io) = { \
.name = __stringify(_name), \
.read = _read, \
.write = _write, \
.compat = _compat, \
}
/**
* Gets a pointer to the current state.
*
* @return pointer to state
*/
struct sandbox_state *state_get_current(void);
/**
* Read the sandbox state from the supplied device tree file
*
* This calls all registered state handlers to read in the sandbox state
* from a previous test run.
*
* @param state Sandbox state to update
* @param fname Filename of device tree file to read from
* @return 0 if OK, -ve on error
*/
int sandbox_read_state(struct sandbox_state *state, const char *fname);
/**
* Write the sandbox state to the supplied device tree file
*
* This calls all registered state handlers to write out the sandbox state
* so that it can be preserved for a future test run.
*
* If the file exists it is overwritten.
*
* @param state Sandbox state to update
* @param fname Filename of device tree file to write to
* @return 0 if OK, -ve on error
*/
int sandbox_write_state(struct sandbox_state *state, const char *fname);
/**
* Add a property to a sandbox state node
*
* This is equivalent to fdt_setprop except that it automatically enlarges
* the device tree if necessary. That means it is safe to write any amount
* of data here.
*
* This function can only be called from within struct sandbox_state_io's
* ->write method, i.e. within state I/O drivers.
*
* @param node Device tree node to write to
* @param prop_name Property to write
* @param data Data to write into property
* @param size Size of data to write into property
*/
int state_setprop(int node, const char *prop_name, const void *data, int size);
/**
* Control skipping of time delays
*
* Some tests have unnecessay time delays (e.g. USB). Allow these to be
* skipped to speed up testing
*
* @param skip_delays true to skip delays from now on, false to honour delay
* requests
*/
void state_set_skip_delays(bool skip_delays);
/**
* See if delays should be skipped
*
* @return true if delays should be skipped, false if they should be honoured
*/
bool state_get_skip_delays(void);
/**
* state_reset_for_test() - Reset ready to re-run tests
*
* This clears out any test state ready for another test run.
*/
void state_reset_for_test(struct sandbox_state *state);
/**
* Initialize the test system state
*/
int state_init(void);
/**
* Uninitialize the test system state, writing out state if configured to
* do so.
*
* @return 0 if OK, -ve on error
*/
int state_uninit(void);
#endif