| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2019 Marvell International Ltd. |
| * |
| * https://spdx.org/licenses |
| */ |
| |
| //#define DEBUG |
| #include <cpu_func.h> |
| #include <dm.h> |
| #include <dm/lists.h> |
| #include <env.h> |
| #include <errno.h> |
| #include <fdtdec.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <mmc.h> |
| #include <part.h> |
| #include <pci.h> |
| #include <pci_ids.h> |
| #include <time.h> |
| #include <watchdog.h> |
| |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/libfdt.h> |
| |
| #include <asm/arch/board.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/csrs/csrs-mio_emm.h> |
| #include <asm/io.h> |
| #include <dm/device-internal.h> |
| |
| #include <power/regulator.h> |
| |
| #include "octeontx_hsmmc.h" |
| |
| #define MMC_TIMEOUT_SHORT 20 /* in ms */ |
| #define MMC_TIMEOUT_LONG 1000 |
| #define MMC_TIMEOUT_ERASE 10000 |
| |
| #define MMC_DEFAULT_DATA_IN_TAP 10 |
| #define MMC_DEFAULT_CMD_IN_TAP 10 |
| #define MMC_DEFAULT_CMD_OUT_TAP 39 |
| #define MMC_DEFAULT_DATA_OUT_TAP 39 |
| #define MMC_DEFAULT_HS200_CMD_IN_TAP 24 |
| #define MMC_DEFAULT_HS200_DATA_IN_TAP 24 |
| #define MMC_DEFAULT_HS200_CMD_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5) |
| #define MMC_DEFAULT_HS200_DATA_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5) |
| #define MMC_DEFAULT_HS400_CMD_OUT_TAP (otx_is_soc(CN95XX) ? 10 : 5) |
| #define MMC_DEFAULT_HS400_DATA_OUT_TAP (otx_is_soc(CN95XX) ? 5 : 3) |
| #define MMC_DEFAULT_HS200_CMD_OUT_DLY 800 /* Delay in ps */ |
| #define MMC_DEFAULT_HS200_DATA_OUT_DLY 800 /* Delay in ps */ |
| #define MMC_DEFAULT_HS400_CMD_OUT_DLY 800 /* Delay in ps */ |
| #define MMC_DEFAULT_HS400_DATA_OUT_DLY 400 /* Delay in ps */ |
| #define MMC_DEFAULT_SD_UHS_SDR104_CMD_OUT_TAP MMC_DEFAULT_HS200_CMD_OUT_TAP |
| #define MMC_DEFAULT_SD_UHS_SDR104_DATA_OUT_TAP MMC_DEFAULT_HS200_DATA_OUT_TAP |
| #define MMC_LEGACY_DEFAULT_CMD_OUT_TAP 39 |
| #define MMC_LEGACY_DEFAULT_DATA_OUT_TAP 39 |
| #define MMC_SD_LEGACY_DEFAULT_CMD_OUT_TAP 63 |
| #define MMC_SD_LEGACY_DEFAULT_DATA_OUT_TAP 63 |
| #define MMC_HS_CMD_OUT_TAP 32 |
| #define MMC_HS_DATA_OUT_TAP 32 |
| #define MMC_SD_HS_CMD_OUT_TAP 26 |
| #define MMC_SD_HS_DATA_OUT_TAP 26 |
| #define MMC_SD_UHS_SDR25_CMD_OUT_TAP 26 |
| #define MMC_SD_UHS_SDR25_DATA_OUT_TAP 26 |
| #define MMC_SD_UHS_SDR50_CMD_OUT_TAP 26 |
| #define MMC_SD_UHS_SDR50_DATA_OUT_TAP 26 |
| #define MMC_DEFAULT_TAP_DELAY 4 |
| #define TOTAL_NO_OF_TAPS 512 |
| static void octeontx_mmc_switch_to(struct mmc *mmc); |
| static int octeontx_mmc_configure_delay(struct mmc *mmc); |
| static void octeontx_mmc_set_timing(struct mmc *mmc); |
| static void set_wdog(struct mmc *mmc, u64 us); |
| static void do_switch(struct mmc *mmc, union mio_emm_switch emm_switch); |
| static int octeontx_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, |
| struct mmc_data *data); |
| static int octeontx2_mmc_calc_delay(struct mmc *mmc, int delay); |
| static int octeontx_mmc_calibrate_delay(struct mmc *mmc); |
| static int octeontx_mmc_set_input_bus_timing(struct mmc *mmc); |
| static int octeontx_mmc_set_output_bus_timing(struct mmc *mmc); |
| |
| static bool host_probed; |
| |
| /** |
| * Get the slot data structure from a MMC data structure |
| */ |
| static inline struct octeontx_mmc_slot *mmc_to_slot(struct mmc *mmc) |
| { |
| return container_of(mmc, struct octeontx_mmc_slot, mmc); |
| } |
| |
| static inline struct octeontx_mmc_host *mmc_to_host(struct mmc *mmc) |
| { |
| return mmc_to_slot(mmc)->host; |
| } |
| |
| static inline struct octeontx_mmc_slot *dev_to_mmc_slot(struct udevice *dev) |
| { |
| return dev_get_priv(dev); |
| } |
| |
| static inline struct mmc *dev_to_mmc(struct udevice *dev) |
| { |
| return &((struct octeontx_mmc_slot *)dev_get_priv(dev))->mmc; |
| } |
| |
| #ifdef DEBUG |
| const char *mmc_reg_str(u64 reg) |
| { |
| if (reg == MIO_EMM_DMA_CFG()) |
| return "MIO_EMM_DMA_CFG"; |
| if (reg == MIO_EMM_DMA_ADR()) |
| return "MIO_EMM_DMA_ADR"; |
| if (reg == MIO_EMM_DMA_INT()) |
| return "MIO_EMM_DMA_INT"; |
| if (reg == MIO_EMM_CFG()) |
| return "MIO_EMM_CFG"; |
| if (reg == MIO_EMM_MODEX(0)) |
| return "MIO_EMM_MODE0"; |
| if (reg == MIO_EMM_MODEX(1)) |
| return "MIO_EMM_MODE1"; |
| if (reg == MIO_EMM_MODEX(2)) |
| return "MIO_EMM_MODE2"; |
| if (reg == MIO_EMM_MODEX(3)) |
| return "MIO_EMM_MODE3"; |
| if (reg == MIO_EMM_IO_CTL()) |
| return "MIO_EMM_IO_CTL"; |
| if (reg == MIO_EMM_SWITCH()) |
| return "MIO_EMM_SWITCH"; |
| if (reg == MIO_EMM_DMA()) |
| return "MIO_EMM_DMA"; |
| if (reg == MIO_EMM_CMD()) |
| return "MIO_EMM_CMD"; |
| if (reg == MIO_EMM_RSP_STS()) |
| return "MIO_EMM_RSP_STS"; |
| if (reg == MIO_EMM_RSP_LO()) |
| return "MIO_EMM_RSP_LO"; |
| if (reg == MIO_EMM_RSP_HI()) |
| return "MIO_EMM_RSP_HI"; |
| if (reg == MIO_EMM_INT()) |
| return "MIO_EMM_INT"; |
| if (reg == MIO_EMM_WDOG()) |
| return "MIO_EMM_WDOG"; |
| if (reg == MIO_EMM_DMA_ARG()) |
| return "MIO_EMM_DMA_ARG"; |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| if (reg == MIO_EMM_SAMPLE()) |
| return "MIO_EMM_SAMPLE"; |
| } |
| if (reg == MIO_EMM_STS_MASK()) |
| return "MIO_EMM_STS_MASK"; |
| if (reg == MIO_EMM_RCA()) |
| return "MIO_EMM_RCA"; |
| if (reg == MIO_EMM_BUF_IDX()) |
| return "MIO_EMM_BUF_IDX"; |
| if (reg == MIO_EMM_BUF_DAT()) |
| return "MIO_EMM_BUF_DAT"; |
| if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| if (reg == MIO_EMM_CALB()) |
| return "MIO_EMM_CALB"; |
| if (reg == MIO_EMM_TAP()) |
| return "MIO_EMM_TAP"; |
| if (reg == MIO_EMM_TIMING()) |
| return "MIO_EMM_TIMING"; |
| if (reg == MIO_EMM_DEBUG()) |
| return "MIO_EMM_DEBUG"; |
| } |
| |
| return "UNKNOWN"; |
| } |
| #endif |
| |
| static void octeontx_print_rsp_sts(struct mmc *mmc) |
| { |
| #ifdef DEBUG |
| union mio_emm_rsp_sts emm_rsp_sts; |
| const struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| static const char * const ctype_xor_str[] = { |
| "No data", |
| "Read data into Dbuf", |
| "Write data from Dbuf", |
| "Reserved" |
| }; |
| |
| static const char * const rtype_xor_str[] = { |
| "No response", |
| "R1, 48 bits", |
| "R2, 136 bits", |
| "R3, 48 bits", |
| "R4, 48 bits", |
| "R5, 48 bits", |
| "Reserved 6", |
| "Reserved 7" |
| }; |
| |
| emm_rsp_sts.u = readq(host->base_addr + MIO_EMM_RSP_STS()); |
| printf("\nMIO_EMM_RSP_STS: 0x%016llx\n", emm_rsp_sts.u); |
| printf(" 60-61: bus_id: %u\n", emm_rsp_sts.s.bus_id); |
| printf(" 59: cmd_val: %s\n", |
| emm_rsp_sts.s.cmd_val ? "yes" : "no"); |
| printf(" 58: switch_val: %s\n", |
| emm_rsp_sts.s.switch_val ? "yes" : "no"); |
| printf(" 57: dma_val: %s\n", |
| emm_rsp_sts.s.dma_val ? "yes" : "no"); |
| printf(" 56: dma_pend: %s\n", |
| emm_rsp_sts.s.dma_pend ? "yes" : "no"); |
| printf(" 28: dbuf_err: %s\n", |
| emm_rsp_sts.s.dbuf_err ? "yes" : "no"); |
| printf(" 23: dbuf: %u\n", emm_rsp_sts.s.dbuf); |
| printf(" 22: blk_timeout: %s\n", |
| emm_rsp_sts.s.blk_timeout ? "yes" : "no"); |
| printf(" 21: blk_crc_err: %s\n", |
| emm_rsp_sts.s.blk_crc_err ? "yes" : "no"); |
| printf(" 20: rsp_busybit: %s\n", |
| emm_rsp_sts.s.rsp_busybit ? "yes" : "no"); |
| printf(" 19: stp_timeout: %s\n", |
| emm_rsp_sts.s.stp_timeout ? "yes" : "no"); |
| printf(" 18: stp_crc_err: %s\n", |
| emm_rsp_sts.s.stp_crc_err ? "yes" : "no"); |
| printf(" 17: stp_bad_sts: %s\n", |
| emm_rsp_sts.s.stp_bad_sts ? "yes" : "no"); |
| printf(" 16: stp_val: %s\n", |
| emm_rsp_sts.s.stp_val ? "yes" : "no"); |
| printf(" 15: rsp_timeout: %s\n", |
| emm_rsp_sts.s.rsp_timeout ? "yes" : "no"); |
| printf(" 14: rsp_crc_err: %s\n", |
| emm_rsp_sts.s.rsp_crc_err ? "yes" : "no"); |
| printf(" 13: rsp_bad_sts: %s\n", |
| emm_rsp_sts.s.rsp_bad_sts ? "yes" : "no"); |
| printf(" 12: rsp_val: %s\n", |
| emm_rsp_sts.s.rsp_val ? "yes" : "no"); |
| printf(" 9-11: rsp_type: %s\n", |
| rtype_xor_str[emm_rsp_sts.s.rsp_type]); |
| printf(" 7-8: cmd_type: %s\n", |
| ctype_xor_str[emm_rsp_sts.s.cmd_type]); |
| printf(" 1-6: cmd_idx: %u\n", |
| emm_rsp_sts.s.cmd_idx); |
| printf(" 0: cmd_done: %s\n", |
| emm_rsp_sts.s.cmd_done ? "yes" : "no"); |
| #endif |
| } |
| |
| static inline u64 read_csr(struct mmc *mmc, u64 reg) |
| { |
| const struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| u64 value = readq(host->base_addr + reg); |
| #ifdef DEBUG_CSR |
| printf(" %s: %s(0x%p) => 0x%llx\n", __func__, |
| mmc_reg_str(reg), host->base_addr + reg, |
| value); |
| #endif |
| return value; |
| } |
| |
| /** |
| * Writes to a CSR register |
| * |
| * @param[in] mmc pointer to mmc data structure |
| * @param reg register offset |
| * @param value value to write to register |
| */ |
| static inline void write_csr(struct mmc *mmc, u64 reg, u64 value) |
| { |
| const struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| void *addr = host->base_addr + reg; |
| |
| #ifdef DEBUG_CSR |
| printf(" %s: %s(0x%p) <= 0x%llx\n", __func__, mmc_reg_str(reg), |
| addr, value); |
| #endif |
| writeq(value, addr); |
| } |
| |
| #ifdef DEBUG |
| static void mmc_print_status(u32 status) |
| { |
| #ifdef DEBUG_STATUS |
| static const char * const state[] = { |
| "Idle", /* 0 */ |
| "Ready", /* 1 */ |
| "Ident", /* 2 */ |
| "Standby", /* 3 */ |
| "Tran", /* 4 */ |
| "Data", /* 5 */ |
| "Receive", /* 6 */ |
| "Program", /* 7 */ |
| "Dis", /* 8 */ |
| "Btst", /* 9 */ |
| "Sleep", /* 10 */ |
| "reserved", /* 11 */ |
| "reserved", /* 12 */ |
| "reserved", /* 13 */ |
| "reserved", /* 14 */ |
| "reserved" /* 15 */ }; |
| if (status & R1_APP_CMD) |
| puts("MMC ACMD\n"); |
| if (status & R1_SWITCH_ERROR) |
| puts("MMC switch error\n"); |
| if (status & R1_READY_FOR_DATA) |
| puts("MMC ready for data\n"); |
| printf("MMC %s state\n", state[R1_CURRENT_STATE(status)]); |
| if (status & R1_ERASE_RESET) |
| puts("MMC erase reset\n"); |
| if (status & R1_WP_ERASE_SKIP) |
| puts("MMC partial erase due to write protected blocks\n"); |
| if (status & R1_CID_CSD_OVERWRITE) |
| puts("MMC CID/CSD overwrite error\n"); |
| if (status & R1_ERROR) |
| puts("MMC undefined device error\n"); |
| if (status & R1_CC_ERROR) |
| puts("MMC device error\n"); |
| if (status & R1_CARD_ECC_FAILED) |
| puts("MMC internal ECC failed to correct data\n"); |
| if (status & R1_ILLEGAL_COMMAND) |
| puts("MMC illegal command\n"); |
| if (status & R1_COM_CRC_ERROR) |
| puts("MMC CRC of previous command failed\n"); |
| if (status & R1_LOCK_UNLOCK_FAILED) |
| puts("MMC sequence or password error in lock/unlock device command\n"); |
| if (status & R1_CARD_IS_LOCKED) |
| puts("MMC device locked by host\n"); |
| if (status & R1_WP_VIOLATION) |
| puts("MMC attempt to program write protected block\n"); |
| if (status & R1_ERASE_PARAM) |
| puts("MMC invalid selection of erase groups for erase\n"); |
| if (status & R1_ERASE_SEQ_ERROR) |
| puts("MMC error in sequence of erase commands\n"); |
| if (status & R1_BLOCK_LEN_ERROR) |
| puts("MMC block length error\n"); |
| if (status & R1_ADDRESS_ERROR) |
| puts("MMC address misalign error\n"); |
| if (status & R1_OUT_OF_RANGE) |
| puts("MMC address out of range\n"); |
| #endif |
| } |
| #endif |
| |
| /** |
| * Print out all of the register values where mmc is optional |
| * |
| * @param mmc MMC device (can be NULL) |
| * @param host Pointer to host data structure (can be NULL if mmc is !NULL) |
| */ |
| static void octeontx_mmc_print_registers2(struct mmc *mmc, |
| struct octeontx_mmc_host *host) |
| { |
| struct octeontx_mmc_slot *slot = mmc ? mmc->priv : NULL; |
| union mio_emm_dma_cfg emm_dma_cfg; |
| union mio_emm_dma_adr emm_dma_adr; |
| union mio_emm_dma_int emm_dma_int; |
| union mio_emm_cfg emm_cfg; |
| union mio_emm_modex emm_mode; |
| union mio_emm_switch emm_switch; |
| union mio_emm_dma emm_dma; |
| union mio_emm_cmd emm_cmd; |
| union mio_emm_rsp_sts emm_rsp_sts; |
| union mio_emm_rsp_lo emm_rsp_lo; |
| union mio_emm_rsp_hi emm_rsp_hi; |
| union mio_emm_int emm_int; |
| union mio_emm_wdog emm_wdog; |
| union mio_emm_sample emm_sample; |
| union mio_emm_calb emm_calb; |
| union mio_emm_tap emm_tap; |
| union mio_emm_timing emm_timing; |
| union mio_emm_io_ctl io_ctl; |
| union mio_emm_debug emm_debug; |
| union mio_emm_sts_mask emm_sts_mask; |
| union mio_emm_rca emm_rca; |
| int bus; |
| |
| static const char * const bus_width_str[] = { |
| "1-bit data bus (power on)", |
| "4-bit data bus", |
| "8-bit data bus", |
| "reserved (3)", |
| "reserved (4)", |
| "4-bit data bus (dual data rate)", |
| "8-bit data bus (dual data rate)", |
| "reserved (7)", |
| "reserved (8)", |
| "invalid (9)", |
| "invalid (10)", |
| "invalid (11)", |
| "invalid (12)", |
| "invalid (13)", |
| "invalid (14)", |
| "invalid (15)", |
| }; |
| static const char * const ctype_xor_str[] = { |
| "No data", |
| "Read data into Dbuf", |
| "Write data from Dbuf", |
| "Reserved" |
| }; |
| |
| static const char * const rtype_xor_str[] = { |
| "No response", |
| "R1, 48 bits", |
| "R2, 136 bits", |
| "R3, 48 bits", |
| "R4, 48 bits", |
| "R5, 48 bits", |
| "Reserved 6", |
| "Reserved 7" |
| }; |
| |
| if (!host && mmc) |
| host = mmc_to_host(mmc); |
| |
| if (mmc) |
| printf("%s: bus id: %u\n", __func__, slot->bus_id); |
| emm_dma_cfg.u = readq(host->base_addr + MIO_EMM_DMA_CFG()); |
| printf("MIO_EMM_DMA_CFG: 0x%016llx\n", |
| emm_dma_cfg.u); |
| printf(" 63: en: %s\n", |
| emm_dma_cfg.s.en ? "enabled" : "disabled"); |
| printf(" 62: rw: %s\n", |
| emm_dma_cfg.s.rw ? "write" : "read"); |
| printf(" 61: clr: %s\n", |
| emm_dma_cfg.s.clr ? "clear" : "not clear"); |
| printf(" 59: swap32: %s\n", |
| emm_dma_cfg.s.swap32 ? "yes" : "no"); |
| printf(" 58: swap16: %s\n", |
| emm_dma_cfg.s.swap16 ? "yes" : "no"); |
| printf(" 57: swap8: %s\n", |
| emm_dma_cfg.s.swap8 ? "yes" : "no"); |
| printf(" 56: endian: %s\n", |
| emm_dma_cfg.s.endian ? "little" : "big"); |
| printf(" 36-55: size: %u\n", |
| emm_dma_cfg.s.size); |
| |
| emm_dma_adr.u = readq(host->base_addr + MIO_EMM_DMA_ADR()); |
| printf("MIO_EMM_DMA_ADR: 0x%016llx\n", emm_dma_adr.u); |
| printf(" 0-49: adr: 0x%llx\n", |
| (u64)emm_dma_adr.s.adr); |
| |
| emm_dma_int.u = readq(host->base_addr + MIO_EMM_DMA_INT()); |
| printf("\nMIO_EMM_DMA_INT: 0x%016llx\n", |
| emm_dma_int.u); |
| printf(" 1: FIFO: %s\n", |
| emm_dma_int.s.fifo ? "yes" : "no"); |
| printf(" 0: Done: %s\n", |
| emm_dma_int.s.done ? "yes" : "no"); |
| emm_cfg.u = readq(host->base_addr + MIO_EMM_CFG()); |
| |
| printf("\nMIO_EMM_CFG: 0x%016llx\n", |
| emm_cfg.u); |
| printf(" 3: bus_ena3: %s\n", |
| emm_cfg.s.bus_ena & 0x08 ? "yes" : "no"); |
| printf(" 2: bus_ena2: %s\n", |
| emm_cfg.s.bus_ena & 0x04 ? "yes" : "no"); |
| printf(" 1: bus_ena1: %s\n", |
| emm_cfg.s.bus_ena & 0x02 ? "yes" : "no"); |
| printf(" 0: bus_ena0: %s\n", |
| emm_cfg.s.bus_ena & 0x01 ? "yes" : "no"); |
| for (bus = 0; bus < 4; bus++) { |
| emm_mode.u = readq(host->base_addr + MIO_EMM_MODEX(bus)); |
| printf("\nMIO_EMM_MODE%u: 0x%016llx\n", |
| bus, emm_mode.u); |
| if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| printf(" 50: hs400_timing: %s\n", |
| emm_mode.s.hs400_timing ? "yes" : "no"); |
| printf(" 49: hs200_timing: %s\n", |
| emm_mode.s.hs200_timing ? "yes" : "no"); |
| } |
| printf(" 48: hs_timing: %s\n", |
| emm_mode.s.hs_timing ? "yes" : "no"); |
| printf(" 40-42: bus_width: %s\n", |
| bus_width_str[emm_mode.s.bus_width]); |
| printf(" 32-35: power_class %u\n", |
| emm_mode.s.power_class); |
| printf(" 16-31: clk_hi: %u\n", |
| emm_mode.s.clk_hi); |
| printf(" 0-15: clk_lo: %u\n", |
| emm_mode.s.clk_lo); |
| } |
| |
| emm_switch.u = readq(host->base_addr + MIO_EMM_SWITCH()); |
| printf("\nMIO_EMM_SWITCH: 0x%016llx\n", emm_switch.u); |
| printf(" 60-61: bus_id: %u\n", emm_switch.s.bus_id); |
| printf(" 59: switch_exe: %s\n", |
| emm_switch.s.switch_exe ? "yes" : "no"); |
| printf(" 58: switch_err0: %s\n", |
| emm_switch.s.switch_err0 ? "yes" : "no"); |
| printf(" 57: switch_err1: %s\n", |
| emm_switch.s.switch_err1 ? "yes" : "no"); |
| printf(" 56: switch_err2: %s\n", |
| emm_switch.s.switch_err2 ? "yes" : "no"); |
| printf(" 48: hs_timing: %s\n", |
| emm_switch.s.hs_timing ? "yes" : "no"); |
| printf(" 42-40: bus_width: %s\n", |
| bus_width_str[emm_switch.s.bus_width]); |
| printf(" 32-35: power_class: %u\n", |
| emm_switch.s.power_class); |
| printf(" 16-31: clk_hi: %u\n", |
| emm_switch.s.clk_hi); |
| printf(" 0-15: clk_lo: %u\n", emm_switch.s.clk_lo); |
| |
| emm_dma.u = readq(host->base_addr + MIO_EMM_DMA()); |
| printf("\nMIO_EMM_DMA: 0x%016llx\n", emm_dma.u); |
| printf(" 60-61: bus_id: %u\n", emm_dma.s.bus_id); |
| printf(" 59: dma_val: %s\n", |
| emm_dma.s.dma_val ? "yes" : "no"); |
| printf(" 58: sector: %s mode\n", |
| emm_dma.s.sector ? "sector" : "byte"); |
| printf(" 57: dat_null: %s\n", |
| emm_dma.s.dat_null ? "yes" : "no"); |
| printf(" 51-56: thres: %u\n", emm_dma.s.thres); |
| printf(" 50: rel_wr: %s\n", |
| emm_dma.s.rel_wr ? "yes" : "no"); |
| printf(" 49: rw: %s\n", |
| emm_dma.s.rw ? "write" : "read"); |
| printf(" 48: multi: %s\n", |
| emm_dma.s.multi ? "yes" : "no"); |
| printf(" 32-47: block_cnt: %u\n", |
| emm_dma.s.block_cnt); |
| printf(" 0-31: card_addr: 0x%x\n", |
| emm_dma.s.card_addr); |
| |
| emm_cmd.u = readq(host->base_addr + MIO_EMM_CMD()); |
| printf("\nMIO_EMM_CMD: 0x%016llx\n", emm_cmd.u); |
| printf("\n 62: skip_busy: %s\n", |
| emm_cmd.s.skip_busy ? "yes" : "no"); |
| printf(" 60-61: bus_id: %u\n", emm_cmd.s.bus_id); |
| printf(" 59: cmd_val: %s\n", |
| emm_cmd.s.cmd_val ? "yes" : "no"); |
| printf(" 55: dbuf: %u\n", emm_cmd.s.dbuf); |
| printf(" 49-54: offset: %u\n", emm_cmd.s.offset); |
| printf(" 41-42: ctype_xor: %s\n", |
| ctype_xor_str[emm_cmd.s.ctype_xor]); |
| printf(" 38-40: rtype_xor: %s\n", |
| rtype_xor_str[emm_cmd.s.rtype_xor]); |
| printf(" 32-37: cmd_idx: %u\n", emm_cmd.s.cmd_idx); |
| printf(" 0-31: arg: 0x%x\n", emm_cmd.s.arg); |
| |
| emm_rsp_sts.u = readq(host->base_addr + MIO_EMM_RSP_STS()); |
| printf("\nMIO_EMM_RSP_STS: 0x%016llx\n", emm_rsp_sts.u); |
| printf(" 60-61: bus_id: %u\n", emm_rsp_sts.s.bus_id); |
| printf(" 59: cmd_val: %s\n", |
| emm_rsp_sts.s.cmd_val ? "yes" : "no"); |
| printf(" 58: switch_val: %s\n", |
| emm_rsp_sts.s.switch_val ? "yes" : "no"); |
| printf(" 57: dma_val: %s\n", |
| emm_rsp_sts.s.dma_val ? "yes" : "no"); |
| printf(" 56: dma_pend: %s\n", |
| emm_rsp_sts.s.dma_pend ? "yes" : "no"); |
| printf(" 28: dbuf_err: %s\n", |
| emm_rsp_sts.s.dbuf_err ? "yes" : "no"); |
| printf(" 23: dbuf: %u\n", emm_rsp_sts.s.dbuf); |
| printf(" 22: blk_timeout: %s\n", |
| emm_rsp_sts.s.blk_timeout ? "yes" : "no"); |
| printf(" 21: blk_crc_err: %s\n", |
| emm_rsp_sts.s.blk_crc_err ? "yes" : "no"); |
| printf(" 20: rsp_busybit: %s\n", |
| emm_rsp_sts.s.rsp_busybit ? "yes" : "no"); |
| printf(" 19: stp_timeout: %s\n", |
| emm_rsp_sts.s.stp_timeout ? "yes" : "no"); |
| printf(" 18: stp_crc_err: %s\n", |
| emm_rsp_sts.s.stp_crc_err ? "yes" : "no"); |
| printf(" 17: stp_bad_sts: %s\n", |
| emm_rsp_sts.s.stp_bad_sts ? "yes" : "no"); |
| printf(" 16: stp_val: %s\n", |
| emm_rsp_sts.s.stp_val ? "yes" : "no"); |
| printf(" 15: rsp_timeout: %s\n", |
| emm_rsp_sts.s.rsp_timeout ? "yes" : "no"); |
| printf(" 14: rsp_crc_err: %s\n", |
| emm_rsp_sts.s.rsp_crc_err ? "yes" : "no"); |
| printf(" 13: rsp_bad_sts: %s\n", |
| emm_rsp_sts.s.rsp_bad_sts ? "yes" : "no"); |
| printf(" 12: rsp_val: %s\n", |
| emm_rsp_sts.s.rsp_val ? "yes" : "no"); |
| printf(" 9-11: rsp_type: %s\n", |
| rtype_xor_str[emm_rsp_sts.s.rsp_type]); |
| printf(" 7-8: cmd_type: %s\n", |
| ctype_xor_str[emm_rsp_sts.s.cmd_type]); |
| printf(" 1-6: cmd_idx: %u\n", |
| emm_rsp_sts.s.cmd_idx); |
| printf(" 0: cmd_done: %s\n", |
| emm_rsp_sts.s.cmd_done ? "yes" : "no"); |
| |
| emm_rsp_lo.u = readq(host->base_addr + MIO_EMM_RSP_LO()); |
| printf("\nMIO_EMM_RSP_STS_LO: 0x%016llx\n", emm_rsp_lo.u); |
| |
| emm_rsp_hi.u = readq(host->base_addr + MIO_EMM_RSP_HI()); |
| printf("\nMIO_EMM_RSP_STS_HI: 0x%016llx\n", emm_rsp_hi.u); |
| |
| emm_int.u = readq(host->base_addr + MIO_EMM_INT()); |
| printf("\nMIO_EMM_INT: 0x%016llx\n", emm_int.u); |
| printf(" 6: switch_err: %s\n", |
| emm_int.s.switch_err ? "yes" : "no"); |
| printf(" 5: switch_done: %s\n", |
| emm_int.s.switch_done ? "yes" : "no"); |
| printf(" 4: dma_err: %s\n", |
| emm_int.s.dma_err ? "yes" : "no"); |
| printf(" 3: cmd_err: %s\n", |
| emm_int.s.cmd_err ? "yes" : "no"); |
| printf(" 2: dma_done: %s\n", |
| emm_int.s.dma_done ? "yes" : "no"); |
| printf(" 1: cmd_done: %s\n", |
| emm_int.s.cmd_done ? "yes" : "no"); |
| printf(" 0: buf_done: %s\n", |
| emm_int.s.buf_done ? "yes" : "no"); |
| |
| emm_wdog.u = readq(host->base_addr + MIO_EMM_WDOG()); |
| printf("\nMIO_EMM_WDOG: 0x%016llx (%u)\n", |
| emm_wdog.u, emm_wdog.s.clk_cnt); |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| emm_sample.u = readq(host->base_addr + MIO_EMM_SAMPLE()); |
| printf("\nMIO_EMM_SAMPLE: 0x%016llx\n", |
| emm_sample.u); |
| printf(" 16-25: cmd_cnt: %u\n", |
| emm_sample.s.cmd_cnt); |
| printf(" 0-9: dat_cnt: %u\n", |
| emm_sample.s.dat_cnt); |
| } |
| |
| emm_sts_mask.u = readq(host->base_addr + MIO_EMM_STS_MASK()); |
| printf("\nMIO_EMM_STS_MASK: 0x%016llx\n", emm_sts_mask.u); |
| |
| emm_rca.u = readq(host->base_addr + MIO_EMM_RCA()); |
| printf("\nMIO_EMM_RCA: 0x%016llx\n", emm_rca.u); |
| printf(" 0-15: card_rca: 0x%04x\n", |
| emm_rca.s.card_rca); |
| if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| emm_calb.u = readq(host->base_addr + MIO_EMM_CALB()); |
| printf("\nMIO_EMM_CALB: 0x%016llx\n", |
| emm_calb.u); |
| printf(" 0: start: %u\n", |
| emm_calb.s.start); |
| emm_tap.u = readq(host->base_addr + MIO_EMM_TAP()); |
| printf("\nMIO_EMM_TAP: 0x%016llx\n", |
| emm_tap.u); |
| printf(" 7-0: delay: %u\n", emm_tap.s.delay); |
| emm_timing.u = readq(host->base_addr + MIO_EMM_TIMING()); |
| printf("\nMIO_EMM_TIMING: 0x%016llx\n", |
| emm_timing.u); |
| printf(" 53-48: cmd_in_tap: %u\n", |
| emm_timing.s.cmd_in_tap); |
| printf(" 37-32: cmd_out_tap: %u\n", |
| emm_timing.s.cmd_out_tap); |
| printf(" 21-16: data_in_tap: %u\n", |
| emm_timing.s.data_in_tap); |
| printf(" 5-0: data_out_tap: %u\n", |
| emm_timing.s.data_out_tap); |
| io_ctl.u = readq(host->base_addr + MIO_EMM_IO_CTL()); |
| printf("\nMIO_IO_CTL: 0x%016llx\n", io_ctl.u); |
| printf(" 3-2: drive: %u (%u mA)\n", |
| io_ctl.s.drive, 2 << io_ctl.s.drive); |
| printf(" 0: slew: %u %s\n", io_ctl.s.slew, |
| io_ctl.s.slew ? "high" : "low"); |
| emm_debug.u = readq(host->base_addr + MIO_EMM_DEBUG()); |
| printf("\nMIO_EMM_DEBUG: 0x%016llx\n", |
| emm_debug.u); |
| printf(" 21: rdsync_rst 0x%x\n", |
| emm_debug.s.rdsync_rst); |
| printf(" 20: emmc_clk_disable 0x%x\n", |
| emm_debug.s.emmc_clk_disable); |
| printf(" 19-16: dma_sm: 0x%x\n", |
| emm_debug.s.dma_sm); |
| printf(" 15-12: data_sm: 0x%x\n", |
| emm_debug.s.data_sm); |
| printf(" 11-8: cmd_sm: 0x%x\n", |
| emm_debug.s.cmd_sm); |
| printf(" 0: clk_on: 0x%x\n", |
| emm_debug.s.clk_on); |
| } |
| |
| puts("\n"); |
| } |
| |
| /** |
| * Print out all of the register values |
| * |
| * @param mmc MMC device |
| */ |
| static void octeontx_mmc_print_registers(struct mmc *mmc) |
| { |
| #ifdef DEBUG_REGISTERS |
| const int print = 1; |
| #else |
| const int print = 0; |
| #endif |
| if (print) |
| octeontx_mmc_print_registers2(mmc, mmc_to_host(mmc)); |
| } |
| |
| static const struct octeontx_sd_mods octeontx_cr_types[] = { |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD0 */ |
| { {0, 3}, {0, 3}, {0, 0} }, /* CMD1 */ |
| { {0, 2}, {0, 2}, {0, 0} }, /* CMD2 */ |
| { {0, 1}, {0, 3}, {0, 0} }, /* CMD3 SD_CMD_SEND_RELATIVE_ADDR 0, 2 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD4 */ |
| { {0, 1}, {0, 1}, {0, 0} }, /* CMD5 */ |
| { {0, 1}, {1, 1}, {0, 1} }, /* |
| * CMD6 SD_CMD_SWITCH_FUNC 1,0 |
| * (ACMD) SD_APP_SET_BUS_WIDTH |
| */ |
| { {0, 1}, {0, 1}, {0, 0} }, /* CMD7 */ |
| { {1, 1}, {0, 3}, {0, 0} }, /* CMD8 SD_CMD_SEND_IF_COND 1,2 */ |
| { {0, 2}, {0, 2}, {0, 0} }, /* CMD9 */ |
| { {0, 2}, {0, 2}, {0, 0} }, /* CMD10 */ |
| { {1, 1}, {0, 1}, {1, 1} }, /* CMD11 SD_CMD_SWITCH_UHS18V 1,0 */ |
| { {0, 1}, {0, 1}, {0, 0} }, /* CMD12 */ |
| { {0, 1}, {0, 1}, {1, 3} }, /* CMD13 (ACMD)) SD_CMD_APP_SD_STATUS 1,2 */ |
| { {1, 1}, {1, 1}, {0, 0} }, /* CMD14 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD15 */ |
| { {0, 1}, {0, 1}, {0, 0} }, /* CMD16 */ |
| { {1, 1}, {1, 1}, {0, 0} }, /* CMD17 */ |
| { {1, 1}, {1, 1}, {0, 0} }, /* CMD18 */ |
| { {3, 1}, {3, 1}, {0, 0} }, /* CMD19 */ |
| { {2, 1}, {0, 0}, {0, 0} }, /* CMD20 */ /* SD 2,0 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD21 */ |
| { {0, 0}, {0, 0}, {1, 1} }, /* CMD22 (ACMD) SD_APP_SEND_NUM_WR_BLKS 1,0 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD23 */ /* SD ACMD 1,0 */ |
| { {2, 1}, {2, 1}, {2, 1} }, /* CMD24 */ |
| { {2, 1}, {2, 1}, {2, 1} }, /* CMD25 */ |
| { {2, 1}, {2, 1}, {2, 1} }, /* CMD26 */ |
| { {2, 1}, {2, 1}, {2, 1} }, /* CMD27 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD28 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD29 */ |
| { {1, 1}, {1, 1}, {1, 1} }, /* CMD30 */ |
| { {1, 1}, {1, 1}, {1, 1} }, /* CMD31 */ |
| { {0, 0}, {0, 1}, {0, 0} }, /* CMD32 SD_CMD_ERASE_WR_BLK_START 0,1 */ |
| { {0, 0}, {0, 1}, {0, 0} }, /* CMD33 SD_CMD_ERASE_WR_BLK_END 0,1 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD34 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD35 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD36 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD37 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD38 */ |
| { {0, 4}, {0, 4}, {0, 4} }, /* CMD39 */ |
| { {0, 5}, {0, 5}, {0, 5} }, /* CMD40 */ |
| { {0, 0}, {0, 0}, {0, 3} }, /* CMD41 (ACMD) SD_CMD_APP_SEND_OP_COND 0,3 */ |
| { {2, 1}, {2, 1}, {2, 1} }, /* CMD42 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD43 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD44 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD45 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD46 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD47 */ |
| { {0, 0}, {1, 0}, {0, 0} }, /* CMD48 SD_CMD_READ_EXTR_SINGLE */ |
| { {0, 0}, {2, 0}, {0, 0} }, /* CMD49 SD_CMD_WRITE_EXTR_SINGLE */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD50 */ |
| { {0, 0}, {0, 0}, {1, 1} }, /* CMD51 (ACMD) SD_CMD_APP_SEND_SCR 1,1 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD52 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD53 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD54 */ |
| { {0, 1}, {0, 1}, {0, 1} }, /* CMD55 */ |
| { {0xff, 0xff}, {0xff, 0xff}, {0xff, 0xff} }, /* CMD56 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD57 */ |
| { {0, 0}, {0, 3}, {0, 3} }, /* CMD58 SD_CMD_SPI_READ_OCR 0,3 */ |
| { {0, 0}, {0, 1}, {0, 0} }, /* CMD59 SD_CMD_SPI_CRC_ON_OFF 0,1 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD60 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD61 */ |
| { {0, 0}, {0, 0}, {0, 0} }, /* CMD62 */ |
| { {0, 0}, {0, 0}, {0, 0} } /* CMD63 */ |
| }; |
| |
| /** |
| * Returns XOR values needed for SD commands and other quirks |
| * |
| * @param mmc mmc device |
| * @param cmd command information |
| * |
| * @return octeontx_mmc_cr_mods data structure with various quirks and flags |
| */ |
| static struct octeontx_mmc_cr_mods |
| octeontx_mmc_get_cr_mods(struct mmc *mmc, const struct mmc_cmd *cmd, |
| const struct mmc_data *data) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct octeontx_mmc_cr_mods cr = {0, 0}; |
| const struct octeontx_sd_mods *sdm = |
| &octeontx_cr_types[cmd->cmdidx & 0x3f]; |
| u8 c = sdm->mmc.c, r = sdm->mmc.r; |
| u8 desired_ctype = 0; |
| |
| if (IS_MMC(mmc)) { |
| #ifdef MMC_SUPPORTS_TUNING |
| if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200) { |
| if (cmd->resp_type == MMC_RSP_R1) |
| cr.rtype_xor = 1; |
| if (data && data->flags & MMC_DATA_READ) |
| cr.ctype_xor = 1; |
| } |
| #endif |
| return cr; |
| } |
| |
| if (cmd->cmdidx == 56) |
| c = (cmd->cmdarg & 1) ? 1 : 2; |
| |
| if (data) { |
| if (data->flags & MMC_DATA_READ) |
| desired_ctype = 1; |
| else if (data->flags & MMC_DATA_WRITE) |
| desired_ctype = 2; |
| } |
| |
| cr.ctype_xor = c ^ desired_ctype; |
| if (slot->is_acmd) |
| cr.rtype_xor = r ^ sdm->sdacmd.r; |
| else |
| cr.rtype_xor = r ^ sdm->sd.r; |
| |
| debug("%s(%s): mmc c: %d, mmc r: %d, desired c: %d, xor c: %d, xor r: %d\n", |
| __func__, mmc->dev->name, c, r, desired_ctype, |
| cr.ctype_xor, cr.rtype_xor); |
| return cr; |
| } |
| |
| /** |
| * Keep track of switch commands internally |
| */ |
| static void octeontx_mmc_track_switch(struct mmc *mmc, u32 cmd_arg) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| u8 how = (cmd_arg >> 24) & 3; |
| u8 where = (u8)(cmd_arg >> 16); |
| u8 val = (u8)(cmd_arg >> 8); |
| |
| slot->want_switch = slot->cached_switch; |
| |
| if (slot->is_acmd) |
| return; |
| |
| if (how != 3) |
| return; |
| |
| switch (where) { |
| case EXT_CSD_BUS_WIDTH: |
| slot->want_switch.s.bus_width = val; |
| break; |
| case EXT_CSD_POWER_CLASS: |
| slot->want_switch.s.power_class = val; |
| break; |
| case EXT_CSD_HS_TIMING: |
| slot->want_switch.s.hs_timing = 0; |
| slot->want_switch.s.hs200_timing = 0; |
| slot->want_switch.s.hs400_timing = 0; |
| switch (val & 0xf) { |
| case 0: |
| break; |
| case 1: |
| slot->want_switch.s.hs_timing = 1; |
| break; |
| case 2: |
| if (!slot->is_asim && !slot->is_emul) |
| slot->want_switch.s.hs200_timing = 1; |
| break; |
| case 3: |
| if (!slot->is_asim && !slot->is_emul) |
| slot->want_switch.s.hs400_timing = 1; |
| break; |
| default: |
| pr_err("%s(%s): Unsupported timing mode 0x%x\n", |
| __func__, mmc->dev->name, val & 0xf); |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static int octeontx_mmc_print_rsp_errors(struct mmc *mmc, |
| union mio_emm_rsp_sts rsp_sts) |
| { |
| bool err = false; |
| const char *name = mmc->dev->name; |
| |
| if (rsp_sts.s.acc_timeout) { |
| pr_warn("%s(%s): acc_timeout\n", __func__, name); |
| err = true; |
| } |
| if (rsp_sts.s.dbuf_err) { |
| pr_warn("%s(%s): dbuf_err\n", __func__, name); |
| err = true; |
| } |
| if (rsp_sts.s.blk_timeout) { |
| pr_warn("%s(%s): blk_timeout\n", __func__, name); |
| err = true; |
| } |
| if (rsp_sts.s.blk_crc_err) { |
| pr_warn("%s(%s): blk_crc_err\n", __func__, name); |
| err = true; |
| } |
| if (rsp_sts.s.stp_timeout) { |
| pr_warn("%s(%s): stp_timeout\n", __func__, name); |
| err = true; |
| } |
| if (rsp_sts.s.stp_crc_err) { |
| pr_warn("%s(%s): stp_crc_err\n", __func__, name); |
| err = true; |
| } |
| if (rsp_sts.s.stp_bad_sts) { |
| pr_warn("%s(%s): stp_bad_sts\n", __func__, name); |
| err = true; |
| } |
| if (err) |
| pr_warn(" rsp_sts: 0x%llx\n", rsp_sts.u); |
| |
| return err ? -1 : 0; |
| } |
| |
| /** |
| * Starts a DMA operation for block read/write |
| * |
| * @param mmc mmc device |
| * @param write true if write operation |
| * @param clear true to clear DMA operation |
| * @param adr source or destination DMA address |
| * @param size size in blocks |
| * @param timeout timeout in ms |
| */ |
| static void octeontx_mmc_start_dma(struct mmc *mmc, bool write, |
| bool clear, u32 block, dma_addr_t adr, |
| u32 size, int timeout) |
| { |
| const struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| union mio_emm_dma_cfg emm_dma_cfg; |
| union mio_emm_dma_adr emm_dma_adr; |
| union mio_emm_dma emm_dma; |
| |
| /* Clear any interrupts */ |
| write_csr(mmc, MIO_EMM_DMA_INT(), |
| read_csr(mmc, MIO_EMM_DMA_INT())); |
| |
| emm_dma_cfg.u = 0; |
| emm_dma_cfg.s.en = 1; |
| emm_dma_cfg.s.rw = !!write; |
| emm_dma_cfg.s.clr = !!clear; |
| emm_dma_cfg.s.size = ((u64)(size * mmc->read_bl_len) / 8) - 1; |
| #if __BYTE_ORDER != __BIG_ENDIAN |
| emm_dma_cfg.s.endian = 1; |
| #endif |
| emm_dma_adr.u = 0; |
| emm_dma_adr.s.adr = adr; |
| write_csr(mmc, MIO_EMM_DMA_ADR(), emm_dma_adr.u); |
| write_csr(mmc, MIO_EMM_DMA_CFG(), emm_dma_cfg.u); |
| |
| emm_dma.u = 0; |
| emm_dma.s.bus_id = slot->bus_id; |
| emm_dma.s.dma_val = 1; |
| emm_dma.s.rw = !!write; |
| emm_dma.s.sector = mmc->high_capacity ? 1 : 0; |
| |
| if (size > 1 && ((IS_SD(mmc) && (mmc->scr[0] & 2)) || !IS_SD(mmc))) |
| emm_dma.s.multi = 1; |
| else |
| emm_dma.s.multi = 0; |
| |
| emm_dma.s.block_cnt = size; |
| if (!mmc->high_capacity) |
| block *= mmc->read_bl_len; |
| emm_dma.s.card_addr = block; |
| debug("%s(%s): card address: 0x%x, size: %d, multi: %d\n", |
| __func__, mmc->dev->name, block, size, emm_dma.s.multi); |
| |
| if (timeout > 0) |
| timeout = (timeout * 1000) - 1000; |
| set_wdog(mmc, timeout); |
| |
| debug(" Writing 0x%llx to mio_emm_dma\n", emm_dma.u); |
| write_csr(mmc, MIO_EMM_DMA(), emm_dma.u); |
| } |
| |
| /** |
| * Waits for a DMA operation to complete |
| * |
| * @param mmc mmc device |
| * @param timeout timeout in ms |
| * |
| * @return 0 for success (could be DMA errors), -ETIMEDOUT on timeout |
| */ |
| |
| /** |
| * Cleanup DMA engine after a failure |
| * |
| * @param mmc mmc device |
| * @param rsp_sts rsp status |
| */ |
| static void octeontx_mmc_cleanup_dma(struct mmc *mmc, |
| union mio_emm_rsp_sts rsp_sts) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| union mio_emm_dma emm_dma; |
| ulong start; |
| int retries = 3; |
| |
| do { |
| debug("%s(%s): rsp_sts: 0x%llx, rsp_lo: 0x%llx, dma_int: 0x%llx\n", |
| __func__, mmc->dev->name, rsp_sts.u, |
| read_csr(mmc, MIO_EMM_RSP_LO()), |
| read_csr(mmc, MIO_EMM_DMA_INT())); |
| emm_dma.u = read_csr(mmc, MIO_EMM_DMA()); |
| emm_dma.s.dma_val = 1; |
| emm_dma.s.dat_null = 1; |
| emm_dma.s.bus_id = slot->bus_id; |
| write_csr(mmc, MIO_EMM_DMA(), emm_dma.u); |
| start = get_timer(0); |
| do { |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| WATCHDOG_RESET(); |
| } while (get_timer(start) < 100 && |
| (rsp_sts.s.dma_val || rsp_sts.s.dma_pend)); |
| } while (retries-- >= 0 && rsp_sts.s.dma_pend); |
| if (rsp_sts.s.dma_val) |
| pr_err("%s(%s): Error: could not clean up DMA. RSP_STS: 0x%llx, RSP_LO: 0x%llx\n", |
| __func__, mmc->dev->name, rsp_sts.u, |
| read_csr(mmc, MIO_EMM_RSP_LO())); |
| debug(" rsp_sts after clearing up DMA: 0x%llx\n", |
| read_csr(mmc, MIO_EMM_RSP_STS())); |
| } |
| |
| /** |
| * Waits for a DMA operation to complete |
| * |
| * @param mmc mmc device |
| * @param timeout timeout in ms |
| * @param verbose true to print out error information |
| * |
| * @return 0 for success (could be DMA errors), -ETIMEDOUT on timeout |
| * or -EIO if IO error. |
| */ |
| static int octeontx_mmc_wait_dma(struct mmc *mmc, bool write, ulong timeout, |
| bool verbose) |
| { |
| struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| ulong start_time = get_timer(0); |
| union mio_emm_dma_int emm_dma_int; |
| union mio_emm_rsp_sts rsp_sts; |
| union mio_emm_dma emm_dma; |
| bool timed_out = false; |
| bool err = false; |
| |
| debug("%s(%s, %lu, %d), delay: %uus\n", __func__, mmc->dev->name, |
| timeout, verbose, host->dma_wait_delay); |
| |
| udelay(host->dma_wait_delay); |
| do { |
| emm_dma_int.u = read_csr(mmc, MIO_EMM_DMA_INT()); |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| if (write) { |
| if ((rsp_sts.s.dma_pend && !rsp_sts.s.dma_val) || |
| rsp_sts.s.blk_timeout || |
| rsp_sts.s.stp_timeout || |
| rsp_sts.s.rsp_timeout) { |
| err = true; |
| #ifdef DEBUG |
| debug("%s: f1\n", __func__); |
| octeontx_mmc_print_rsp_errors(mmc, rsp_sts); |
| #endif |
| break; |
| } |
| } else { |
| if (rsp_sts.s.blk_crc_err || |
| (rsp_sts.s.dma_pend && !rsp_sts.s.dma_val)) { |
| err = true; |
| #if defined(DEBUG) |
| octeontx_mmc_print_rsp_errors(mmc, rsp_sts); |
| #endif |
| break; |
| } |
| } |
| if (rsp_sts.s.dma_pend) { |
| /* |
| * If this is set then an error has occurred. |
| * Try and restart the DMA operation. |
| */ |
| emm_dma.u = read_csr(mmc, MIO_EMM_DMA()); |
| if (verbose) { |
| pr_err("%s(%s): DMA pending error: rsp_sts: 0x%llx, dma_int: 0x%llx, emm_dma: 0x%llx\n", |
| __func__, mmc->dev->name, rsp_sts.u, |
| emm_dma_int.u, emm_dma.u); |
| octeontx_print_rsp_sts(mmc); |
| debug(" MIO_EMM_DEBUG: 0x%llx\n", |
| read_csr(mmc, MIO_EMM_DEBUG())); |
| pr_err("%s: Trying DMA resume...\n", __func__); |
| } |
| emm_dma.s.dma_val = 1; |
| emm_dma.s.dat_null = 1; |
| write_csr(mmc, MIO_EMM_DMA(), emm_dma.u); |
| udelay(10); |
| } else if (!rsp_sts.s.dma_val && emm_dma_int.s.done) { |
| break; |
| } |
| WATCHDOG_RESET(); |
| timed_out = (get_timer(start_time) > timeout); |
| } while (!timed_out); |
| |
| if (timed_out || err) { |
| if (verbose) { |
| pr_err("%s(%s): MMC DMA %s after %lu ms, rsp_sts: 0x%llx, dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n", |
| __func__, mmc->dev->name, |
| timed_out ? "timed out" : "error", |
| get_timer(start_time), rsp_sts.u, |
| emm_dma_int.u, |
| read_csr(mmc, MIO_EMM_RSP_LO()), |
| read_csr(mmc, MIO_EMM_DMA())); |
| octeontx_print_rsp_sts(mmc); |
| } |
| if (rsp_sts.s.dma_pend) |
| octeontx_mmc_cleanup_dma(mmc, rsp_sts); |
| } else { |
| write_csr(mmc, MIO_EMM_DMA_INT(), |
| read_csr(mmc, MIO_EMM_DMA_INT())); |
| } |
| |
| return timed_out ? -ETIMEDOUT : (err ? -EIO : 0); |
| } |
| |
| /** |
| * Read blocks from the MMC/SD device |
| * |
| * @param mmc mmc device |
| * @param cmd command |
| * @param data data for read |
| * @param verbose true to print out error information |
| * |
| * @return number of blocks read or 0 if error |
| */ |
| static int octeontx_mmc_read_blocks(struct mmc *mmc, struct mmc_cmd *cmd, |
| struct mmc_data *data, bool verbose) |
| { |
| struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| union mio_emm_rsp_sts rsp_sts; |
| dma_addr_t dma_addr = (dma_addr_t)dm_pci_virt_to_mem(host->dev, |
| data->dest); |
| ulong count; |
| ulong blkcnt = data->blocks; |
| ulong start = cmd->cmdarg; |
| int timeout = 1000 + blkcnt * 20; |
| bool timed_out = false; |
| bool multi_xfer = cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK; |
| |
| debug("%s(%s): dest: %p, dma address: 0x%llx, blkcnt: %lu, start: %lu\n", |
| __func__, mmc->dev->name, data->dest, dma_addr, blkcnt, start); |
| debug("%s: rsp_sts: 0x%llx\n", __func__, |
| read_csr(mmc, MIO_EMM_RSP_STS())); |
| /* use max timeout for multi-block transfers */ |
| /* timeout = 0; */ |
| |
| /* |
| * If we have a valid SD card in the slot, we set the response bit |
| * mask to check for CRC errors and timeouts only. |
| * Otherwise, use the default power on reset value. |
| */ |
| write_csr(mmc, MIO_EMM_STS_MASK(), |
| IS_SD(mmc) ? 0x00b00000ull : 0xe4390080ull); |
| invalidate_dcache_range((u64)data->dest, |
| (u64)data->dest + blkcnt * data->blocksize); |
| |
| if (multi_xfer) { |
| octeontx_mmc_start_dma(mmc, false, false, start, dma_addr, |
| blkcnt, timeout); |
| timed_out = !!octeontx_mmc_wait_dma(mmc, false, timeout, |
| verbose); |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| if (timed_out || rsp_sts.s.dma_val || rsp_sts.s.dma_pend) { |
| if (!verbose) |
| return 0; |
| |
| pr_err("%s(%s): Error: DMA timed out. rsp_sts: 0x%llx, emm_int: 0x%llx, dma_int: 0x%llx, rsp_lo: 0x%llx\n", |
| __func__, mmc->dev->name, rsp_sts.u, |
| read_csr(mmc, MIO_EMM_INT()), |
| read_csr(mmc, MIO_EMM_DMA_INT()), |
| read_csr(mmc, MIO_EMM_RSP_LO())); |
| pr_err("%s: block count: %lu, start: 0x%lx\n", |
| __func__, blkcnt, start); |
| octeontx_mmc_print_registers(mmc); |
| return 0; |
| } |
| } else { |
| count = blkcnt; |
| timeout = 1000; |
| do { |
| octeontx_mmc_start_dma(mmc, false, false, start, |
| dma_addr, 1, timeout); |
| dma_addr += mmc->read_bl_len; |
| start++; |
| |
| timed_out = !!octeontx_mmc_wait_dma(mmc, false, |
| timeout, verbose); |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| if (timed_out || rsp_sts.s.dma_val || |
| rsp_sts.s.dma_pend) { |
| if (verbose) { |
| pr_err("%s: Error: DMA timed out. rsp_sts: 0x%llx, emm_int: 0x%llx, dma_int: 0x%llx, rsp_lo: 0x%llx\n", |
| __func__, rsp_sts.u, |
| read_csr(mmc, MIO_EMM_INT()), |
| read_csr(mmc, MIO_EMM_DMA_INT()), |
| read_csr(mmc, MIO_EMM_RSP_LO())); |
| pr_err("%s: block count: 1, start: 0x%lx\n", |
| __func__, start); |
| octeontx_mmc_print_registers(mmc); |
| } |
| return blkcnt - count; |
| } |
| WATCHDOG_RESET(); |
| } while (--count); |
| } |
| #ifdef DEBUG |
| debug("%s(%s): Read %lu (0x%lx) blocks starting at block %u (0x%x) to address %p (dma address 0x%llx)\n", |
| __func__, mmc->dev->name, blkcnt, blkcnt, |
| cmd->cmdarg, cmd->cmdarg, data->dest, |
| dm_pci_virt_to_mem(host->dev, data->dest)); |
| print_buffer(0, data->dest, 1, 0x200, 0); |
| #endif |
| return blkcnt; |
| } |
| |
| static int octeontx_mmc_poll_ready(struct mmc *mmc, ulong timeout) |
| { |
| ulong start; |
| struct mmc_cmd cmd; |
| int err; |
| bool not_ready = false; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.cmdidx = MMC_CMD_SEND_STATUS; |
| cmd.cmdarg = mmc->rca << 16; |
| cmd.resp_type = MMC_RSP_R1; |
| start = get_timer(0); |
| do { |
| err = octeontx_mmc_send_cmd(mmc, &cmd, NULL); |
| if (err) { |
| pr_err("%s(%s): MMC command error: %d; Retry...\n", |
| __func__, mmc->dev->name, err); |
| not_ready = true; |
| } else if (cmd.response[0] & R1_READY_FOR_DATA) { |
| return 0; |
| } |
| WATCHDOG_RESET(); |
| } while (get_timer(start) < timeout); |
| |
| if (not_ready) |
| pr_err("%s(%s): MMC command error; Retry timeout\n", |
| __func__, mmc->dev->name); |
| return -ETIMEDOUT; |
| } |
| |
| static ulong octeontx_mmc_write_blocks(struct mmc *mmc, struct mmc_cmd *cmd, |
| struct mmc_data *data) |
| { |
| struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| ulong start = cmd->cmdarg; |
| ulong blkcnt = data->blocks; |
| dma_addr_t dma_addr; |
| union mio_emm_rsp_sts rsp_sts; |
| union mio_emm_sts_mask emm_sts_mask; |
| ulong timeout; |
| int count; |
| bool timed_out = false; |
| bool multi_xfer = (blkcnt > 1) && |
| ((IS_SD(mmc) && mmc->scr[0] & 2) || !IS_SD(mmc)); |
| |
| octeontx_mmc_switch_to(mmc); |
| emm_sts_mask.u = 0; |
| emm_sts_mask.s.sts_msk = R1_BLOCK_WRITE_MASK; |
| write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u); |
| |
| if (octeontx_mmc_poll_ready(mmc, 10000)) { |
| pr_err("%s(%s): Ready timed out\n", __func__, mmc->dev->name); |
| return 0; |
| } |
| flush_dcache_range((u64)data->src, |
| (u64)data->src + blkcnt * mmc->write_bl_len); |
| dma_addr = (u64)dm_pci_virt_to_mem(host->dev, (void *)data->src); |
| if (multi_xfer) { |
| timeout = 5000 + 100 * blkcnt; |
| octeontx_mmc_start_dma(mmc, true, false, start, dma_addr, |
| blkcnt, timeout); |
| timed_out = !!octeontx_mmc_wait_dma(mmc, true, timeout, true); |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| if (timed_out || rsp_sts.s.dma_val || rsp_sts.s.dma_pend) { |
| pr_err("%s(%s): Error: multi-DMA timed out after %lums. rsp_sts: 0x%llx, emm_int: 0x%llx, emm_dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n", |
| __func__, mmc->dev->name, timeout, |
| rsp_sts.u, |
| read_csr(mmc, MIO_EMM_INT()), |
| read_csr(mmc, MIO_EMM_DMA_INT()), |
| read_csr(mmc, MIO_EMM_RSP_LO()), |
| read_csr(mmc, MIO_EMM_DMA())); |
| return 0; |
| } |
| } else { |
| timeout = 5000; |
| count = blkcnt; |
| do { |
| octeontx_mmc_start_dma(mmc, true, false, start, |
| dma_addr, 1, timeout); |
| dma_addr += mmc->read_bl_len; |
| start++; |
| |
| timed_out = !!octeontx_mmc_wait_dma(mmc, true, timeout, |
| true); |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| if (timed_out || rsp_sts.s.dma_val || |
| rsp_sts.s.dma_pend) { |
| pr_err("%s(%s): Error: single-DMA timed out after %lums. rsp_sts: 0x%llx, emm_int: 0x%llx, emm_dma_int: 0x%llx, rsp_sts_lo: 0x%llx, emm_dma: 0x%llx\n", |
| __func__, mmc->dev->name, timeout, |
| rsp_sts.u, |
| read_csr(mmc, MIO_EMM_RSP_STS()), |
| read_csr(mmc, MIO_EMM_DMA_INT()), |
| read_csr(mmc, MIO_EMM_RSP_LO()), |
| read_csr(mmc, MIO_EMM_DMA())); |
| return blkcnt - count; |
| } |
| WATCHDOG_RESET(); |
| } while (--count); |
| } |
| |
| return blkcnt; |
| } |
| |
| /** |
| * Send a command to the eMMC/SD device |
| * |
| * @param mmc mmc device |
| * @param cmd cmd to send and response |
| * @param data additional data |
| * @param flags |
| * @return 0 for success, otherwise error |
| */ |
| static int octeontx_mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, |
| struct mmc_data *data) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| const char *name = slot->dev->name; |
| struct octeontx_mmc_cr_mods mods = {0, 0}; |
| union mio_emm_rsp_sts rsp_sts; |
| union mio_emm_cmd emm_cmd; |
| union mio_emm_rsp_lo rsp_lo; |
| union mio_emm_buf_idx emm_buf_idx; |
| union mio_emm_buf_dat emm_buf_dat; |
| ulong start; |
| int i; |
| ulong blkcnt; |
| |
| /** |
| * This constant has a 1 bit for each command which should have a short |
| * timeout and a 0 for each bit with a long timeout. Currently the |
| * following commands have a long timeout: |
| * CMD6, CMD17, CMD18, CMD24, CMD25, CMD32, CMD33, CMD35, CMD36 and |
| * CMD38. |
| */ |
| static const u64 timeout_short = 0xFFFFFFA4FCF9FFDFull; |
| uint timeout; |
| |
| if (cmd->cmdidx == MMC_CMD_SEND_EXT_CSD) { |
| union mio_emm_rca emm_rca; |
| |
| emm_rca.u = 0; |
| emm_rca.s.card_rca = mmc->rca; |
| write_csr(mmc, MIO_EMM_RCA(), emm_rca.u); |
| } |
| |
| if (timeout_short & (1ull << cmd->cmdidx)) |
| timeout = MMC_TIMEOUT_SHORT; |
| else if (cmd->cmdidx == MMC_CMD_SWITCH && IS_SD(mmc)) |
| timeout = 2560; |
| else if (cmd->cmdidx == MMC_CMD_ERASE) |
| timeout = MMC_TIMEOUT_ERASE; |
| else |
| timeout = MMC_TIMEOUT_LONG; |
| |
| debug("%s(%s): cmd idx: %u, arg: 0x%x, resp type: 0x%x, timeout: %u\n", |
| __func__, name, cmd->cmdidx, cmd->cmdarg, cmd->resp_type, |
| timeout); |
| if (data) |
| debug(" data: addr: %p, flags: 0x%x, blocks: %u, blocksize: %u\n", |
| data->dest, data->flags, data->blocks, data->blocksize); |
| |
| octeontx_mmc_switch_to(mmc); |
| |
| /* Clear any interrupts */ |
| write_csr(mmc, MIO_EMM_INT(), read_csr(mmc, MIO_EMM_INT())); |
| |
| /* |
| * We need to override the default command types and response types |
| * when dealing with SD cards. |
| */ |
| mods = octeontx_mmc_get_cr_mods(mmc, cmd, data); |
| |
| /* Handle block read/write/stop operations */ |
| switch (cmd->cmdidx) { |
| case MMC_CMD_GO_IDLE_STATE: |
| slot->tuned = false; |
| slot->hs200_tuned = false; |
| slot->hs400_tuned = false; |
| break; |
| case MMC_CMD_STOP_TRANSMISSION: |
| return 0; |
| case MMC_CMD_READ_MULTIPLE_BLOCK: |
| case MMC_CMD_READ_SINGLE_BLOCK: |
| pr_debug("%s(%s): Reading blocks\n", __func__, name); |
| blkcnt = octeontx_mmc_read_blocks(mmc, cmd, data, true); |
| return (blkcnt > 0) ? 0 : -1; |
| case MMC_CMD_WRITE_MULTIPLE_BLOCK: |
| case MMC_CMD_WRITE_SINGLE_BLOCK: |
| blkcnt = octeontx_mmc_write_blocks(mmc, cmd, data); |
| return (blkcnt > 0) ? 0 : -1; |
| case MMC_CMD_SELECT_CARD: |
| /* Set the RCA register (is it set automatically?) */ |
| if (IS_SD(mmc)) { |
| union mio_emm_rca emm_rca; |
| |
| emm_rca.u = 0; |
| emm_rca.s.card_rca = (cmd->cmdarg >> 16); |
| write_csr(mmc, MIO_EMM_RCA(), emm_rca.u); |
| debug("%s: Set SD relative address (RCA) to 0x%x\n", |
| __func__, emm_rca.s.card_rca); |
| } |
| break; |
| |
| case MMC_CMD_SWITCH: |
| if (!data && !slot->is_acmd) |
| octeontx_mmc_track_switch(mmc, cmd->cmdarg); |
| break; |
| } |
| |
| emm_cmd.u = 0; |
| emm_cmd.s.cmd_val = 1; |
| emm_cmd.s.bus_id = slot->bus_id; |
| emm_cmd.s.cmd_idx = cmd->cmdidx; |
| emm_cmd.s.arg = cmd->cmdarg; |
| emm_cmd.s.ctype_xor = mods.ctype_xor; |
| emm_cmd.s.rtype_xor = mods.rtype_xor; |
| if (data && data->blocks == 1 && data->blocksize != 512) { |
| emm_cmd.s.offset = |
| 64 - ((data->blocks * data->blocksize) / 8); |
| debug("%s: offset set to %u\n", __func__, emm_cmd.s.offset); |
| } |
| |
| if (data && data->flags & MMC_DATA_WRITE) { |
| u8 *src = (u8 *)data->src; |
| |
| if (!src) { |
| pr_err("%s(%s): Error: data source for cmd 0x%x is NULL!\n", |
| __func__, name, cmd->cmdidx); |
| return -1; |
| } |
| if (data->blocksize > 512) { |
| pr_err("%s(%s): Error: data for cmd 0x%x exceeds 512 bytes\n", |
| __func__, name, cmd->cmdidx); |
| return -1; |
| } |
| #ifdef DEBUG |
| debug("%s: Sending %d bytes data\n", __func__, data->blocksize); |
| print_buffer(0, src, 1, data->blocksize, 0); |
| #endif |
| emm_buf_idx.u = 0; |
| emm_buf_idx.s.inc = 1; |
| write_csr(mmc, MIO_EMM_BUF_IDX(), emm_buf_idx.u); |
| for (i = 0; i < (data->blocksize + 7) / 8; i++) { |
| memcpy(&emm_buf_dat.u, src, sizeof(emm_buf_dat.u)); |
| write_csr(mmc, MIO_EMM_BUF_DAT(), |
| cpu_to_be64(emm_buf_dat.u)); |
| src += sizeof(emm_buf_dat.u); |
| } |
| write_csr(mmc, MIO_EMM_BUF_IDX(), 0); |
| } |
| debug("%s(%s): Sending command %u (emm_cmd: 0x%llx)\n", __func__, |
| name, cmd->cmdidx, emm_cmd.u); |
| set_wdog(mmc, timeout * 1000); |
| write_csr(mmc, MIO_EMM_CMD(), emm_cmd.u); |
| |
| /* Wait for command to finish or time out */ |
| start = get_timer(0); |
| do { |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| WATCHDOG_RESET(); |
| } while (!rsp_sts.s.cmd_done && !rsp_sts.s.rsp_timeout && |
| (get_timer(start) < timeout + 10)); |
| octeontx_mmc_print_rsp_errors(mmc, rsp_sts); |
| if (rsp_sts.s.rsp_timeout || !rsp_sts.s.cmd_done) { |
| debug("%s(%s): Error: command %u(0x%x) timed out. rsp_sts: 0x%llx\n", |
| __func__, name, cmd->cmdidx, cmd->cmdarg, rsp_sts.u); |
| octeontx_mmc_print_registers(mmc); |
| return -ETIMEDOUT; |
| } |
| if (rsp_sts.s.rsp_crc_err) { |
| debug("%s(%s): RSP CRC error, rsp_sts: 0x%llx, cmdidx: %u, arg: 0x%08x\n", |
| __func__, name, rsp_sts.u, cmd->cmdidx, cmd->cmdarg); |
| octeontx_mmc_print_registers(mmc); |
| return -1; |
| } |
| if (slot->bus_id != rsp_sts.s.bus_id) { |
| pr_warn("%s(%s): bus id mismatch, got %d, expected %d for command 0x%x(0x%x)\n", |
| __func__, name, |
| rsp_sts.s.bus_id, slot->bus_id, |
| cmd->cmdidx, cmd->cmdarg); |
| goto error; |
| } |
| if (rsp_sts.s.rsp_bad_sts) { |
| rsp_lo.u = read_csr(mmc, MIO_EMM_RSP_LO()); |
| debug("%s: Bad response for bus id %d, cmd id %d:\n" |
| " rsp_timeout: %d\n" |
| " rsp_bad_sts: %d\n" |
| " rsp_crc_err: %d\n", |
| __func__, slot->bus_id, cmd->cmdidx, |
| rsp_sts.s.rsp_timeout, |
| rsp_sts.s.rsp_bad_sts, |
| rsp_sts.s.rsp_crc_err); |
| if (rsp_sts.s.rsp_type == 1 && rsp_sts.s.rsp_bad_sts) { |
| debug(" Response status: 0x%llx\n", |
| (rsp_lo.u >> 8) & 0xffffffff); |
| #ifdef DEBUG |
| mmc_print_status((rsp_lo.u >> 8) & 0xffffffff); |
| #endif |
| } |
| goto error; |
| } |
| if (rsp_sts.s.cmd_idx != cmd->cmdidx) { |
| debug("%s(%s): Command response index %d does not match command index %d\n", |
| __func__, name, rsp_sts.s.cmd_idx, cmd->cmdidx); |
| octeontx_print_rsp_sts(mmc); |
| debug("%s: rsp_lo: 0x%llx\n", __func__, |
| read_csr(mmc, MIO_EMM_RSP_LO())); |
| |
| goto error; |
| } |
| |
| slot->is_acmd = (cmd->cmdidx == MMC_CMD_APP_CMD); |
| |
| if (!cmd->resp_type & MMC_RSP_PRESENT) |
| debug(" Response type: 0x%x, no response expected\n", |
| cmd->resp_type); |
| /* Get the response if present */ |
| if (rsp_sts.s.rsp_val && (cmd->resp_type & MMC_RSP_PRESENT)) { |
| union mio_emm_rsp_hi rsp_hi; |
| |
| rsp_lo.u = read_csr(mmc, MIO_EMM_RSP_LO()); |
| |
| switch (rsp_sts.s.rsp_type) { |
| case 1: |
| case 3: |
| case 4: |
| case 5: |
| cmd->response[0] = (rsp_lo.u >> 8) & 0xffffffffull; |
| debug(" response: 0x%08x\n", |
| cmd->response[0]); |
| cmd->response[1] = 0; |
| cmd->response[2] = 0; |
| cmd->response[3] = 0; |
| break; |
| case 2: |
| cmd->response[3] = rsp_lo.u & 0xffffffff; |
| cmd->response[2] = (rsp_lo.u >> 32) & 0xffffffff; |
| rsp_hi.u = read_csr(mmc, MIO_EMM_RSP_HI()); |
| cmd->response[1] = rsp_hi.u & 0xffffffff; |
| cmd->response[0] = (rsp_hi.u >> 32) & 0xffffffff; |
| debug(" response: 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| cmd->response[0], cmd->response[1], |
| cmd->response[2], cmd->response[3]); |
| break; |
| default: |
| pr_err("%s(%s): Unknown response type 0x%x for command %d, arg: 0x%x, rsp_sts: 0x%llx\n", |
| __func__, name, rsp_sts.s.rsp_type, cmd->cmdidx, |
| cmd->cmdarg, rsp_sts.u); |
| return -1; |
| } |
| } else { |
| debug(" Response not expected\n"); |
| } |
| |
| if (data && data->flags & MMC_DATA_READ) { |
| u8 *dest = (u8 *)data->dest; |
| |
| if (!dest) { |
| pr_err("%s(%s): Error, destination buffer NULL!\n", |
| __func__, mmc->dev->name); |
| goto error; |
| } |
| if (data->blocksize > 512) { |
| printf("%s(%s): Error: data size %u exceeds 512\n", |
| __func__, mmc->dev->name, |
| data->blocksize); |
| goto error; |
| } |
| emm_buf_idx.u = 0; |
| emm_buf_idx.s.inc = 1; |
| write_csr(mmc, MIO_EMM_BUF_IDX(), emm_buf_idx.u); |
| for (i = 0; i < (data->blocksize + 7) / 8; i++) { |
| emm_buf_dat.u = read_csr(mmc, MIO_EMM_BUF_DAT()); |
| emm_buf_dat.u = be64_to_cpu(emm_buf_dat.u); |
| memcpy(dest, &emm_buf_dat.u, sizeof(emm_buf_dat.u)); |
| dest += sizeof(emm_buf_dat.u); |
| } |
| write_csr(mmc, MIO_EMM_BUF_IDX(), 0); |
| #ifdef DEBUG |
| debug("%s: Received %d bytes data\n", __func__, |
| data->blocksize); |
| print_buffer(0, data->dest, 1, data->blocksize, 0); |
| #endif |
| } |
| |
| return 0; |
| error: |
| #ifdef DEBUG |
| octeontx_mmc_print_registers(mmc); |
| #endif |
| return -1; |
| } |
| |
| static int octeontx_mmc_dev_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, |
| struct mmc_data *data) |
| { |
| return octeontx_mmc_send_cmd(dev_to_mmc(dev), cmd, data); |
| } |
| |
| #ifdef MMC_SUPPORTS_TUNING |
| static int octeontx_mmc_test_cmd(struct mmc *mmc, u32 opcode, int *statp) |
| { |
| struct mmc_cmd cmd; |
| int err; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| |
| debug("%s(%s, %u, %p)\n", __func__, mmc->dev->name, opcode, statp); |
| cmd.cmdidx = opcode; |
| cmd.resp_type = MMC_RSP_R1; |
| cmd.cmdarg = mmc->rca << 16; |
| |
| err = octeontx_mmc_send_cmd(mmc, &cmd, NULL); |
| if (err) |
| debug("%s(%s, %u) returned %d\n", __func__, |
| mmc->dev->name, opcode, err); |
| if (statp) |
| *statp = cmd.response[0]; |
| return err; |
| } |
| |
| static int octeontx_mmc_test_get_ext_csd(struct mmc *mmc, u32 opcode, |
| int *statp) |
| { |
| struct mmc_cmd cmd; |
| struct mmc_data data; |
| int err; |
| u8 ext_csd[MMC_MAX_BLOCK_LEN]; |
| |
| debug("%s(%s, %u, %p)\n", __func__, mmc->dev->name, opcode, statp); |
| memset(&cmd, 0, sizeof(cmd)); |
| |
| cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; |
| cmd.resp_type = MMC_RSP_R1; |
| cmd.cmdarg = 0; |
| |
| data.dest = (char *)ext_csd; |
| data.blocks = 1; |
| data.blocksize = MMC_MAX_BLOCK_LEN; |
| data.flags = MMC_DATA_READ; |
| |
| err = octeontx_mmc_send_cmd(mmc, &cmd, &data); |
| if (statp) |
| *statp = cmd.response[0]; |
| |
| return err; |
| } |
| |
| /** |
| * Wrapper to set the MIO_EMM_TIMING register |
| * |
| * @param mmc pointer to mmc data structure |
| * @param emm_timing New emm_timing register value |
| * |
| * On some devices it is possible that changing the data out value can |
| * cause a glitch on an internal fifo. This works around this problem |
| * by performing a soft-reset immediately before setting the timing register. |
| * |
| * Note: this function should not be called from any function that |
| * performs DMA or block operations since not all registers are |
| * preserved. |
| */ |
| static void octeontx_mmc_set_emm_timing(struct mmc *mmc, |
| union mio_emm_timing emm_timing) |
| { |
| union mio_emm_cfg emm_cfg; |
| struct octeontx_mmc_slot *slot = mmc->priv; |
| union mio_emm_debug emm_debug; |
| |
| debug("%s(%s, 0x%llx) din: %u\n", __func__, mmc->dev->name, |
| emm_timing.u, emm_timing.s.data_in_tap); |
| |
| udelay(1); |
| if (slot->host->tap_requires_noclk) { |
| /* Turn off the clock */ |
| emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG()); |
| emm_debug.s.emmc_clk_disable = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| emm_debug.s.rdsync_rst = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| } |
| emm_cfg.u = read_csr(mmc, MIO_EMM_CFG()); |
| emm_cfg.s.bus_ena = 1 << 3; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| |
| udelay(1); |
| write_csr(mmc, MIO_EMM_TIMING(), emm_timing.u); |
| udelay(1); |
| |
| if (slot->host->tap_requires_noclk) { |
| /* Turn on the clock */ |
| emm_debug.s.rdsync_rst = 0; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| emm_debug.s.emmc_clk_disable = 0; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| } |
| emm_cfg.s.bus_ena = 1 << mmc_to_slot(mmc)->bus_id; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| } |
| |
| static const u8 octeontx_hs400_tuning_block[512] = { |
| 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, |
| 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, |
| 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, |
| 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, |
| 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, |
| 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, |
| 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, |
| 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, |
| 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, |
| 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, |
| 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, |
| 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, |
| 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, |
| 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, |
| 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, |
| 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, |
| 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, |
| 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, |
| 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, |
| 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, |
| 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, |
| 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, |
| 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, |
| 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, |
| 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, |
| 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, |
| 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, |
| 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, |
| 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, |
| 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, |
| 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, |
| 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, |
| 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, |
| 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, |
| 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, |
| 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, |
| 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, |
| 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, |
| 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, |
| 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, |
| 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, |
| 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, |
| 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, |
| 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, |
| 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, |
| 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, |
| 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, |
| 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, |
| 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x00, |
| 0x00, 0xff, 0x00, 0xff, 0x55, 0xaa, 0x55, 0xaa, |
| 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, |
| 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, |
| 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, |
| 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, |
| 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, |
| 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, |
| 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, |
| 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, |
| 0x01, 0xfe, 0x01, 0xfe, 0xcc, 0xcc, 0xcc, 0xff, |
| 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, |
| 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, |
| 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, |
| 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, |
| 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, |
| |
| }; |
| |
| /** |
| * Perform tuning in HS400 mode |
| * |
| * @param[in] mmc mmc data structure |
| * |
| * @ret 0 for success, otherwise error |
| */ |
| static int octeontx_tune_hs400(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct mmc_cmd cmd; |
| struct mmc_data data; |
| union mio_emm_timing emm_timing; |
| u8 buffer[mmc->read_bl_len]; |
| int tap_adj; |
| int err = -1; |
| int tap; |
| int run = 0; |
| int start_run = -1; |
| int best_run = 0; |
| int best_start = -1; |
| bool prev_ok = false; |
| char env_name[64]; |
| char how[MAX_NO_OF_TAPS + 1] = ""; |
| |
| if (slot->hs400_tuning_block == -1) |
| return 0; |
| |
| /* The eMMC standard disables all tuning support when operating in |
| * DDR modes like HS400. The problem with this is that there are |
| * many cases where the HS200 tuning does not work for HS400 mode. |
| * In order to perform this tuning, while in HS200 a block is written |
| * to a block specified in the device tree (marvell,hs400-tuning-block) |
| * which is used for tuning in this function by repeatedly reading |
| * this block and comparing the data and return code. This function |
| * chooses the data input tap in the middle of the longest run of |
| * successful read operations. |
| */ |
| |
| emm_timing = slot->hs200_taps; |
| debug("%s(%s): Start ci: %d, co: %d, di: %d, do: %d\n", |
| __func__, mmc->dev->name, emm_timing.s.cmd_in_tap, |
| emm_timing.s.cmd_out_tap, emm_timing.s.data_in_tap, |
| emm_timing.s.data_out_tap); |
| memset(buffer, 0xdb, sizeof(buffer)); |
| |
| snprintf(env_name, sizeof(env_name), "emmc%d_data_in_tap_hs400", |
| slot->bus_id); |
| tap = env_get_ulong(env_name, 10, -1L); |
| if (tap >= 0 && tap < MAX_NO_OF_TAPS) { |
| printf("Overriding data input tap for HS400 mode to %d\n", tap); |
| emm_timing.s.data_in_tap = tap; |
| octeontx_mmc_set_emm_timing(mmc, emm_timing); |
| return 0; |
| } |
| |
| for (tap = 0; tap <= MAX_NO_OF_TAPS; tap++, prev_ok = !err) { |
| if (tap < MAX_NO_OF_TAPS) { |
| debug("%s: Testing data in tap %d\n", __func__, tap); |
| emm_timing.s.data_in_tap = tap; |
| octeontx_mmc_set_emm_timing(mmc, emm_timing); |
| |
| cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; |
| cmd.cmdarg = slot->hs400_tuning_block; |
| cmd.resp_type = MMC_RSP_R1; |
| data.dest = (void *)buffer; |
| data.blocks = 1; |
| data.blocksize = mmc->read_bl_len; |
| data.flags = MMC_DATA_READ; |
| err = !octeontx_mmc_read_blocks(mmc, &cmd, &data, |
| false); |
| if (err || memcmp(buffer, octeontx_hs400_tuning_block, |
| sizeof(buffer))) { |
| #ifdef DEBUG |
| if (!err) { |
| debug("%s: data mismatch. Read:\n", |
| __func__); |
| print_buffer(0, buffer, 1, |
| sizeof(buffer), 0); |
| debug("\nExpected:\n"); |
| print_buffer(0, |
| octeontx_hs400_tuning_block, 1, |
| sizeof(octeontx_hs400_tuning_block), |
| 0); |
| } else { |
| debug("%s: Error %d reading block\n", |
| __func__, err); |
| } |
| #endif |
| err = -EINVAL; |
| } else { |
| debug("%s: tap %d good\n", __func__, tap); |
| } |
| how[tap] = "-+"[!err]; |
| } else { |
| err = -EINVAL; |
| } |
| |
| if (!err) { |
| if (!prev_ok) |
| start_run = tap; |
| } else if (prev_ok) { |
| run = tap - 1 - start_run; |
| if (start_run >= 0 && run > best_run) { |
| best_start = start_run; |
| best_run = run; |
| } |
| } |
| } |
| |
| how[tap - 1] = '\0'; |
| if (best_start < 0) { |
| printf("%s(%s): %lldMHz tuning failed for HS400\n", |
| __func__, mmc->dev->name, slot->clock / 1000000); |
| return -EINVAL; |
| } |
| tap = best_start + best_run / 2; |
| |
| snprintf(env_name, sizeof(env_name), "emmc%d_data_in_tap_adj_hs400", |
| slot->bus_id); |
| tap_adj = env_get_ulong(env_name, 10, slot->hs400_tap_adj); |
| /* |
| * Keep it in range and if out of range force it back in with a small |
| * buffer. |
| */ |
| if (best_run > 3) { |
| tap = tap + tap_adj; |
| if (tap >= best_start + best_run) |
| tap = best_start + best_run - 2; |
| if (tap <= best_start) |
| tap = best_start + 2; |
| } |
| how[tap] = '@'; |
| debug("Tuning: %s\n", how); |
| debug("%s(%s): HS400 tap: best run start: %d, length: %d, tap: %d\n", |
| __func__, mmc->dev->name, best_start, best_run, tap); |
| slot->hs400_taps = slot->hs200_taps; |
| slot->hs400_taps.s.data_in_tap = tap; |
| slot->hs400_tuned = true; |
| if (env_get_yesno("emmc_export_hs400_taps") > 0) { |
| debug("%s(%s): Exporting HS400 taps\n", |
| __func__, mmc->dev->name); |
| env_set_ulong("emmc_timing_tap", slot->host->timing_taps); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_data_in_tap_debug", |
| slot->bus_id); |
| env_set(env_name, how); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_data_in_tap_val", |
| slot->bus_id); |
| env_set_ulong(env_name, tap); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_data_in_tap_start", |
| slot->bus_id); |
| env_set_ulong(env_name, best_start); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_data_in_tap_end", |
| slot->bus_id); |
| env_set_ulong(env_name, best_start + best_run); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_cmd_in_tap", |
| slot->bus_id); |
| env_set_ulong(env_name, slot->hs400_taps.s.cmd_in_tap); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_cmd_out_tap", |
| slot->bus_id); |
| env_set_ulong(env_name, slot->hs400_taps.s.cmd_out_tap); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_cmd_out_delay", |
| slot->bus_id); |
| env_set_ulong(env_name, slot->cmd_out_hs400_delay); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_data_out_tap", |
| slot->bus_id); |
| env_set_ulong(env_name, slot->hs400_taps.s.data_out_tap); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs400_data_out_delay", |
| slot->bus_id); |
| env_set_ulong(env_name, slot->data_out_hs400_delay); |
| } else { |
| debug("%s(%s): HS400 environment export disabled\n", |
| __func__, mmc->dev->name); |
| } |
| octeontx_mmc_set_timing(mmc); |
| |
| return 0; |
| } |
| |
| struct adj { |
| const char *name; |
| u8 mask_shift; |
| int (*test)(struct mmc *mmc, u32 opcode, int *error); |
| u32 opcode; |
| bool ddr_only; |
| bool hs200_only; |
| bool not_hs200_only; |
| u8 num_runs; |
| }; |
| |
| struct adj adj[] = { |
| { "CMD_IN", 48, octeontx_mmc_test_cmd, MMC_CMD_SEND_STATUS, |
| false, false, false, 2, }, |
| /* { "CMD_OUT", 32, octeontx_mmc_test_cmd, MMC_CMD_SEND_STATUS, },*/ |
| { "DATA_IN(HS200)", 16, mmc_send_tuning, |
| MMC_CMD_SEND_TUNING_BLOCK_HS200, false, true, false, 2, }, |
| { "DATA_IN", 16, octeontx_mmc_test_get_ext_csd, 0, false, false, |
| true, 2, }, |
| /* { "DATA_OUT", 0, octeontx_mmc_test_cmd, 0, true, false},*/ |
| { NULL, }, |
| }; |
| |
| /** |
| * Perform tuning tests to find optimal timing |
| * |
| * @param mmc mmc device |
| * @param adj parameter to tune |
| * @param opcode command opcode to use |
| * |
| * @return 0 for success, -1 if tuning failed |
| */ |
| static int octeontx_mmc_adjust_tuning(struct mmc *mmc, struct adj *adj, |
| u32 opcode) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| union mio_emm_timing timing; |
| union mio_emm_debug emm_debug; |
| int tap; |
| int err = -1; |
| int run = 0; |
| int count; |
| int start_run = -1; |
| int best_run = 0; |
| int best_start = -1; |
| bool prev_ok = false; |
| u64 tap_status = 0; |
| const int tap_adj = slot->hs200_tap_adj; |
| char how[MAX_NO_OF_TAPS + 1] = ""; |
| bool is_hs200 = mmc->selected_mode == MMC_HS_200; |
| |
| debug("%s(%s, %s, %d), hs200: %d\n", __func__, mmc->dev->name, |
| adj->name, opcode, is_hs200); |
| octeontx_mmc_set_emm_timing(mmc, |
| is_hs200 ? slot->hs200_taps : slot->taps); |
| |
| #ifdef DEBUG |
| if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) { |
| printf("%s(%s): Before tuning %s, opcode: %d\n", |
| __func__, mmc->dev->name, adj->name, opcode); |
| octeontx_mmc_print_registers2(mmc, NULL); |
| } |
| #endif |
| |
| /* |
| * The algorithm to find the optimal timing is to start |
| * at the end and work backwards and select the second |
| * value that passes. Each test is repeated twice. |
| */ |
| for (tap = 0; tap <= MAX_NO_OF_TAPS; tap++, prev_ok = !err) { |
| if (tap < MAX_NO_OF_TAPS) { |
| if (slot->host->tap_requires_noclk) { |
| /* Turn off the clock */ |
| emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG()); |
| emm_debug.s.emmc_clk_disable = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| emm_debug.s.rdsync_rst = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| } |
| |
| timing.u = read_csr(mmc, MIO_EMM_TIMING()); |
| timing.u &= ~(0x3full << adj->mask_shift); |
| timing.u |= (u64)tap << adj->mask_shift; |
| write_csr(mmc, MIO_EMM_TIMING(), timing.u); |
| debug("%s(%s): Testing ci: %d, co: %d, di: %d, do: %d\n", |
| __func__, mmc->dev->name, timing.s.cmd_in_tap, |
| timing.s.cmd_out_tap, timing.s.data_in_tap, |
| timing.s.data_out_tap); |
| |
| if (slot->host->tap_requires_noclk) { |
| /* Turn off the clock */ |
| emm_debug.s.rdsync_rst = 0; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG()); |
| emm_debug.s.emmc_clk_disable = 0; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| } |
| for (count = 0; count < 2; count++) { |
| err = adj->test(mmc, opcode, NULL); |
| if (err) { |
| debug("%s(%s, %s): tap %d failed, count: %d, rsp_sts: 0x%llx, rsp_lo: 0x%llx\n", |
| __func__, mmc->dev->name, |
| adj->name, tap, count, |
| read_csr(mmc, |
| MIO_EMM_RSP_STS()), |
| read_csr(mmc, |
| MIO_EMM_RSP_LO())); |
| debug("%s(%s, %s): tap: %d, do: %d, di: %d, co: %d, ci: %d\n", |
| __func__, mmc->dev->name, |
| adj->name, tap, |
| timing.s.data_out_tap, |
| timing.s.data_in_tap, |
| timing.s.cmd_out_tap, |
| timing.s.cmd_in_tap); |
| break; |
| } |
| debug("%s(%s, %s): tap %d passed, count: %d, rsp_sts: 0x%llx, rsp_lo: 0x%llx\n", |
| __func__, mmc->dev->name, adj->name, tap, |
| count, |
| read_csr(mmc, MIO_EMM_RSP_STS()), |
| read_csr(mmc, MIO_EMM_RSP_LO())); |
| } |
| tap_status |= (u64)(!err) << tap; |
| how[tap] = "-+"[!err]; |
| } else { |
| /* |
| * Putting the end+1 case in the loop simplifies |
| * logic, allowing 'prev_ok' to process a sweet |
| * spot in tuning which extends to the wall. |
| */ |
| err = -EINVAL; |
| } |
| if (!err) { |
| /* |
| * If no CRC/etc errors in the response, but previous |
| * failed, note the start of a new run. |
| */ |
| debug(" prev_ok: %d\n", prev_ok); |
| if (!prev_ok) |
| start_run = tap; |
| } else if (prev_ok) { |
| run = tap - 1 - start_run; |
| /* did we just exit a wider sweet spot? */ |
| if (start_run >= 0 && run > best_run) { |
| best_start = start_run; |
| best_run = run; |
| } |
| } |
| } |
| how[tap - 1] = '\0'; |
| if (best_start < 0) { |
| printf("%s(%s, %s): %lldMHz tuning %s failed\n", __func__, |
| mmc->dev->name, adj->name, slot->clock / 1000000, |
| adj->name); |
| return -EINVAL; |
| } |
| |
| tap = best_start + best_run / 2; |
| debug(" tap %d is center, start: %d, run: %d\n", tap, |
| best_start, best_run); |
| if (is_hs200) { |
| slot->hs200_taps.u &= ~(0x3full << adj->mask_shift); |
| slot->hs200_taps.u |= (u64)tap << adj->mask_shift; |
| } else { |
| slot->taps.u &= ~(0x3full << adj->mask_shift); |
| slot->taps.u |= (u64)tap << adj->mask_shift; |
| } |
| if (best_start < 0) { |
| printf("%s(%s, %s): %lldMHz tuning %s failed\n", __func__, |
| mmc->dev->name, adj->name, slot->clock / 1000000, |
| adj->name); |
| return -EINVAL; |
| } |
| |
| tap = best_start + best_run / 2; |
| if (is_hs200 && (tap + tap_adj >= 0) && (tap + tap_adj < 64) && |
| tap_status & (1ULL << (tap + tap_adj))) { |
| debug("Adjusting tap from %d by %d to %d\n", |
| tap, tap_adj, tap + tap_adj); |
| tap += tap_adj; |
| } |
| how[tap] = '@'; |
| debug("%s/%s %d/%d/%d %s\n", mmc->dev->name, |
| adj->name, best_start, tap, best_start + best_run, how); |
| |
| if (is_hs200) { |
| slot->hs200_taps.u &= ~(0x3full << adj->mask_shift); |
| slot->hs200_taps.u |= (u64)tap << adj->mask_shift; |
| } else { |
| slot->taps.u &= ~(0x3full << adj->mask_shift); |
| slot->taps.u |= (u64)tap << adj->mask_shift; |
| } |
| |
| #ifdef DEBUG |
| if (opcode == MMC_CMD_SEND_TUNING_BLOCK_HS200) { |
| debug("%s(%s, %s): After successful tuning\n", |
| __func__, mmc->dev->name, adj->name); |
| debug("%s(%s, %s): tap: %d, new do: %d, di: %d, co: %d, ci: %d\n", |
| __func__, mmc->dev->name, adj->name, tap, |
| slot->taps.s.data_out_tap, |
| slot->taps.s.data_in_tap, |
| slot->taps.s.cmd_out_tap, |
| slot->taps.s.cmd_in_tap); |
| debug("%s(%s, %s): tap: %d, new do HS200: %d, di: %d, co: %d, ci: %d\n", |
| __func__, mmc->dev->name, adj->name, tap, |
| slot->hs200_taps.s.data_out_tap, |
| slot->hs200_taps.s.data_in_tap, |
| slot->hs200_taps.s.cmd_out_tap, |
| slot->hs200_taps.s.cmd_in_tap); |
| } |
| #endif |
| octeontx_mmc_set_timing(mmc); |
| |
| if (is_hs200 && env_get_yesno("emmc_export_hs200_taps")) { |
| char env_name[64]; |
| |
| env_set_ulong("emmc_timing_tap", slot->host->timing_taps); |
| switch (opcode) { |
| case MMC_CMD_SEND_TUNING_BLOCK: |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_data_in_tap_debug", |
| slot->bus_id); |
| env_set(env_name, how); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_data_in_tap_val", slot->bus_id); |
| env_set_ulong(env_name, tap); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_data_in_tap_start", |
| slot->bus_id); |
| env_set_ulong(env_name, best_start); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_data_in_tap_end", |
| slot->bus_id); |
| env_set_ulong(env_name, best_start + best_run); |
| break; |
| case MMC_CMD_SEND_STATUS: |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_cmd_in_tap_debug", |
| slot->bus_id); |
| env_set(env_name, how); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_cmd_in_tap_val", slot->bus_id); |
| env_set_ulong(env_name, tap); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_cmd_in_tap_start", |
| slot->bus_id); |
| env_set_ulong(env_name, best_start); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_cmd_in_tap_end", |
| slot->bus_id); |
| env_set_ulong(env_name, best_start + best_run); |
| break; |
| default: |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_data_out_tap", slot->bus_id); |
| env_set_ulong(env_name, slot->data_out_hs200_delay); |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_hs200_cmd_out_tap", slot->bus_id); |
| env_set_ulong(env_name, slot->cmd_out_hs200_delay); |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int octeontx_mmc_execute_tuning(struct udevice *dev, u32 opcode) |
| { |
| struct mmc *mmc = dev_to_mmc(dev); |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| union mio_emm_timing emm_timing; |
| int err; |
| struct adj *a; |
| bool is_hs200; |
| char env_name[64]; |
| |
| pr_info("%s re-tuning, opcode 0x%x\n", dev->name, opcode); |
| |
| if (slot->is_asim || slot->is_emul) |
| return 0; |
| |
| is_hs200 = (mmc->selected_mode == MMC_HS_200); |
| if (is_hs200) { |
| slot->hs200_tuned = false; |
| slot->hs400_tuned = false; |
| } else { |
| slot->tuned = false; |
| } |
| octeontx_mmc_set_output_bus_timing(mmc); |
| octeontx_mmc_set_input_bus_timing(mmc); |
| emm_timing.u = read_csr(mmc, MIO_EMM_TIMING()); |
| if (mmc->selected_mode == MMC_HS_200) { |
| slot->hs200_taps.s.cmd_out_tap = emm_timing.s.cmd_out_tap; |
| slot->hs200_taps.s.data_out_tap = emm_timing.s.data_out_tap; |
| } else { |
| slot->taps.s.cmd_out_tap = emm_timing.s.cmd_out_tap; |
| slot->taps.s.data_out_tap = emm_timing.s.data_out_tap; |
| } |
| octeontx_mmc_set_input_bus_timing(mmc); |
| octeontx_mmc_set_output_bus_timing(mmc); |
| |
| for (a = adj; a->name; a++) { |
| ulong in_tap; |
| |
| if (!strcmp(a->name, "CMD_IN")) { |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_cmd_in_tap", slot->bus_id); |
| in_tap = env_get_ulong(env_name, 10, (ulong)-1); |
| if (in_tap != (ulong)-1) { |
| if (mmc->selected_mode == MMC_HS_200 || |
| a->hs200_only) { |
| slot->hs200_taps.s.cmd_in_tap = in_tap; |
| slot->hs400_taps.s.cmd_in_tap = in_tap; |
| } else { |
| slot->taps.s.cmd_in_tap = in_tap; |
| } |
| continue; |
| } |
| } else if (a->hs200_only && |
| !strcmp(a->name, "DATA_IN(HS200)")) { |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_data_in_tap_hs200", slot->bus_id); |
| in_tap = env_get_ulong(env_name, 10, (ulong)-1); |
| if (in_tap != (ulong)-1) { |
| debug("%s(%s): Overriding HS200 data in tap to %d\n", |
| __func__, dev->name, (int)in_tap); |
| slot->hs200_taps.s.data_in_tap = in_tap; |
| continue; |
| } |
| } else if (!a->hs200_only && !strcmp(a->name, "DATA_IN")) { |
| snprintf(env_name, sizeof(env_name), |
| "emmc%d_data_in_tap", slot->bus_id); |
| in_tap = env_get_ulong(env_name, 10, (ulong)-1); |
| if (in_tap != (ulong)-1) { |
| debug("%s(%s): Overriding non-HS200 data in tap to %d\n", |
| __func__, dev->name, (int)in_tap); |
| slot->taps.s.data_in_tap = in_tap; |
| continue; |
| } |
| } |
| |
| debug("%s(%s): Testing: %s, mode: %s, opcode: %u\n", __func__, |
| dev->name, a->name, mmc_mode_name(mmc->selected_mode), |
| opcode); |
| |
| /* Skip DDR only test when not in DDR mode */ |
| if (a->ddr_only && !mmc->ddr_mode) { |
| debug("%s(%s): Skipping %s due to non-DDR mode\n", |
| __func__, dev->name, a->name); |
| continue; |
| } |
| /* Skip hs200 tests in non-hs200 mode and |
| * non-hs200 tests in hs200 mode |
| */ |
| if (is_hs200) { |
| if (a->not_hs200_only) { |
| debug("%s(%s): Skipping %s\n", __func__, |
| dev->name, a->name); |
| continue; |
| } |
| } else { |
| if (a->hs200_only) { |
| debug("%s(%s): Skipping %s\n", __func__, |
| dev->name, a->name); |
| continue; |
| } |
| } |
| |
| err = octeontx_mmc_adjust_tuning(mmc, a, a->opcode ? |
| a->opcode : opcode); |
| if (err) { |
| pr_err("%s(%s, %u): tuning %s failed\n", __func__, |
| dev->name, opcode, a->name); |
| return err; |
| } |
| } |
| |
| octeontx_mmc_set_timing(mmc); |
| if (is_hs200) |
| slot->hs200_tuned = true; |
| else |
| slot->tuned = true; |
| |
| if (slot->hs400_tuning_block != -1) { |
| struct mmc_cmd cmd; |
| struct mmc_data data; |
| u8 buffer[mmc->read_bl_len]; |
| |
| cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; |
| cmd.cmdarg = slot->hs400_tuning_block; |
| cmd.resp_type = MMC_RSP_R1; |
| data.dest = (void *)buffer; |
| data.blocks = 1; |
| data.blocksize = mmc->read_bl_len; |
| data.flags = MMC_DATA_READ; |
| err = octeontx_mmc_read_blocks(mmc, &cmd, &data, true) != 1; |
| |
| if (err) { |
| printf("%s: Cannot read HS400 tuning block %u\n", |
| dev->name, slot->hs400_tuning_block); |
| return err; |
| } |
| if (memcmp(buffer, octeontx_hs400_tuning_block, |
| sizeof(buffer))) { |
| debug("%s(%s): Writing new HS400 tuning block to block %d\n", |
| __func__, dev->name, slot->hs400_tuning_block); |
| cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK; |
| data.src = (void *)octeontx_hs400_tuning_block; |
| data.flags = MMC_DATA_WRITE; |
| err = !octeontx_mmc_write_blocks(mmc, &cmd, &data); |
| if (err) { |
| printf("%s: Cannot write HS400 tuning block %u\n", |
| dev->name, slot->hs400_tuning_block); |
| return -EINVAL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| #else /* MMC_SUPPORTS_TUNING */ |
| static void octeontx_mmc_set_emm_timing(struct mmc *mmc, |
| union mio_emm_timing emm_timing) |
| { |
| } |
| #endif /* MMC_SUPPORTS_TUNING */ |
| |
| /** |
| * Calculate the clock period with rounding up |
| * |
| * @param mmc mmc device |
| * @return clock period in system clocks for clk_lo + clk_hi |
| */ |
| static u32 octeontx_mmc_calc_clk_period(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct octeontx_mmc_host *host = slot->host; |
| |
| return DIV_ROUND_UP(host->sys_freq, mmc->clock); |
| } |
| |
| static int octeontx_mmc_set_ios(struct udevice *dev) |
| { |
| struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev); |
| struct mmc *mmc = &slot->mmc; |
| struct octeontx_mmc_host *host = slot->host; |
| union mio_emm_switch emm_switch; |
| union mio_emm_modex mode; |
| uint clock; |
| int bus_width = 0; |
| int clk_period = 0; |
| int power_class = 10; |
| int err = 0; |
| bool is_hs200 = false; |
| bool is_hs400 = false; |
| |
| debug("%s(%s): Entry\n", __func__, dev->name); |
| debug(" clock: %u, bus width: %u, mode: %u\n", mmc->clock, |
| mmc->bus_width, mmc->selected_mode); |
| debug(" host caps: 0x%x, card caps: 0x%x\n", mmc->host_caps, |
| mmc->card_caps); |
| octeontx_mmc_switch_to(mmc); |
| |
| clock = mmc->clock; |
| if (!clock) |
| clock = mmc->cfg->f_min; |
| |
| switch (mmc->bus_width) { |
| case 8: |
| bus_width = 2; |
| break; |
| case 4: |
| bus_width = 1; |
| break; |
| case 1: |
| bus_width = 0; |
| break; |
| default: |
| pr_warn("%s(%s): Invalid bus width %d, defaulting to 1\n", |
| __func__, dev->name, mmc->bus_width); |
| bus_width = 0; |
| } |
| |
| /* DDR is available for 4/8 bit bus width */ |
| if (mmc->ddr_mode && bus_width) |
| bus_width |= 4; |
| |
| debug("%s: sys_freq: %llu\n", __func__, host->sys_freq); |
| clk_period = octeontx_mmc_calc_clk_period(mmc); |
| |
| emm_switch.u = 0; |
| emm_switch.s.bus_width = bus_width; |
| emm_switch.s.power_class = power_class; |
| emm_switch.s.clk_hi = clk_period / 2; |
| emm_switch.s.clk_lo = clk_period / 2; |
| |
| debug("%s: last mode: %d, mode: %d, last clock: %u, clock: %u, ddr: %d\n", |
| __func__, slot->last_mode, mmc->selected_mode, |
| slot->last_clock, mmc->clock, mmc->ddr_mode); |
| switch (mmc->selected_mode) { |
| case MMC_LEGACY: |
| break; |
| case MMC_HS: |
| case SD_HS: |
| case MMC_HS_52: |
| emm_switch.s.hs_timing = 1; |
| break; |
| case MMC_HS_200: |
| is_hs200 = true; |
| fallthrough; |
| case UHS_SDR12: |
| case UHS_SDR25: |
| case UHS_SDR50: |
| case UHS_SDR104: |
| emm_switch.s.hs200_timing = 1; |
| break; |
| case MMC_HS_400: |
| is_hs400 = true; |
| fallthrough; |
| case UHS_DDR50: |
| case MMC_DDR_52: |
| emm_switch.s.hs400_timing = 1; |
| break; |
| default: |
| pr_err("%s(%s): Unsupported mode 0x%x\n", __func__, dev->name, |
| mmc->selected_mode); |
| return -1; |
| } |
| emm_switch.s.bus_id = slot->bus_id; |
| |
| if (!is_hs200 && !is_hs400 && |
| (mmc->selected_mode != slot->last_mode || |
| mmc->clock != slot->last_clock) && |
| !mmc->ddr_mode) { |
| slot->tuned = false; |
| slot->last_mode = mmc->selected_mode; |
| slot->last_clock = mmc->clock; |
| } |
| |
| if (CONFIG_IS_ENABLED(MMC_VERBOSE)) { |
| debug("%s(%s): Setting bus mode to %s\n", __func__, dev->name, |
| mmc_mode_name(mmc->selected_mode)); |
| } else { |
| debug("%s(%s): Setting bus mode to 0x%x\n", __func__, dev->name, |
| mmc->selected_mode); |
| } |
| |
| debug(" Trying switch 0x%llx w%d hs:%d hs200:%d hs400:%d\n", |
| emm_switch.u, emm_switch.s.bus_width, emm_switch.s.hs_timing, |
| emm_switch.s.hs200_timing, emm_switch.s.hs400_timing); |
| |
| set_wdog(mmc, 1000); |
| do_switch(mmc, emm_switch); |
| mdelay(100); |
| mode.u = read_csr(mmc, MIO_EMM_MODEX(slot->bus_id)); |
| debug("%s(%s): mode: 0x%llx w:%d, hs:%d, hs200:%d, hs400:%d\n", |
| __func__, dev->name, mode.u, mode.s.bus_width, |
| mode.s.hs_timing, mode.s.hs200_timing, mode.s.hs400_timing); |
| |
| err = octeontx_mmc_configure_delay(mmc); |
| |
| #ifdef MMC_SUPPORTS_TUNING |
| if (!err && mmc->selected_mode == MMC_HS_400 && !slot->hs400_tuned) { |
| debug("%s: Tuning HS400 mode\n", __func__); |
| err = octeontx_tune_hs400(mmc); |
| } |
| #endif |
| |
| return err; |
| } |
| |
| /** |
| * Gets the status of the card detect pin |
| */ |
| static int octeontx_mmc_get_cd(struct udevice *dev) |
| { |
| struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev); |
| int val = 1; |
| |
| if (dm_gpio_is_valid(&slot->cd_gpio)) { |
| val = dm_gpio_get_value(&slot->cd_gpio); |
| val ^= slot->cd_inverted; |
| } |
| debug("%s(%s): cd: %d\n", __func__, dev->name, val); |
| return val; |
| } |
| |
| /** |
| * Gets the status of the write protect pin |
| */ |
| static int octeontx_mmc_get_wp(struct udevice *dev) |
| { |
| struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev); |
| int val = 0; |
| |
| if (dm_gpio_is_valid(&slot->wp_gpio)) { |
| val = dm_gpio_get_value(&slot->wp_gpio); |
| val ^= slot->wp_inverted; |
| } |
| debug("%s(%s): wp: %d\n", __func__, dev->name, val); |
| return val; |
| } |
| |
| static void octeontx_mmc_set_timing(struct mmc *mmc) |
| { |
| union mio_emm_timing timing; |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| |
| switch (mmc->selected_mode) { |
| case MMC_HS_200: |
| timing = slot->hs200_taps; |
| break; |
| case MMC_HS_400: |
| timing = slot->hs400_tuned ? |
| slot->hs400_taps : slot->hs200_taps; |
| break; |
| default: |
| timing = slot->taps; |
| break; |
| } |
| |
| debug("%s(%s):\n cmd_in_tap: %u\n cmd_out_tap: %u\n data_in_tap: %u\n data_out_tap: %u\n", |
| __func__, mmc->dev->name, timing.s.cmd_in_tap, |
| timing.s.cmd_out_tap, timing.s.data_in_tap, |
| timing.s.data_out_tap); |
| |
| octeontx_mmc_set_emm_timing(mmc, timing); |
| } |
| |
| static int octeontx_mmc_configure_delay(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct octeontx_mmc_host *host __maybe_unused = slot->host; |
| bool __maybe_unused is_hs200; |
| bool __maybe_unused is_hs400; |
| |
| debug("%s(%s)\n", __func__, mmc->dev->name); |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| union mio_emm_sample emm_sample; |
| |
| emm_sample.u = 0; |
| emm_sample.s.cmd_cnt = slot->cmd_cnt; |
| emm_sample.s.dat_cnt = slot->dat_cnt; |
| write_csr(mmc, MIO_EMM_SAMPLE(), emm_sample.u); |
| } else { |
| is_hs200 = (mmc->selected_mode == MMC_HS_200); |
| is_hs400 = (mmc->selected_mode == MMC_HS_400); |
| |
| if ((is_hs200 && slot->hs200_tuned) || |
| (is_hs400 && slot->hs400_tuned) || |
| (!is_hs200 && !is_hs400 && slot->tuned)) { |
| octeontx_mmc_set_output_bus_timing(mmc); |
| } else { |
| int half = MAX_NO_OF_TAPS / 2; |
| int dout, cout; |
| |
| switch (mmc->selected_mode) { |
| case MMC_LEGACY: |
| if (IS_SD(mmc)) { |
| cout = MMC_SD_LEGACY_DEFAULT_CMD_OUT_TAP; |
| dout = MMC_SD_LEGACY_DEFAULT_DATA_OUT_TAP; |
| } else { |
| cout = MMC_LEGACY_DEFAULT_CMD_OUT_TAP; |
| dout = MMC_LEGACY_DEFAULT_DATA_OUT_TAP; |
| } |
| break; |
| case MMC_HS: |
| cout = MMC_HS_CMD_OUT_TAP; |
| dout = MMC_HS_DATA_OUT_TAP; |
| break; |
| case SD_HS: |
| case UHS_SDR12: |
| case UHS_SDR25: |
| case UHS_SDR50: |
| cout = MMC_SD_HS_CMD_OUT_TAP; |
| dout = MMC_SD_HS_DATA_OUT_TAP; |
| break; |
| case UHS_SDR104: |
| case UHS_DDR50: |
| case MMC_HS_52: |
| case MMC_DDR_52: |
| cout = MMC_DEFAULT_CMD_OUT_TAP; |
| dout = MMC_DEFAULT_DATA_OUT_TAP; |
| break; |
| case MMC_HS_200: |
| cout = -1; |
| dout = -1; |
| if (host->timing_calibrated) { |
| cout = octeontx2_mmc_calc_delay( |
| mmc, slot->cmd_out_hs200_delay); |
| dout = octeontx2_mmc_calc_delay( |
| mmc, |
| slot->data_out_hs200_delay); |
| debug("%s(%s): Calibrated HS200/HS400 cmd out delay: %dps tap: %d, data out delay: %d, tap: %d\n", |
| __func__, mmc->dev->name, |
| slot->cmd_out_hs200_delay, cout, |
| slot->data_out_hs200_delay, dout); |
| } else { |
| cout = MMC_DEFAULT_HS200_CMD_OUT_TAP; |
| dout = MMC_DEFAULT_HS200_DATA_OUT_TAP; |
| } |
| is_hs200 = true; |
| break; |
| case MMC_HS_400: |
| cout = -1; |
| dout = -1; |
| if (host->timing_calibrated) { |
| if (slot->cmd_out_hs400_delay) |
| cout = octeontx2_mmc_calc_delay( |
| mmc, |
| slot->cmd_out_hs400_delay); |
| if (slot->data_out_hs400_delay) |
| dout = octeontx2_mmc_calc_delay( |
| mmc, |
| slot->data_out_hs400_delay); |
| debug("%s(%s): Calibrated HS200/HS400 cmd out delay: %dps tap: %d, data out delay: %d, tap: %d\n", |
| __func__, mmc->dev->name, |
| slot->cmd_out_hs400_delay, cout, |
| slot->data_out_hs400_delay, dout); |
| } else { |
| cout = MMC_DEFAULT_HS400_CMD_OUT_TAP; |
| dout = MMC_DEFAULT_HS400_DATA_OUT_TAP; |
| } |
| is_hs400 = true; |
| break; |
| default: |
| pr_err("%s(%s): Invalid mode %d\n", __func__, |
| mmc->dev->name, mmc->selected_mode); |
| return -1; |
| } |
| debug("%s(%s): Not tuned, hs200: %d, hs200 tuned: %d, hs400: %d, hs400 tuned: %d, tuned: %d\n", |
| __func__, mmc->dev->name, is_hs200, |
| slot->hs200_tuned, |
| is_hs400, slot->hs400_tuned, slot->tuned); |
| /* Set some defaults */ |
| if (is_hs200) { |
| slot->hs200_taps.u = 0; |
| slot->hs200_taps.s.cmd_out_tap = cout; |
| slot->hs200_taps.s.data_out_tap = dout; |
| slot->hs200_taps.s.cmd_in_tap = half; |
| slot->hs200_taps.s.data_in_tap = half; |
| } else if (is_hs400) { |
| slot->hs400_taps.u = 0; |
| slot->hs400_taps.s.cmd_out_tap = cout; |
| slot->hs400_taps.s.data_out_tap = dout; |
| slot->hs400_taps.s.cmd_in_tap = half; |
| slot->hs400_taps.s.data_in_tap = half; |
| } else { |
| slot->taps.u = 0; |
| slot->taps.s.cmd_out_tap = cout; |
| slot->taps.s.data_out_tap = dout; |
| slot->taps.s.cmd_in_tap = half; |
| slot->taps.s.data_in_tap = half; |
| } |
| } |
| |
| if (is_hs200) |
| debug("%s(%s): hs200 taps: ci: %u, co: %u, di: %u, do: %u\n", |
| __func__, mmc->dev->name, |
| slot->hs200_taps.s.cmd_in_tap, |
| slot->hs200_taps.s.cmd_out_tap, |
| slot->hs200_taps.s.data_in_tap, |
| slot->hs200_taps.s.data_out_tap); |
| else if (is_hs400) |
| debug("%s(%s): hs400 taps: ci: %u, co: %u, di: %u, do: %u\n", |
| __func__, mmc->dev->name, |
| slot->hs400_taps.s.cmd_in_tap, |
| slot->hs400_taps.s.cmd_out_tap, |
| slot->hs400_taps.s.data_in_tap, |
| slot->hs400_taps.s.data_out_tap); |
| else |
| debug("%s(%s): taps: ci: %u, co: %u, di: %u, do: %u\n", |
| __func__, mmc->dev->name, slot->taps.s.cmd_in_tap, |
| slot->taps.s.cmd_out_tap, |
| slot->taps.s.data_in_tap, |
| slot->taps.s.data_out_tap); |
| octeontx_mmc_set_timing(mmc); |
| debug("%s: Done\n", __func__); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Sets the MMC watchdog timer in microseconds |
| * |
| * @param mmc mmc device |
| * @param us timeout in microseconds, 0 for maximum timeout |
| */ |
| static void set_wdog(struct mmc *mmc, u64 us) |
| { |
| union mio_emm_wdog wdog; |
| u64 val; |
| |
| val = (us * mmc->clock) / 1000000; |
| if (val >= (1 << 26) || !us) { |
| if (us) |
| pr_debug("%s: warning: timeout %llu exceeds max value %llu, truncating\n", |
| __func__, us, |
| (u64)(((1ULL << 26) - 1) * 1000000ULL) / |
| mmc->clock); |
| val = (1 << 26) - 1; |
| } |
| wdog.u = 0; |
| wdog.s.clk_cnt = val; |
| write_csr(mmc, MIO_EMM_WDOG(), wdog.u); |
| } |
| |
| /** |
| * Set the IO drive strength and slew |
| * |
| * @param mmc mmc device |
| */ |
| static void octeontx_mmc_io_drive_setup(struct mmc *mmc) |
| { |
| if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| union mio_emm_io_ctl io_ctl; |
| |
| if (slot->drive < 0 || slot->slew < 0) |
| return; |
| |
| io_ctl.u = 0; |
| io_ctl.s.drive = slot->drive; |
| io_ctl.s.slew = slot->slew; |
| write_csr(mmc, MIO_EMM_IO_CTL(), io_ctl.u); |
| } |
| } |
| |
| /** |
| * Print switch errors |
| * |
| * @param mmc mmc device |
| */ |
| static void check_switch_errors(struct mmc *mmc) |
| { |
| union mio_emm_switch emm_switch; |
| |
| emm_switch.u = read_csr(mmc, MIO_EMM_SWITCH()); |
| if (emm_switch.s.switch_err0) |
| pr_err("%s: Switch power class error\n", mmc->cfg->name); |
| if (emm_switch.s.switch_err1) |
| pr_err("%s: Switch HS timing error\n", mmc->cfg->name); |
| if (emm_switch.s.switch_err2) |
| pr_err("%s: Switch bus width error\n", mmc->cfg->name); |
| } |
| |
| static void do_switch(struct mmc *mmc, union mio_emm_switch emm_switch) |
| { |
| union mio_emm_rsp_sts rsp_sts; |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| int bus_id = emm_switch.s.bus_id; |
| ulong start; |
| |
| if (emm_switch.s.bus_id != 0) { |
| emm_switch.s.bus_id = 0; |
| write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u); |
| udelay(100); |
| emm_switch.s.bus_id = bus_id; |
| } |
| debug("%s(%s, 0x%llx)\n", __func__, mmc->dev->name, emm_switch.u); |
| write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u); |
| |
| start = get_timer(0); |
| do { |
| rsp_sts.u = read_csr(mmc, MIO_EMM_RSP_STS()); |
| if (!rsp_sts.s.switch_val) |
| break; |
| udelay(100); |
| } while (get_timer(start) < 10); |
| if (rsp_sts.s.switch_val) { |
| pr_warn("%s(%s): Warning: writing 0x%llx to emm_switch timed out, status: 0x%llx\n", |
| __func__, mmc->dev->name, emm_switch.u, rsp_sts.u); |
| } |
| slot->cached_switch = emm_switch; |
| check_switch_errors(mmc); |
| slot->cached_switch.u = emm_switch.u; |
| debug("%s: emm_switch: 0x%llx, rsp_lo: 0x%llx\n", |
| __func__, read_csr(mmc, MIO_EMM_SWITCH()), |
| read_csr(mmc, MIO_EMM_RSP_LO())); |
| } |
| |
| /** |
| * Given a delay in ps, return the tap delay count |
| * |
| * @param mmc mmc data structure |
| * @param delay delay in picoseconds |
| * |
| * @return Number of tap cycles or error if -1 |
| */ |
| static int octeontx2_mmc_calc_delay(struct mmc *mmc, int delay) |
| { |
| struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| |
| if (host->is_asim || host->is_emul) |
| return 63; |
| |
| if (!host->timing_taps) { |
| pr_err("%s(%s): Error: host timing not calibrated\n", |
| __func__, mmc->dev->name); |
| return -1; |
| } |
| debug("%s(%s, %d) timing taps: %llu\n", __func__, mmc->dev->name, |
| delay, host->timing_taps); |
| return min_t(int, DIV_ROUND_UP(delay, host->timing_taps), 63); |
| } |
| |
| /** |
| * Calibrates the delay based on the internal clock |
| * |
| * @param mmc Pointer to mmc data structure |
| * |
| * @return 0 for success or -ETIMEDOUT on error |
| * |
| * NOTE: On error a default value will be calculated. |
| */ |
| static int octeontx_mmc_calibrate_delay(struct mmc *mmc) |
| { |
| union mio_emm_calb emm_calb; |
| union mio_emm_tap emm_tap; |
| union mio_emm_cfg emm_cfg; |
| union mio_emm_io_ctl emm_io_ctl; |
| union mio_emm_switch emm_switch; |
| union mio_emm_wdog emm_wdog; |
| union mio_emm_sts_mask emm_sts_mask; |
| union mio_emm_debug emm_debug; |
| union mio_emm_timing emm_timing; |
| struct octeontx_mmc_host *host = mmc_to_host(mmc); |
| ulong start; |
| u8 bus_id, bus_ena; |
| |
| debug("%s: Calibrating delay\n", __func__); |
| if (host->is_asim || host->is_emul) { |
| debug(" No calibration for ASIM\n"); |
| return 0; |
| } |
| emm_tap.u = 0; |
| if (host->calibrate_glitch) { |
| emm_tap.s.delay = MMC_DEFAULT_TAP_DELAY; |
| } else { |
| /* Save registers */ |
| emm_cfg.u = read_csr(mmc, MIO_EMM_CFG()); |
| emm_io_ctl.u = read_csr(mmc, MIO_EMM_IO_CTL()); |
| emm_switch.u = read_csr(mmc, MIO_EMM_SWITCH()); |
| emm_wdog.u = read_csr(mmc, MIO_EMM_WDOG()); |
| emm_sts_mask.u = read_csr(mmc, MIO_EMM_STS_MASK()); |
| emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG()); |
| emm_timing.u = read_csr(mmc, MIO_EMM_TIMING()); |
| bus_ena = emm_cfg.s.bus_ena; |
| bus_id = emm_switch.s.bus_id; |
| emm_cfg.s.bus_ena = 0; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| udelay(1); |
| emm_cfg.s.bus_ena = 1ULL << 3; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| mdelay(1); |
| emm_calb.u = 0; |
| write_csr(mmc, MIO_EMM_CALB(), emm_calb.u); |
| emm_calb.s.start = 1; |
| write_csr(mmc, MIO_EMM_CALB(), emm_calb.u); |
| start = get_timer(0); |
| /* This should only take 3 microseconds */ |
| do { |
| udelay(5); |
| emm_tap.u = read_csr(mmc, MIO_EMM_TAP()); |
| } while (!emm_tap.s.delay && get_timer(start) < 10); |
| |
| emm_calb.s.start = 0; |
| write_csr(mmc, MIO_EMM_CALB(), emm_calb.u); |
| |
| emm_cfg.s.bus_ena = 0; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| udelay(1); |
| /* Restore registers */ |
| emm_cfg.s.bus_ena = bus_ena; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| if (host->tap_requires_noclk) { |
| /* Turn off the clock */ |
| emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG()); |
| emm_debug.s.emmc_clk_disable = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| emm_debug.s.rdsync_rst = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| } |
| |
| write_csr(mmc, MIO_EMM_TIMING(), emm_timing.u); |
| if (host->tap_requires_noclk) { |
| /* Turn the clock back on */ |
| udelay(1); |
| emm_debug.s.rdsync_rst = 0; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| udelay(1); |
| emm_debug.s.emmc_clk_disable = 0; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| } |
| udelay(1); |
| write_csr(mmc, MIO_EMM_IO_CTL(), emm_io_ctl.u); |
| bus_id = emm_switch.s.bus_id; |
| emm_switch.s.bus_id = 0; |
| write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u); |
| emm_switch.s.bus_id = bus_id; |
| write_csr(mmc, MIO_EMM_SWITCH(), emm_switch.u); |
| write_csr(mmc, MIO_EMM_WDOG(), emm_wdog.u); |
| write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u); |
| write_csr(mmc, MIO_EMM_RCA(), mmc->rca); |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| |
| if (!emm_tap.s.delay) { |
| pr_err("%s: Error: delay calibration failed, timed out.\n", |
| __func__); |
| /* Set to default value if timed out */ |
| emm_tap.s.delay = MMC_DEFAULT_TAP_DELAY; |
| return -ETIMEDOUT; |
| } |
| } |
| /* Round up */ |
| host->timing_taps = (10 * 1000 * emm_tap.s.delay) / TOTAL_NO_OF_TAPS; |
| debug("%s(%s): timing taps: %llu, delay: %u\n", |
| __func__, mmc->dev->name, host->timing_taps, emm_tap.s.delay); |
| host->timing_calibrated = true; |
| return 0; |
| } |
| |
| static int octeontx_mmc_set_input_bus_timing(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) { |
| union mio_emm_sample sample; |
| |
| sample.u = 0; |
| sample.s.cmd_cnt = slot->cmd_clk_skew; |
| sample.s.dat_cnt = slot->dat_clk_skew; |
| write_csr(mmc, MIO_EMM_SAMPLE(), sample.u); |
| } else { |
| union mio_emm_timing timing; |
| |
| timing.u = read_csr(mmc, MIO_EMM_TIMING()); |
| if (mmc->selected_mode == MMC_HS_200) { |
| if (slot->hs200_tuned) { |
| timing.s.cmd_in_tap = |
| slot->hs200_taps.s.cmd_in_tap; |
| timing.s.data_in_tap = |
| slot->hs200_taps.s.data_in_tap; |
| } else { |
| pr_warn("%s(%s): Warning: hs200 timing not tuned\n", |
| __func__, mmc->dev->name); |
| timing.s.cmd_in_tap = |
| MMC_DEFAULT_HS200_CMD_IN_TAP; |
| timing.s.data_in_tap = |
| MMC_DEFAULT_HS200_DATA_IN_TAP; |
| } |
| } else if (mmc->selected_mode == MMC_HS_400) { |
| if (slot->hs400_tuned) { |
| timing.s.cmd_in_tap = |
| slot->hs400_taps.s.cmd_in_tap; |
| timing.s.data_in_tap = |
| slot->hs400_taps.s.data_in_tap; |
| } else if (slot->hs200_tuned) { |
| timing.s.cmd_in_tap = |
| slot->hs200_taps.s.cmd_in_tap; |
| timing.s.data_in_tap = |
| slot->hs200_taps.s.data_in_tap; |
| } else { |
| pr_warn("%s(%s): Warning: hs400 timing not tuned\n", |
| __func__, mmc->dev->name); |
| timing.s.cmd_in_tap = |
| MMC_DEFAULT_HS200_CMD_IN_TAP; |
| timing.s.data_in_tap = |
| MMC_DEFAULT_HS200_DATA_IN_TAP; |
| } |
| } else if (slot->tuned) { |
| timing.s.cmd_in_tap = slot->taps.s.cmd_in_tap; |
| timing.s.data_in_tap = slot->taps.s.data_in_tap; |
| } else { |
| timing.s.cmd_in_tap = MMC_DEFAULT_CMD_IN_TAP; |
| timing.s.data_in_tap = MMC_DEFAULT_DATA_IN_TAP; |
| } |
| octeontx_mmc_set_emm_timing(mmc, timing); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Sets the default bus timing for the current mode. |
| * |
| * @param mmc mmc data structure |
| * |
| * @return 0 for success, error otherwise |
| */ |
| static int octeontx_mmc_set_output_bus_timing(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| union mio_emm_timing timing; |
| int cout_bdelay, dout_bdelay; |
| unsigned int cout_delay, dout_delay; |
| char env_name[32]; |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX)) |
| return 0; |
| |
| debug("%s(%s)\n", __func__, mmc->dev->name); |
| if (slot->is_asim || slot->is_emul) |
| return 0; |
| |
| octeontx_mmc_calibrate_delay(mmc); |
| |
| if (mmc->clock < 26000000) { |
| cout_delay = 5000; |
| dout_delay = 5000; |
| } else if (mmc->clock <= 52000000) { |
| cout_delay = 2500; |
| dout_delay = 2500; |
| } else if (!mmc_is_mode_ddr(mmc->selected_mode)) { |
| cout_delay = slot->cmd_out_hs200_delay; |
| dout_delay = slot->data_out_hs200_delay; |
| } else { |
| cout_delay = slot->cmd_out_hs400_delay; |
| dout_delay = slot->data_out_hs400_delay; |
| } |
| |
| snprintf(env_name, sizeof(env_name), "mmc%d_hs200_dout_delay_ps", |
| slot->bus_id); |
| dout_delay = env_get_ulong(env_name, 10, dout_delay); |
| debug("%s: dout_delay: %u\n", __func__, dout_delay); |
| |
| cout_bdelay = octeontx2_mmc_calc_delay(mmc, cout_delay); |
| dout_bdelay = octeontx2_mmc_calc_delay(mmc, dout_delay); |
| |
| debug("%s: cmd output delay: %u, data output delay: %u, cmd bdelay: %d, data bdelay: %d, clock: %d\n", |
| __func__, cout_delay, dout_delay, cout_bdelay, dout_bdelay, |
| mmc->clock); |
| if (cout_bdelay < 0 || dout_bdelay < 0) { |
| pr_err("%s: Error: could not calculate command and/or data clock skew\n", |
| __func__); |
| return -1; |
| } |
| timing.u = read_csr(mmc, MIO_EMM_TIMING()); |
| timing.s.cmd_out_tap = cout_bdelay; |
| timing.s.data_out_tap = dout_bdelay; |
| if (mmc->selected_mode == MMC_HS_200) { |
| slot->hs200_taps.s.cmd_out_tap = cout_bdelay; |
| slot->hs200_taps.s.data_out_tap = dout_bdelay; |
| } else if (mmc->selected_mode == MMC_HS_400) { |
| slot->hs400_taps.s.cmd_out_tap = cout_bdelay; |
| slot->hs400_taps.s.data_out_tap = dout_bdelay; |
| } else { |
| slot->taps.s.cmd_out_tap = cout_bdelay; |
| slot->taps.s.data_out_tap = dout_bdelay; |
| } |
| octeontx_mmc_set_emm_timing(mmc, timing); |
| debug("%s(%s): bdelay: %d/%d, clock: %d, ddr: %s, timing taps: %llu, do: %d, di: %d, co: %d, ci: %d\n", |
| __func__, mmc->dev->name, cout_bdelay, dout_bdelay, mmc->clock, |
| mmc->ddr_mode ? "yes" : "no", |
| mmc_to_host(mmc)->timing_taps, |
| timing.s.data_out_tap, |
| timing.s.data_in_tap, |
| timing.s.cmd_out_tap, |
| timing.s.cmd_in_tap); |
| |
| return 0; |
| } |
| |
| static void octeontx_mmc_set_clock(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| uint clock; |
| |
| clock = min(mmc->cfg->f_max, (uint)slot->clock); |
| clock = max(mmc->cfg->f_min, clock); |
| debug("%s(%s): f_min: %u, f_max: %u, clock: %u\n", __func__, |
| mmc->dev->name, mmc->cfg->f_min, mmc->cfg->f_max, clock); |
| slot->clock = clock; |
| mmc->clock = clock; |
| } |
| |
| /** |
| * This switches I/O power as needed when switching between slots. |
| * |
| * @param mmc mmc data structure |
| */ |
| static void octeontx_mmc_switch_io(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct octeontx_mmc_host *host = slot->host; |
| struct mmc *last_mmc = host->last_mmc; |
| static struct udevice *last_reg; |
| union mio_emm_cfg emm_cfg; |
| int bus; |
| static bool initialized; |
| |
| /* First time? */ |
| if (!initialized || mmc != host->last_mmc) { |
| struct mmc *ommc; |
| |
| /* Switch to bus 3 which is unused */ |
| emm_cfg.u = read_csr(mmc, MIO_EMM_CFG()); |
| emm_cfg.s.bus_ena = 1 << 3; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| |
| /* Turn off all other I/O interfaces with first initialization |
| * if at least one supply was found. |
| */ |
| for (bus = 0; bus <= OCTEONTX_MAX_MMC_SLOT; bus++) { |
| ommc = &host->slots[bus].mmc; |
| |
| /* Handle self case later */ |
| if (ommc == mmc || !ommc->vqmmc_supply) |
| continue; |
| |
| /* Skip if we're not switching regulators */ |
| if (last_reg == mmc->vqmmc_supply) |
| continue; |
| |
| /* Turn off other regulators */ |
| if (ommc->vqmmc_supply != mmc->vqmmc_supply) |
| regulator_set_enable(ommc->vqmmc_supply, false); |
| } |
| /* Turn ourself on */ |
| if (mmc->vqmmc_supply && last_reg != mmc->vqmmc_supply) |
| regulator_set_enable(mmc->vqmmc_supply, true); |
| mdelay(1); /* Settle time */ |
| /* Switch to new bus */ |
| emm_cfg.s.bus_ena = 1 << slot->bus_id; |
| write_csr(mmc, MIO_EMM_CFG(), emm_cfg.u); |
| last_reg = mmc->vqmmc_supply; |
| initialized = true; |
| return; |
| } |
| |
| /* No change in device */ |
| if (last_mmc == mmc) |
| return; |
| |
| if (!last_mmc) { |
| pr_warn("%s(%s): No previous slot detected in IO slot switch!\n", |
| __func__, mmc->dev->name); |
| return; |
| } |
| |
| debug("%s(%s): last: %s, supply: %p\n", __func__, mmc->dev->name, |
| last_mmc->dev->name, mmc->vqmmc_supply); |
| |
| /* The supply is the same so we do nothing */ |
| if (last_mmc->vqmmc_supply == mmc->vqmmc_supply) |
| return; |
| |
| /* Turn off the old slot I/O supply */ |
| if (last_mmc->vqmmc_supply) { |
| debug("%s(%s): Turning off IO to %s, supply: %s\n", |
| __func__, mmc->dev->name, last_mmc->dev->name, |
| last_mmc->vqmmc_supply->name); |
| regulator_set_enable(last_mmc->vqmmc_supply, false); |
| } |
| /* Turn on the new slot I/O supply */ |
| if (mmc->vqmmc_supply) { |
| debug("%s(%s): Turning on IO to slot %d, supply: %s\n", |
| __func__, mmc->dev->name, slot->bus_id, |
| mmc->vqmmc_supply->name); |
| regulator_set_enable(mmc->vqmmc_supply, true); |
| } |
| /* Allow power to settle */ |
| mdelay(1); |
| } |
| |
| /** |
| * Called to switch between mmc devices |
| * |
| * @param mmc new mmc device |
| */ |
| static void octeontx_mmc_switch_to(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct octeontx_mmc_slot *old_slot; |
| struct octeontx_mmc_host *host = slot->host; |
| union mio_emm_switch emm_switch; |
| union mio_emm_sts_mask emm_sts_mask; |
| union mio_emm_rca emm_rca; |
| |
| if (slot->bus_id == host->last_slotid) |
| return; |
| |
| debug("%s(%s) switching from slot %d to slot %d\n", __func__, |
| mmc->dev->name, host->last_slotid, slot->bus_id); |
| octeontx_mmc_switch_io(mmc); |
| |
| if (host->last_slotid >= 0 && slot->valid) { |
| old_slot = &host->slots[host->last_slotid]; |
| old_slot->cached_switch.u = read_csr(mmc, MIO_EMM_SWITCH()); |
| old_slot->cached_rca.u = read_csr(mmc, MIO_EMM_RCA()); |
| } |
| if (mmc->rca) |
| write_csr(mmc, MIO_EMM_RCA(), mmc->rca); |
| emm_switch = slot->cached_switch; |
| do_switch(mmc, emm_switch); |
| emm_rca.u = 0; |
| emm_rca.s.card_rca = mmc->rca; |
| write_csr(mmc, MIO_EMM_RCA(), emm_rca.u); |
| mdelay(100); |
| |
| set_wdog(mmc, 100000); |
| if (octeontx_mmc_set_output_bus_timing(mmc) || |
| octeontx_mmc_set_input_bus_timing(mmc)) |
| pr_err("%s(%s): Error setting bus timing\n", __func__, |
| mmc->dev->name); |
| octeontx_mmc_io_drive_setup(mmc); |
| |
| emm_sts_mask.u = 0; |
| emm_sts_mask.s.sts_msk = 1 << 7 | 1 << 22 | 1 << 23 | 1 << 19; |
| write_csr(mmc, MIO_EMM_STS_MASK(), emm_sts_mask.u); |
| host->last_slotid = slot->bus_id; |
| host->last_mmc = mmc; |
| mdelay(10); |
| } |
| |
| /** |
| * Perform initial timing configuration |
| * |
| * @param mmc mmc device |
| * |
| * @return 0 for success |
| * |
| * NOTE: This will need to be updated when new silicon comes out |
| */ |
| static int octeontx_mmc_init_timing(struct mmc *mmc) |
| { |
| union mio_emm_timing timing; |
| |
| if (mmc_to_slot(mmc)->is_asim || mmc_to_slot(mmc)->is_emul) |
| return 0; |
| |
| debug("%s(%s)\n", __func__, mmc->dev->name); |
| timing.u = 0; |
| timing.s.cmd_out_tap = MMC_DEFAULT_CMD_OUT_TAP; |
| timing.s.data_out_tap = MMC_DEFAULT_DATA_OUT_TAP; |
| timing.s.cmd_in_tap = MMC_DEFAULT_CMD_IN_TAP; |
| timing.s.data_in_tap = MMC_DEFAULT_DATA_IN_TAP; |
| octeontx_mmc_set_emm_timing(mmc, timing); |
| return 0; |
| } |
| |
| /** |
| * Perform low-level initialization |
| * |
| * @param mmc mmc device |
| * |
| * @return 0 for success, error otherwise |
| */ |
| static int octeontx_mmc_init_lowlevel(struct mmc *mmc) |
| { |
| struct octeontx_mmc_slot *slot = mmc_to_slot(mmc); |
| struct octeontx_mmc_host *host = slot->host; |
| union mio_emm_switch emm_switch; |
| u32 clk_period; |
| |
| debug("%s(%s): lowlevel init for slot %d\n", __func__, |
| mmc->dev->name, slot->bus_id); |
| host->emm_cfg.s.bus_ena &= ~(1 << slot->bus_id); |
| write_csr(mmc, MIO_EMM_CFG(), host->emm_cfg.u); |
| udelay(100); |
| host->emm_cfg.s.bus_ena |= 1 << slot->bus_id; |
| write_csr(mmc, MIO_EMM_CFG(), host->emm_cfg.u); |
| udelay(10); |
| slot->clock = mmc->cfg->f_min; |
| octeontx_mmc_set_clock(&slot->mmc); |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) { |
| if (host->cond_clock_glitch) { |
| union mio_emm_debug emm_debug; |
| |
| emm_debug.u = read_csr(mmc, MIO_EMM_DEBUG()); |
| emm_debug.s.clk_on = 1; |
| write_csr(mmc, MIO_EMM_DEBUG(), emm_debug.u); |
| } |
| octeontx_mmc_calibrate_delay(&slot->mmc); |
| } |
| |
| clk_period = octeontx_mmc_calc_clk_period(mmc); |
| emm_switch.u = 0; |
| emm_switch.s.power_class = 10; |
| emm_switch.s.clk_lo = clk_period / 2; |
| emm_switch.s.clk_hi = clk_period / 2; |
| |
| emm_switch.s.bus_id = slot->bus_id; |
| debug("%s: Performing switch\n", __func__); |
| do_switch(mmc, emm_switch); |
| slot->cached_switch.u = emm_switch.u; |
| |
| if (!IS_ENABLED(CONFIG_ARCH_OCTEONTX)) |
| octeontx_mmc_init_timing(mmc); |
| |
| set_wdog(mmc, 1000000); /* Set to 1 second */ |
| write_csr(mmc, MIO_EMM_STS_MASK(), 0xe4390080ull); |
| write_csr(mmc, MIO_EMM_RCA(), 1); |
| mdelay(10); |
| debug("%s: done\n", __func__); |
| return 0; |
| } |
| |
| /** |
| * Translates a voltage number to bits in MMC register |
| * |
| * @param voltage voltage in microvolts |
| * |
| * @return MMC register value for voltage |
| */ |
| static u32 xlate_voltage(u32 voltage) |
| { |
| u32 volt = 0; |
| |
| /* Convert to millivolts */ |
| voltage /= 1000; |
| if (voltage >= 1650 && voltage <= 1950) |
| volt |= MMC_VDD_165_195; |
| if (voltage >= 2000 && voltage <= 2100) |
| volt |= MMC_VDD_20_21; |
| if (voltage >= 2100 && voltage <= 2200) |
| volt |= MMC_VDD_21_22; |
| if (voltage >= 2200 && voltage <= 2300) |
| volt |= MMC_VDD_22_23; |
| if (voltage >= 2300 && voltage <= 2400) |
| volt |= MMC_VDD_23_24; |
| if (voltage >= 2400 && voltage <= 2500) |
| volt |= MMC_VDD_24_25; |
| if (voltage >= 2500 && voltage <= 2600) |
| volt |= MMC_VDD_25_26; |
| if (voltage >= 2600 && voltage <= 2700) |
| volt |= MMC_VDD_26_27; |
| if (voltage >= 2700 && voltage <= 2800) |
| volt |= MMC_VDD_27_28; |
| if (voltage >= 2800 && voltage <= 2900) |
| volt |= MMC_VDD_28_29; |
| if (voltage >= 2900 && voltage <= 3000) |
| volt |= MMC_VDD_29_30; |
| if (voltage >= 3000 && voltage <= 3100) |
| volt |= MMC_VDD_30_31; |
| if (voltage >= 3100 && voltage <= 3200) |
| volt |= MMC_VDD_31_32; |
| if (voltage >= 3200 && voltage <= 3300) |
| volt |= MMC_VDD_32_33; |
| if (voltage >= 3300 && voltage <= 3400) |
| volt |= MMC_VDD_33_34; |
| if (voltage >= 3400 && voltage <= 3500) |
| volt |= MMC_VDD_34_35; |
| if (voltage >= 3500 && voltage <= 3600) |
| volt |= MMC_VDD_35_36; |
| |
| return volt; |
| } |
| |
| /** |
| * Check if a slot is valid in the device tree |
| * |
| * @param dev slot device to check |
| * |
| * @return true if status reports "ok" or "okay" or if no status, |
| * false otherwise. |
| */ |
| static bool octeontx_mmc_get_valid(struct udevice *dev) |
| { |
| const char *stat = ofnode_read_string(dev->node, "status"); |
| |
| if (!stat || !strncmp(stat, "ok", 2)) |
| return true; |
| else |
| return false; |
| } |
| |
| /** |
| * Reads slot configuration from the device tree |
| * |
| * @param dev slot device |
| * |
| * @return 0 on success, otherwise error |
| */ |
| static int octeontx_mmc_get_config(struct udevice *dev) |
| { |
| struct octeontx_mmc_slot *slot = dev_to_mmc_slot(dev); |
| uint voltages[2]; |
| uint low, high; |
| char env_name[32]; |
| int err; |
| ofnode node = dev->node; |
| int bus_width = 1; |
| ulong new_max_freq; |
| |
| debug("%s(%s)", __func__, dev->name); |
| slot->cfg.name = dev->name; |
| |
| slot->cfg.f_max = ofnode_read_s32_default(dev->node, "max-frequency", |
| 26000000); |
| snprintf(env_name, sizeof(env_name), "mmc_max_frequency%d", |
| slot->bus_id); |
| |
| new_max_freq = env_get_ulong(env_name, 10, slot->cfg.f_max); |
| debug("Reading %s, got %lu\n", env_name, new_max_freq); |
| |
| if (new_max_freq != slot->cfg.f_max) { |
| printf("Overriding device tree MMC maximum frequency %u to %lu\n", |
| slot->cfg.f_max, new_max_freq); |
| slot->cfg.f_max = new_max_freq; |
| } |
| slot->cfg.f_min = 400000; |
| slot->cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) { |
| slot->hs400_tuning_block = |
| ofnode_read_s32_default(dev->node, |
| "marvell,hs400-tuning-block", |
| -1); |
| debug("%s(%s): mmc HS400 tuning block: %d\n", __func__, |
| dev->name, slot->hs400_tuning_block); |
| |
| slot->hs200_tap_adj = |
| ofnode_read_s32_default(dev->node, |
| "marvell,hs200-tap-adjust", 0); |
| debug("%s(%s): hs200-tap-adjust: %d\n", __func__, dev->name, |
| slot->hs200_tap_adj); |
| slot->hs400_tap_adj = |
| ofnode_read_s32_default(dev->node, |
| "marvell,hs400-tap-adjust", 0); |
| debug("%s(%s): hs400-tap-adjust: %d\n", __func__, dev->name, |
| slot->hs400_tap_adj); |
| } |
| |
| err = ofnode_read_u32_array(dev->node, "voltage-ranges", voltages, 2); |
| if (err) { |
| slot->cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34; |
| } else { |
| low = xlate_voltage(voltages[0]); |
| high = xlate_voltage(voltages[1]); |
| debug(" low voltage: 0x%x (%u), high: 0x%x (%u)\n", |
| low, voltages[0], high, voltages[1]); |
| if (low > high || !low || !high) { |
| pr_err("Invalid MMC voltage range [%u-%u] specified for %s\n", |
| low, high, dev->name); |
| return -1; |
| } |
| slot->cfg.voltages = 0; |
| do { |
| slot->cfg.voltages |= low; |
| low <<= 1; |
| } while (low <= high); |
| } |
| debug("%s: config voltages: 0x%x\n", __func__, slot->cfg.voltages); |
| slot->slew = ofnode_read_s32_default(node, "cavium,clk-slew", -1); |
| slot->drive = ofnode_read_s32_default(node, "cavium,drv-strength", -1); |
| gpio_request_by_name(dev, "cd-gpios", 0, &slot->cd_gpio, GPIOD_IS_IN); |
| slot->cd_inverted = ofnode_read_bool(node, "cd-inverted"); |
| gpio_request_by_name(dev, "wp-gpios", 0, &slot->wp_gpio, GPIOD_IS_IN); |
| slot->wp_inverted = ofnode_read_bool(node, "wp-inverted"); |
| if (slot->cfg.voltages & MMC_VDD_165_195) { |
| slot->is_1_8v = true; |
| slot->is_3_3v = false; |
| } else if (slot->cfg.voltages & (MMC_VDD_30_31 | MMC_VDD_31_32 | |
| MMC_VDD_33_34 | MMC_VDD_34_35 | |
| MMC_VDD_35_36)) { |
| slot->is_1_8v = false; |
| slot->is_3_3v = true; |
| } |
| |
| bus_width = ofnode_read_u32_default(node, "bus-width", 1); |
| /* Note fall-through */ |
| switch (bus_width) { |
| case 8: |
| slot->cfg.host_caps |= MMC_MODE_8BIT; |
| case 4: |
| slot->cfg.host_caps |= MMC_MODE_4BIT; |
| case 1: |
| slot->cfg.host_caps |= MMC_MODE_1BIT; |
| break; |
| } |
| if (ofnode_read_bool(node, "no-1-8-v")) { |
| slot->is_3_3v = true; |
| slot->is_1_8v = false; |
| if (!(slot->cfg.voltages & (MMC_VDD_32_33 | MMC_VDD_33_34))) |
| pr_warn("%s(%s): voltages indicate 3.3v but 3.3v not supported\n", |
| __func__, dev->name); |
| } |
| if (ofnode_read_bool(node, "mmc-ddr-3-3v")) { |
| slot->is_3_3v = true; |
| slot->is_1_8v = false; |
| if (!(slot->cfg.voltages & (MMC_VDD_32_33 | MMC_VDD_33_34))) |
| pr_warn("%s(%s): voltages indicate 3.3v but 3.3v not supported\n", |
| __func__, dev->name); |
| } |
| if (ofnode_read_bool(node, "cap-sd-highspeed") || |
| ofnode_read_bool(node, "cap-mmc-highspeed") || |
| ofnode_read_bool(node, "sd-uhs-sdr25")) |
| slot->cfg.host_caps |= MMC_MODE_HS; |
| if (slot->cfg.f_max >= 50000000 && |
| slot->cfg.host_caps & MMC_MODE_HS) |
| slot->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; |
| if (ofnode_read_bool(node, "sd-uhs-sdr50")) |
| slot->cfg.host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; |
| if (ofnode_read_bool(node, "sd-uhs-ddr50")) |
| slot->cfg.host_caps |= MMC_MODE_HS | MMC_MODE_HS_52MHz | |
| MMC_MODE_DDR_52MHz; |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) { |
| if (!slot->is_asim && !slot->is_emul) { |
| if (ofnode_read_bool(node, "mmc-hs200-1_8v")) |
| slot->cfg.host_caps |= MMC_MODE_HS200 | |
| MMC_MODE_HS_52MHz; |
| if (ofnode_read_bool(node, "mmc-hs400-1_8v")) |
| slot->cfg.host_caps |= MMC_MODE_HS400 | |
| MMC_MODE_HS_52MHz | |
| MMC_MODE_HS200 | |
| MMC_MODE_DDR_52MHz; |
| slot->cmd_out_hs200_delay = |
| ofnode_read_u32_default(node, |
| "marvell,cmd-out-hs200-dly", |
| MMC_DEFAULT_HS200_CMD_OUT_DLY); |
| debug("%s(%s): HS200 cmd out delay: %d\n", |
| __func__, dev->name, slot->cmd_out_hs200_delay); |
| slot->data_out_hs200_delay = |
| ofnode_read_u32_default(node, |
| "marvell,data-out-hs200-dly", |
| MMC_DEFAULT_HS200_DATA_OUT_DLY); |
| debug("%s(%s): HS200 data out delay: %d\n", |
| __func__, dev->name, slot->data_out_hs200_delay); |
| slot->cmd_out_hs400_delay = |
| ofnode_read_u32_default(node, |
| "marvell,cmd-out-hs400-dly", |
| MMC_DEFAULT_HS400_CMD_OUT_DLY); |
| debug("%s(%s): HS400 cmd out delay: %d\n", |
| __func__, dev->name, slot->cmd_out_hs400_delay); |
| slot->data_out_hs400_delay = |
| ofnode_read_u32_default(node, |
| "marvell,data-out-hs400-dly", |
| MMC_DEFAULT_HS400_DATA_OUT_DLY); |
| debug("%s(%s): HS400 data out delay: %d\n", |
| __func__, dev->name, slot->data_out_hs400_delay); |
| } |
| } |
| |
| slot->disable_ddr = ofnode_read_bool(node, "marvell,disable-ddr"); |
| slot->non_removable = ofnode_read_bool(node, "non-removable"); |
| slot->cmd_clk_skew = ofnode_read_u32_default(node, |
| "cavium,cmd-clk-skew", 0); |
| slot->dat_clk_skew = ofnode_read_u32_default(node, |
| "cavium,dat-clk-skew", 0); |
| debug("%s(%s): host caps: 0x%x\n", __func__, |
| dev->name, slot->cfg.host_caps); |
| return 0; |
| } |
| |
| /** |
| * Probes a MMC slot |
| * |
| * @param dev mmc device |
| * |
| * @return 0 for success, error otherwise |
| */ |
| static int octeontx_mmc_slot_probe(struct udevice *dev) |
| { |
| struct octeontx_mmc_slot *slot; |
| struct mmc *mmc; |
| int err; |
| |
| debug("%s(%s)\n", __func__, dev->name); |
| if (!host_probed) { |
| pr_err("%s(%s): Error: host not probed yet\n", |
| __func__, dev->name); |
| } |
| slot = dev_to_mmc_slot(dev); |
| mmc = &slot->mmc; |
| mmc->dev = dev; |
| |
| slot->valid = false; |
| if (!octeontx_mmc_get_valid(dev)) { |
| debug("%s(%s): slot is invalid\n", __func__, dev->name); |
| return -ENODEV; |
| } |
| |
| debug("%s(%s): Getting config\n", __func__, dev->name); |
| err = octeontx_mmc_get_config(dev); |
| if (err) { |
| pr_err("probe(%s): Error getting config\n", dev->name); |
| return err; |
| } |
| |
| debug("%s(%s): mmc bind, mmc: %p\n", __func__, dev->name, &slot->mmc); |
| err = mmc_bind(dev, &slot->mmc, &slot->cfg); |
| if (err) { |
| pr_err("%s(%s): Error binding mmc\n", __func__, dev->name); |
| return -1; |
| } |
| |
| /* For some reason, mmc_bind always assigns priv to the device */ |
| slot->mmc.priv = slot; |
| |
| debug("%s(%s): lowlevel init\n", __func__, dev->name); |
| err = octeontx_mmc_init_lowlevel(mmc); |
| if (err) { |
| pr_err("probe(%s): Low-level init failed\n", dev->name); |
| return err; |
| } |
| |
| slot->valid = true; |
| |
| debug("%s(%s):\n" |
| " base address : %p\n" |
| " bus id : %d\n", __func__, dev->name, |
| slot->base_addr, slot->bus_id); |
| |
| return err; |
| } |
| |
| /** |
| * MMC slot driver operations |
| */ |
| static const struct dm_mmc_ops octeontx_hsmmc_ops = { |
| .send_cmd = octeontx_mmc_dev_send_cmd, |
| .set_ios = octeontx_mmc_set_ios, |
| .get_cd = octeontx_mmc_get_cd, |
| .get_wp = octeontx_mmc_get_wp, |
| #ifdef MMC_SUPPORTS_TUNING |
| .execute_tuning = octeontx_mmc_execute_tuning, |
| #endif |
| }; |
| |
| static const struct udevice_id octeontx_hsmmc_ids[] = { |
| { .compatible = "mmc-slot" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(octeontx_hsmmc_slot) = { |
| .name = "octeontx_hsmmc_slot", |
| .id = UCLASS_MMC, |
| .of_match = of_match_ptr(octeontx_hsmmc_ids), |
| .probe = octeontx_mmc_slot_probe, |
| .ops = &octeontx_hsmmc_ops, |
| }; |
| |
| /***************************************************************** |
| * PCI host driver |
| * |
| * The PCI host driver contains the resources used by all of the |
| * slot drivers. |
| * |
| * The slot drivers are pseudo drivers. |
| */ |
| |
| /** |
| * Probe the MMC host controller |
| * |
| * @param dev mmc host controller device |
| * |
| * @return 0 for success, -1 on error |
| */ |
| static int octeontx_mmc_host_probe(struct udevice *dev) |
| { |
| struct octeontx_mmc_host *host = dev_get_priv(dev); |
| union mio_emm_int emm_int; |
| u8 rev; |
| |
| debug("%s(%s): Entry host: %p\n", __func__, dev->name, host); |
| |
| if (!octeontx_mmc_get_valid(dev)) { |
| debug("%s(%s): mmc host not valid\n", __func__, dev->name); |
| return -ENODEV; |
| } |
| memset(host, 0, sizeof(*host)); |
| host->base_addr = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, |
| PCI_REGION_MEM); |
| if (!host->base_addr) { |
| pr_err("%s: Error: MMC base address not found\n", __func__); |
| return -1; |
| } |
| host->dev = dev; |
| debug("%s(%s): Base address: %p\n", __func__, dev->name, |
| host->base_addr); |
| if (!dev_has_of_node(dev)) { |
| pr_err("%s: No device tree information found\n", __func__); |
| return -1; |
| } |
| host->node = dev->node; |
| host->last_slotid = -1; |
| if (otx_is_platform(PLATFORM_ASIM)) |
| host->is_asim = true; |
| if (otx_is_platform(PLATFORM_EMULATOR)) |
| host->is_emul = true; |
| host->dma_wait_delay = |
| ofnode_read_u32_default(dev->node, "marvell,dma-wait-delay", 1); |
| /* Force reset of eMMC */ |
| writeq(0, host->base_addr + MIO_EMM_CFG()); |
| debug("%s: Clearing MIO_EMM_CFG\n", __func__); |
| udelay(100); |
| emm_int.u = readq(host->base_addr + MIO_EMM_INT()); |
| debug("%s: Writing 0x%llx to MIO_EMM_INT\n", __func__, emm_int.u); |
| writeq(emm_int.u, host->base_addr + MIO_EMM_INT()); |
| |
| debug("%s(%s): Getting I/O clock\n", __func__, dev->name); |
| host->sys_freq = octeontx_get_io_clock(); |
| debug("%s(%s): I/O clock %llu\n", __func__, dev->name, host->sys_freq); |
| |
| if (IS_ENABLED(CONFIG_ARCH_OCTEONTX2)) { |
| /* Flags for issues to work around */ |
| dm_pci_read_config8(dev, PCI_REVISION_ID, &rev); |
| if (otx_is_soc(CN96XX)) { |
| debug("%s: CN96XX revision %d\n", __func__, rev); |
| switch (rev) { |
| case 0: |
| host->calibrate_glitch = true; |
| host->cond_clock_glitch = true; |
| break; |
| case 1: |
| break; |
| case 2: |
| break; |
| case 0x10: /* C0 */ |
| host->hs400_skew_needed = true; |
| debug("HS400 skew support enabled\n"); |
| fallthrough; |
| default: |
| debug("CN96XX rev C0+ detected\n"); |
| host->tap_requires_noclk = true; |
| break; |
| } |
| } else if (otx_is_soc(CN95XX)) { |
| if (!rev) |
| host->cond_clock_glitch = true; |
| } |
| } |
| |
| host_probed = true; |
| |
| return 0; |
| } |
| |
| /** |
| * This performs some initial setup before a probe occurs. |
| * |
| * @param dev: MMC slot device |
| * |
| * @return 0 for success, -1 on failure |
| * |
| * Do some pre-initialization before probing a slot. |
| */ |
| static int octeontx_mmc_host_child_pre_probe(struct udevice *dev) |
| { |
| struct octeontx_mmc_host *host = dev_get_priv(dev_get_parent(dev)); |
| struct octeontx_mmc_slot *slot; |
| struct mmc_uclass_priv *upriv; |
| ofnode node = dev->node; |
| u32 bus_id; |
| char name[16]; |
| int err; |
| |
| debug("%s(%s) Pre-Probe\n", __func__, dev->name); |
| if (ofnode_read_u32(node, "reg", &bus_id)) { |
| pr_err("%s(%s): Error: \"reg\" not found in device tree\n", |
| __func__, dev->name); |
| return -1; |
| } |
| if (bus_id > OCTEONTX_MAX_MMC_SLOT) { |
| pr_err("%s(%s): Error: \"reg\" out of range of 0..%d\n", |
| __func__, dev->name, OCTEONTX_MAX_MMC_SLOT); |
| return -1; |
| } |
| |
| slot = &host->slots[bus_id]; |
| dev_set_priv(dev, slot); |
| slot->host = host; |
| slot->bus_id = bus_id; |
| slot->dev = dev; |
| slot->base_addr = host->base_addr; |
| slot->is_asim = host->is_asim; |
| slot->is_emul = host->is_emul; |
| |
| snprintf(name, sizeof(name), "octeontx-mmc%d", bus_id); |
| err = device_set_name(dev, name); |
| |
| /* FIXME: This code should not be needed */ |
| if (!dev_get_uclass_priv(dev)) { |
| debug("%s(%s): Allocating uclass priv\n", __func__, |
| dev->name); |
| upriv = calloc(1, sizeof(struct mmc_uclass_priv)); |
| if (!upriv) |
| return -ENOMEM; |
| |
| /* |
| * FIXME: This is not allowed |
| * dev_set_uclass_priv(dev, upriv); |
| * uclass_set_priv(dev->uclass, upriv); |
| */ |
| } else { |
| upriv = dev_get_uclass_priv(dev); |
| } |
| |
| upriv->mmc = &slot->mmc; |
| debug("%s: uclass priv: %p, mmc: %p\n", dev->name, upriv, upriv->mmc); |
| |
| debug("%s: ret: %d\n", __func__, err); |
| return err; |
| } |
| |
| static const struct udevice_id octeontx_hsmmc_host_ids[] = { |
| { .compatible = "cavium,thunder-8890-mmc" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(octeontx_hsmmc_host) = { |
| .name = "octeontx_hsmmc_host", |
| /* FIXME: Why is this not UCLASS_MMC? */ |
| .id = UCLASS_MISC, |
| .of_match = of_match_ptr(octeontx_hsmmc_host_ids), |
| .probe = octeontx_mmc_host_probe, |
| .priv_auto = sizeof(struct octeontx_mmc_host), |
| .child_pre_probe = octeontx_mmc_host_child_pre_probe, |
| .flags = DM_FLAG_PRE_RELOC, |
| }; |
| |
| static struct pci_device_id octeontx_mmc_supported[] = { |
| { PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_EMMC) }, |
| { }, |
| }; |
| |
| U_BOOT_PCI_DEVICE(octeontx_hsmmc_host, octeontx_mmc_supported); |