| /* |
| * (C) Copyright 2010-2011 |
| * NVIDIA Corporation <www.nvidia.com> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <asm/io.h> |
| #include <asm/arch/tegra2.h> |
| #include <asm/arch/ap20.h> |
| #include <asm/arch/clk_rst.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/fuse.h> |
| #include <asm/arch/gp_padctrl.h> |
| #include <asm/arch/pmc.h> |
| #include <asm/arch/pinmux.h> |
| #include <asm/arch/scu.h> |
| #include <asm/arch/warmboot.h> |
| #include <common.h> |
| |
| int tegra_get_chip_type(void) |
| { |
| struct apb_misc_gp_ctlr *gp; |
| struct fuse_regs *fuse = (struct fuse_regs *)TEGRA2_FUSE_BASE; |
| uint tegra_sku_id, rev; |
| |
| /* |
| * This is undocumented, Chip ID is bits 15:8 of the register |
| * APB_MISC + 0x804, and has value 0x20 for Tegra20, 0x30 for |
| * Tegra30 |
| */ |
| gp = (struct apb_misc_gp_ctlr *)TEGRA2_APB_MISC_GP_BASE; |
| rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT; |
| |
| tegra_sku_id = readl(&fuse->sku_info) & 0xff; |
| |
| switch (rev) { |
| case CHIPID_TEGRA2: |
| switch (tegra_sku_id) { |
| case SKU_ID_T20: |
| return TEGRA_SOC_T20; |
| case SKU_ID_T25SE: |
| case SKU_ID_AP25: |
| case SKU_ID_T25: |
| case SKU_ID_AP25E: |
| case SKU_ID_T25E: |
| return TEGRA_SOC_T25; |
| } |
| break; |
| } |
| /* unknown sku id */ |
| return TEGRA_SOC_UNKNOWN; |
| } |
| |
| /* Returns 1 if the current CPU executing is a Cortex-A9, else 0 */ |
| static int ap20_cpu_is_cortexa9(void) |
| { |
| u32 id = readb(NV_PA_PG_UP_BASE + PG_UP_TAG_0); |
| return id == (PG_UP_TAG_0_PID_CPU & 0xff); |
| } |
| |
| void init_pllx(void) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| struct clk_pll_simple *pll = |
| &clkrst->crc_pll_simple[CLOCK_ID_XCPU - CLOCK_ID_FIRST_SIMPLE]; |
| u32 reg; |
| |
| /* If PLLX is already enabled, just return */ |
| if (readl(&pll->pll_base) & PLL_ENABLE_MASK) |
| return; |
| |
| /* Set PLLX_MISC */ |
| writel(1 << PLL_CPCON_SHIFT, &pll->pll_misc); |
| |
| /* Use 12MHz clock here */ |
| reg = PLL_BYPASS_MASK | (12 << PLL_DIVM_SHIFT); |
| reg |= 1000 << PLL_DIVN_SHIFT; |
| writel(reg, &pll->pll_base); |
| |
| reg |= PLL_ENABLE_MASK; |
| writel(reg, &pll->pll_base); |
| |
| reg &= ~PLL_BYPASS_MASK; |
| writel(reg, &pll->pll_base); |
| } |
| |
| static void enable_cpu_clock(int enable) |
| { |
| struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 clk; |
| |
| /* |
| * NOTE: |
| * Regardless of whether the request is to enable or disable the CPU |
| * clock, every processor in the CPU complex except the master (CPU 0) |
| * will have it's clock stopped because the AVP only talks to the |
| * master. The AVP does not know (nor does it need to know) that there |
| * are multiple processors in the CPU complex. |
| */ |
| |
| if (enable) { |
| /* Initialize PLLX */ |
| init_pllx(); |
| |
| /* Wait until all clocks are stable */ |
| udelay(PLL_STABILIZATION_DELAY); |
| |
| writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol); |
| writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div); |
| } |
| |
| /* |
| * Read the register containing the individual CPU clock enables and |
| * always stop the clock to CPU 1. |
| */ |
| clk = readl(&clkrst->crc_clk_cpu_cmplx); |
| clk |= 1 << CPU1_CLK_STP_SHIFT; |
| |
| /* Stop/Unstop the CPU clock */ |
| clk &= ~CPU0_CLK_STP_MASK; |
| clk |= !enable << CPU0_CLK_STP_SHIFT; |
| writel(clk, &clkrst->crc_clk_cpu_cmplx); |
| |
| clock_enable(PERIPH_ID_CPU); |
| } |
| |
| static int is_cpu_powered(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE; |
| |
| return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0; |
| } |
| |
| static void remove_cpu_io_clamps(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE; |
| u32 reg; |
| |
| /* Remove the clamps on the CPU I/O signals */ |
| reg = readl(&pmc->pmc_remove_clamping); |
| reg |= CPU_CLMP; |
| writel(reg, &pmc->pmc_remove_clamping); |
| |
| /* Give I/O signals time to stabilize */ |
| udelay(IO_STABILIZATION_DELAY); |
| } |
| |
| static void powerup_cpu(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE; |
| u32 reg; |
| int timeout = IO_STABILIZATION_DELAY; |
| |
| if (!is_cpu_powered()) { |
| /* Toggle the CPU power state (OFF -> ON) */ |
| reg = readl(&pmc->pmc_pwrgate_toggle); |
| reg &= PARTID_CP; |
| reg |= START_CP; |
| writel(reg, &pmc->pmc_pwrgate_toggle); |
| |
| /* Wait for the power to come up */ |
| while (!is_cpu_powered()) { |
| if (timeout-- == 0) |
| printf("CPU failed to power up!\n"); |
| else |
| udelay(10); |
| } |
| |
| /* |
| * Remove the I/O clamps from CPU power partition. |
| * Recommended only on a Warm boot, if the CPU partition gets |
| * power gated. Shouldn't cause any harm when called after a |
| * cold boot according to HW, probably just redundant. |
| */ |
| remove_cpu_io_clamps(); |
| } |
| } |
| |
| static void enable_cpu_power_rail(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE; |
| u32 reg; |
| |
| reg = readl(&pmc->pmc_cntrl); |
| reg |= CPUPWRREQ_OE; |
| writel(reg, &pmc->pmc_cntrl); |
| |
| /* |
| * The TI PMU65861C needs a 3.75ms delay between enabling |
| * the power rail and enabling the CPU clock. This delay |
| * between SM1EN and SM1 is for switching time + the ramp |
| * up of the voltage to the CPU (VDD_CPU from PMU). |
| */ |
| udelay(3750); |
| } |
| |
| static void reset_A9_cpu(int reset) |
| { |
| /* |
| * NOTE: Regardless of whether the request is to hold the CPU in reset |
| * or take it out of reset, every processor in the CPU complex |
| * except the master (CPU 0) will be held in reset because the |
| * AVP only talks to the master. The AVP does not know that there |
| * are multiple processors in the CPU complex. |
| */ |
| |
| /* Hold CPU 1 in reset, and CPU 0 if asked */ |
| reset_cmplx_set_enable(1, crc_rst_cpu | crc_rst_de | crc_rst_debug, 1); |
| reset_cmplx_set_enable(0, crc_rst_cpu | crc_rst_de | crc_rst_debug, |
| reset); |
| |
| /* Enable/Disable master CPU reset */ |
| reset_set_enable(PERIPH_ID_CPU, reset); |
| } |
| |
| static void clock_enable_coresight(int enable) |
| { |
| u32 rst, src; |
| |
| clock_set_enable(PERIPH_ID_CORESIGHT, enable); |
| reset_set_enable(PERIPH_ID_CORESIGHT, !enable); |
| |
| if (enable) { |
| /* |
| * Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by |
| * 1.5, giving an effective frequency of 144MHz. |
| * Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor |
| * (bits 7:0), so 00000001b == 1.5 (n+1 + .5) |
| */ |
| src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000); |
| clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src); |
| |
| /* Unlock the CPU CoreSight interfaces */ |
| rst = 0xC5ACCE55; |
| writel(rst, CSITE_CPU_DBG0_LAR); |
| writel(rst, CSITE_CPU_DBG1_LAR); |
| } |
| } |
| |
| void start_cpu(u32 reset_vector) |
| { |
| /* Enable VDD_CPU */ |
| enable_cpu_power_rail(); |
| |
| /* Hold the CPUs in reset */ |
| reset_A9_cpu(1); |
| |
| /* Disable the CPU clock */ |
| enable_cpu_clock(0); |
| |
| /* Enable CoreSight */ |
| clock_enable_coresight(1); |
| |
| /* |
| * Set the entry point for CPU execution from reset, |
| * if it's a non-zero value. |
| */ |
| if (reset_vector) |
| writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR); |
| |
| /* Enable the CPU clock */ |
| enable_cpu_clock(1); |
| |
| /* If the CPU doesn't already have power, power it up */ |
| powerup_cpu(); |
| |
| /* Take the CPU out of reset */ |
| reset_A9_cpu(0); |
| } |
| |
| |
| void halt_avp(void) |
| { |
| for (;;) { |
| writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \ |
| | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)), |
| FLOW_CTLR_HALT_COP_EVENTS); |
| } |
| } |
| |
| void enable_scu(void) |
| { |
| struct scu_ctlr *scu = (struct scu_ctlr *)NV_PA_ARM_PERIPHBASE; |
| u32 reg; |
| |
| /* If SCU already setup/enabled, return */ |
| if (readl(&scu->scu_ctrl) & SCU_CTRL_ENABLE) |
| return; |
| |
| /* Invalidate all ways for all processors */ |
| writel(0xFFFF, &scu->scu_inv_all); |
| |
| /* Enable SCU - bit 0 */ |
| reg = readl(&scu->scu_ctrl); |
| reg |= SCU_CTRL_ENABLE; |
| writel(reg, &scu->scu_ctrl); |
| } |
| |
| static u32 get_odmdata(void) |
| { |
| /* |
| * ODMDATA is stored in the BCT in IRAM by the BootROM. |
| * The BCT start and size are stored in the BIT in IRAM. |
| * Read the data @ bct_start + (bct_size - 12). This works |
| * on T20 and T30 BCTs, which are locked down. If this changes |
| * in new chips (T114, etc.), we can revisit this algorithm. |
| */ |
| |
| u32 bct_start, odmdata; |
| |
| bct_start = readl(AP20_BASE_PA_SRAM + NVBOOTINFOTABLE_BCTPTR); |
| odmdata = readl(bct_start + BCT_ODMDATA_OFFSET); |
| |
| return odmdata; |
| } |
| |
| void init_pmc_scratch(void) |
| { |
| struct pmc_ctlr *const pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE; |
| u32 odmdata; |
| int i; |
| |
| /* SCRATCH0 is initialized by the boot ROM and shouldn't be cleared */ |
| for (i = 0; i < 23; i++) |
| writel(0, &pmc->pmc_scratch1+i); |
| |
| /* ODMDATA is for kernel use to determine RAM size, LP config, etc. */ |
| odmdata = get_odmdata(); |
| writel(odmdata, &pmc->pmc_scratch20); |
| |
| #ifdef CONFIG_TEGRA2_LP0 |
| /* save Sdram params to PMC 2, 4, and 24 for WB0 */ |
| warmboot_save_sdram_params(); |
| #endif |
| } |
| |
| void tegra2_start(void) |
| { |
| struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE; |
| |
| /* If we are the AVP, start up the first Cortex-A9 */ |
| if (!ap20_cpu_is_cortexa9()) { |
| /* enable JTAG */ |
| writel(0xC0, &pmt->pmt_cfg_ctl); |
| |
| /* |
| * If we are ARM7 - give it a different stack. We are about to |
| * start up the A9 which will want to use this one. |
| */ |
| asm volatile("mov sp, %0\n" |
| : : "r"(AVP_EARLY_BOOT_STACK_LIMIT)); |
| |
| start_cpu((u32)_start); |
| halt_avp(); |
| /* not reached */ |
| } |
| |
| /* Init PMC scratch memory */ |
| init_pmc_scratch(); |
| |
| enable_scu(); |
| |
| /* enable SMP mode and FW for CPU0, by writing to Auxiliary Ctl reg */ |
| asm volatile( |
| "mrc p15, 0, r0, c1, c0, 1\n" |
| "orr r0, r0, #0x41\n" |
| "mcr p15, 0, r0, c1, c0, 1\n"); |
| |
| /* FIXME: should have ap20's L2 disabled too? */ |
| } |