| /* |
| * Copyright 2004 Freescale Semiconductor. |
| * (C) Copyright 2003 Motorola Inc. |
| * Xianghua Xiao (X.Xiao@motorola.com) |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| * Change log: |
| * |
| * 20050101: Eran Liberty (liberty@freescale.com) |
| * Initial file creating (porting from 85XX & 8260) |
| */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <i2c.h> |
| #include <spd.h> |
| #include <asm/mmu.h> |
| #include <spd_sdram.h> |
| |
| #ifdef CONFIG_SPD_EEPROM |
| |
| #if defined(CONFIG_DDR_ECC) |
| extern void dma_init(void); |
| extern uint dma_check(void); |
| extern int dma_xfer(void *dest, uint count, void *src); |
| #endif |
| |
| #ifndef CFG_READ_SPD |
| #define CFG_READ_SPD i2c_read |
| #endif |
| |
| /* |
| * Convert picoseconds into clock cycles (rounding up if needed). |
| */ |
| |
| int |
| picos_to_clk(int picos) |
| { |
| int clks; |
| |
| clks = picos / (2000000000 / (get_bus_freq(0) / 1000)); |
| if (picos % (2000000000 / (get_bus_freq(0) / 1000)) != 0) { |
| clks++; |
| } |
| |
| return clks; |
| } |
| |
| unsigned int banksize(unsigned char row_dens) |
| { |
| return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; |
| } |
| |
| int read_spd(uint addr) |
| { |
| return ((int) addr); |
| } |
| |
| long int spd_sdram(int(read_spd)(uint addr)) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMRBAR; |
| volatile ddr8349_t *ddr = &immap->ddr; |
| volatile law8349_t *ecm = &immap->sysconf.ddrlaw[0]; |
| spd_eeprom_t spd; |
| unsigned tmp, tmp1; |
| unsigned int memsize; |
| unsigned int law_size; |
| unsigned char caslat; |
| unsigned int trfc, trfc_clk, trfc_low; |
| |
| #warning Current spd_sdram does not fit its usage... adjust implementation or API... |
| |
| CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); |
| |
| if (spd.nrows > 2) { |
| puts("DDR:Only two chip selects are supported on ADS.\n"); |
| return 0; |
| } |
| |
| if (spd.nrow_addr < 12 |
| || spd.nrow_addr > 14 |
| || spd.ncol_addr < 8 |
| || spd.ncol_addr > 11) { |
| puts("DDR:Row or Col number unsupported.\n"); |
| return 0; |
| } |
| |
| ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1; |
| ddr->cs_config[2] = ( 1 << 31 |
| | (spd.nrow_addr - 12) << 8 |
| | (spd.ncol_addr - 8) ); |
| debug("\n"); |
| debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds); |
| debug("cs2_config = 0x%08x\n",ddr->cs_config[2]); |
| |
| if (spd.nrows == 2) { |
| ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8) |
| | ((banksize(spd.row_dens) >> 23) - 1) ); |
| ddr->cs_config[3] = ( 1<<31 |
| | (spd.nrow_addr-12) << 8 |
| | (spd.ncol_addr-8) ); |
| debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds); |
| debug("cs3_config = 0x%08x\n",ddr->cs_config[3]); |
| } |
| |
| if (spd.mem_type != 0x07) { |
| puts("No DDR module found!\n"); |
| return 0; |
| } |
| |
| /* |
| * Figure out memory size in Megabytes. |
| */ |
| memsize = spd.nrows * banksize(spd.row_dens) / 0x100000; |
| |
| /* |
| * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. |
| */ |
| law_size = 19 + __ilog2(memsize); |
| |
| /* |
| * Set up LAWBAR for all of DDR. |
| */ |
| ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff); |
| ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); |
| debug("DDR:bar=0x%08x\n", ecm->bar); |
| debug("DDR:ar=0x%08x\n", ecm->ar); |
| |
| /* |
| * find the largest CAS |
| */ |
| if(spd.cas_lat & 0x40) { |
| caslat = 7; |
| } else if (spd.cas_lat & 0x20) { |
| caslat = 6; |
| } else if (spd.cas_lat & 0x10) { |
| caslat = 5; |
| } else if (spd.cas_lat & 0x08) { |
| caslat = 4; |
| } else if (spd.cas_lat & 0x04) { |
| caslat = 3; |
| } else if (spd.cas_lat & 0x02) { |
| caslat = 2; |
| } else if (spd.cas_lat & 0x01) { |
| caslat = 1; |
| } else { |
| puts("DDR:no valid CAS Latency information.\n"); |
| return 0; |
| } |
| |
| tmp = 20000 / (((spd.clk_cycle & 0xF0) >> 4) * 10 |
| + (spd.clk_cycle & 0x0f)); |
| debug("DDR:Module maximum data rate is: %dMhz\n", tmp); |
| |
| tmp1 = get_bus_freq(0) / 1000000; |
| if (tmp1 < 230 && tmp1 >= 90 && tmp >= 230) { |
| /* 90~230 range, treated as DDR 200 */ |
| if (spd.clk_cycle3 == 0xa0) |
| caslat -= 2; |
| else if(spd.clk_cycle2 == 0xa0) |
| caslat--; |
| } else if (tmp1 < 280 && tmp1 >= 230 && tmp >= 280) { |
| /* 230-280 range, treated as DDR 266 */ |
| if (spd.clk_cycle3 == 0x75) |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x75) |
| caslat--; |
| } else if (tmp1 < 350 && tmp1 >= 280 && tmp >= 350) { |
| /* 280~350 range, treated as DDR 333 */ |
| if (spd.clk_cycle3 == 0x60) |
| caslat -= 2; |
| else if (spd.clk_cycle2 == 0x60) |
| caslat--; |
| } else if (tmp1 < 90 || tmp1 >= 350) { |
| /* DDR rate out-of-range */ |
| puts("DDR:platform frequency is not fit for DDR rate\n"); |
| return 0; |
| } |
| |
| /* |
| * note: caslat must also be programmed into ddr->sdram_mode |
| * register. |
| * |
| * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD, |
| * use conservative value here. |
| */ |
| trfc = spd.trfc * 1000; /* up to ps */ |
| trfc_clk = picos_to_clk(trfc); |
| trfc_low = (trfc_clk - 8) & 0xf; |
| |
| ddr->timing_cfg_1 = |
| (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | |
| ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | |
| ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) | |
| ((caslat & 0x07) << 16 ) | |
| (trfc_low << 12 ) | |
| ( 0x300 ) | |
| ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1); |
| |
| ddr->timing_cfg_2 = 0x00000800; |
| |
| debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); |
| debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); |
| |
| /* |
| * Only DDR I is supported |
| * DDR I and II have different mode-register-set definition |
| */ |
| |
| /* burst length is always 4 */ |
| switch(caslat) { |
| case 2: |
| ddr->sdram_mode = 0x52; /* 1.5 */ |
| break; |
| case 3: |
| ddr->sdram_mode = 0x22; /* 2.0 */ |
| break; |
| case 4: |
| ddr->sdram_mode = 0x62; /* 2.5 */ |
| break; |
| case 5: |
| ddr->sdram_mode = 0x32; /* 3.0 */ |
| break; |
| default: |
| puts("DDR:only CAS Latency 1.5, 2.0, 2.5, 3.0 is supported.\n"); |
| return 0; |
| } |
| debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); |
| |
| switch(spd.refresh) { |
| case 0x00: |
| case 0x80: |
| tmp = picos_to_clk(15625000); |
| break; |
| case 0x01: |
| case 0x81: |
| tmp = picos_to_clk(3900000); |
| break; |
| case 0x02: |
| case 0x82: |
| tmp = picos_to_clk(7800000); |
| break; |
| case 0x03: |
| case 0x83: |
| tmp = picos_to_clk(31300000); |
| break; |
| case 0x04: |
| case 0x84: |
| tmp = picos_to_clk(62500000); |
| break; |
| case 0x05: |
| case 0x85: |
| tmp = picos_to_clk(125000000); |
| break; |
| default: |
| tmp = 0x512; |
| break; |
| } |
| |
| /* |
| * Set BSTOPRE to 0x100 for page mode |
| * If auto-charge is used, set BSTOPRE = 0 |
| */ |
| ddr->sdram_interval = ((tmp & 0x3fff) << 16) | 0x100; |
| debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); |
| |
| /* |
| * Is this an ECC DDR chip? |
| */ |
| #if defined(CONFIG_DDR_ECC) |
| if (spd.config == 0x02) { |
| /* disable error detection */ |
| ddr->err_disable = ~ECC_ERROR_ENABLE; |
| |
| /* set single bit error threshold to maximum value, |
| * reset counter to zero */ |
| ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) | |
| (0 << ECC_ERROR_MAN_SBEC_SHIFT); |
| } |
| debug("DDR:err_disable=0x%08x\n", ddr->err_disable); |
| debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); |
| #endif |
| asm("sync;isync"); |
| |
| udelay(500); |
| |
| /* |
| * SS_EN=1, |
| * CLK_ADJST = 2-MCK/MCK_B, is lauched 1/2 of one SDRAM |
| * clock cycle after address/command |
| */ |
| /*ddr->sdram_clk_cntl = 0x82000000;*/ |
| ddr->sdram_clk_cntl = (DDR_SDRAM_CLK_CNTL_SS_EN|DDR_SDRAM_CLK_CNTL_CLK_ADJUST_05); |
| |
| /* |
| * Figure out the settings for the sdram_cfg register. Build up |
| * the entire register in 'tmp' before writing since the write into |
| * the register will actually enable the memory controller, and all |
| * settings must be done before enabling. |
| * |
| * sdram_cfg[0] = 1 (ddr sdram logic enable) |
| * sdram_cfg[1] = 1 (self-refresh-enable) |
| * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM) |
| */ |
| tmp = 0xc2000000; |
| |
| /* |
| * sdram_cfg[3] = RD_EN - registered DIMM enable |
| * A value of 0x26 indicates micron registered DIMMS (micron.com) |
| */ |
| if (spd.mod_attr == 0x26) { |
| tmp |= 0x10000000; |
| } |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* |
| * If the user wanted ECC (enabled via sdram_cfg[2]) |
| */ |
| if (spd.config == 0x02) { |
| tmp |= SDRAM_CFG_ECC_EN; |
| } |
| #endif |
| |
| #if defined(CONFIG_DDR_2T_TIMING) |
| /* |
| * Enable 2T timing by setting sdram_cfg[16]. |
| */ |
| tmp |= SDRAM_CFG_2T_EN; |
| #endif |
| |
| ddr->sdram_cfg = tmp; |
| asm("sync;isync"); |
| udelay(500); |
| |
| debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); |
| |
| return memsize;/*in MBytes*/ |
| } |
| #endif /* CONFIG_SPD_EEPROM */ |
| |
| |
| #if defined(CONFIG_DDR_ECC) |
| /* |
| * Use timebase counter, get_timer() is not availabe |
| * at this point of initialization yet. |
| */ |
| static __inline__ unsigned long get_tbms (void) |
| { |
| unsigned long tbl; |
| unsigned long tbu1, tbu2; |
| unsigned long ms; |
| unsigned long long tmp; |
| |
| ulong tbclk = get_tbclk(); |
| |
| /* get the timebase ticks */ |
| do { |
| asm volatile ("mftbu %0":"=r" (tbu1):); |
| asm volatile ("mftb %0":"=r" (tbl):); |
| asm volatile ("mftbu %0":"=r" (tbu2):); |
| } while (tbu1 != tbu2); |
| |
| /* convert ticks to ms */ |
| tmp = (unsigned long long)(tbu1); |
| tmp = (tmp << 32); |
| tmp += (unsigned long long)(tbl); |
| ms = tmp/(tbclk/1000); |
| |
| return ms; |
| } |
| |
| /* |
| * Initialize all of memory for ECC, then enable errors. |
| */ |
| //#define CONFIG_DDR_ECC_INIT_VIA_DMA |
| void ddr_enable_ecc(unsigned int dram_size) |
| { |
| uint *p; |
| volatile immap_t *immap = (immap_t *)CFG_IMMRBAR; |
| volatile ddr8349_t *ddr = &immap->ddr; |
| unsigned long t_start, t_end; |
| #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA) |
| uint i; |
| #endif |
| |
| debug("Initialize a Cachline in DRAM\n"); |
| icache_enable(); |
| |
| #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA) |
| /* Initialise DMA for direct Transfers */ |
| dma_init(); |
| #endif |
| |
| t_start = get_tbms(); |
| |
| #if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA) |
| debug("DDR init: Cache flush method\n"); |
| for (p = 0; p < (uint *)(dram_size); p++) { |
| if (((unsigned int)p & 0x1f) == 0) { |
| ppcDcbz((unsigned long) p); |
| } |
| |
| /* write pattern to cache and flush */ |
| *p = (unsigned int)0xdeadbeef; |
| |
| if (((unsigned int)p & 0x1c) == 0x1c) { |
| ppcDcbf((unsigned long) p); |
| } |
| } |
| #else |
| printf("DDR init: DMA method\n"); |
| for (p = 0; p < (uint *)(8 * 1024); p++) { |
| /* zero one data cache line */ |
| if (((unsigned int)p & 0x1f) == 0) { |
| ppcDcbz((unsigned long)p); |
| } |
| |
| /* write pattern to it and flush */ |
| *p = (unsigned int)0xdeadbeef; |
| |
| if (((unsigned int)p & 0x1c) == 0x1c) { |
| ppcDcbf((unsigned long)p); |
| } |
| } |
| |
| /* 8K */ |
| dma_xfer((uint *)0x2000, 0x2000, (uint *)0); |
| /* 16K */ |
| dma_xfer((uint *)0x4000, 0x4000, (uint *)0); |
| /* 32K */ |
| dma_xfer((uint *)0x8000, 0x8000, (uint *)0); |
| /* 64K */ |
| dma_xfer((uint *)0x10000, 0x10000, (uint *)0); |
| /* 128k */ |
| dma_xfer((uint *)0x20000, 0x20000, (uint *)0); |
| /* 256k */ |
| dma_xfer((uint *)0x40000, 0x40000, (uint *)0); |
| /* 512k */ |
| dma_xfer((uint *)0x80000, 0x80000, (uint *)0); |
| /* 1M */ |
| dma_xfer((uint *)0x100000, 0x100000, (uint *)0); |
| /* 2M */ |
| dma_xfer((uint *)0x200000, 0x200000, (uint *)0); |
| /* 4M */ |
| dma_xfer((uint *)0x400000, 0x400000, (uint *)0); |
| |
| for (i = 1; i < dram_size / 0x800000; i++) { |
| dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); |
| } |
| #endif |
| |
| t_end = get_tbms(); |
| icache_disable(); |
| |
| debug("\nREADY!!\n"); |
| debug("ddr init duration: %ld ms\n", t_end - t_start); |
| |
| /* Clear All ECC Errors */ |
| if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME) |
| ddr->err_detect |= ECC_ERROR_DETECT_MME; |
| if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE) |
| ddr->err_detect |= ECC_ERROR_DETECT_MBE; |
| if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE) |
| ddr->err_detect |= ECC_ERROR_DETECT_SBE; |
| if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE) |
| ddr->err_detect |= ECC_ERROR_DETECT_MSE; |
| |
| /* Disable ECC-Interrupts */ |
| ddr->err_int_en &= ECC_ERR_INT_DISABLE; |
| |
| /* Enable errors for ECC */ |
| ddr->err_disable &= ECC_ERROR_ENABLE; |
| |
| __asm__ __volatile__ ("sync"); |
| __asm__ __volatile__ ("isync"); |
| } |
| #endif /* CONFIG_DDR_ECC */ |