| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright 2018 NXP |
| */ |
| |
| #include <common.h> |
| #include <clk.h> |
| #include <dm.h> |
| #include <dm/device-internal.h> |
| #include <dm/lists.h> |
| #include <dm/uclass.h> |
| #include <errno.h> |
| #include <asm/arch/sci/sci.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/arch-imx/cpu.h> |
| #include <asm/armv8/cpu.h> |
| #include <asm/armv8/mmu.h> |
| #include <asm/mach-imx/boot_mode.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| u32 get_cpu_rev(void) |
| { |
| u32 id = 0, rev = 0; |
| int ret; |
| |
| ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id); |
| if (ret) |
| return 0; |
| |
| rev = (id >> 5) & 0xf; |
| id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */ |
| |
| return (id << 12) | rev; |
| } |
| |
| #ifdef CONFIG_DISPLAY_CPUINFO |
| const char *get_imx8_type(u32 imxtype) |
| { |
| switch (imxtype) { |
| case MXC_CPU_IMX8QXP: |
| return "8QXP"; |
| default: |
| return "??"; |
| } |
| } |
| |
| const char *get_imx8_rev(u32 rev) |
| { |
| switch (rev) { |
| case CHIP_REV_A: |
| return "A"; |
| case CHIP_REV_B: |
| return "B"; |
| default: |
| return "?"; |
| } |
| } |
| |
| const char *get_core_name(void) |
| { |
| if (is_cortex_a35()) |
| return "A35"; |
| else |
| return "?"; |
| } |
| |
| int print_cpuinfo(void) |
| { |
| struct udevice *dev; |
| struct clk cpu_clk; |
| int ret; |
| |
| ret = uclass_get_device(UCLASS_CPU, 0, &dev); |
| if (ret) |
| return 0; |
| |
| ret = clk_get_by_index(dev, 0, &cpu_clk); |
| if (ret) { |
| dev_err(dev, "failed to clk\n"); |
| return 0; |
| } |
| |
| u32 cpurev; |
| |
| cpurev = get_cpu_rev(); |
| |
| printf("CPU: Freescale i.MX%s rev%s %s at %ld MHz\n", |
| get_imx8_type((cpurev & 0xFF000) >> 12), |
| get_imx8_rev((cpurev & 0xFFF)), |
| get_core_name(), |
| clk_get_rate(&cpu_clk) / 1000000); |
| |
| return 0; |
| } |
| #endif |
| |
| int print_bootinfo(void) |
| { |
| enum boot_device bt_dev = get_boot_device(); |
| |
| puts("Boot: "); |
| switch (bt_dev) { |
| case SD1_BOOT: |
| puts("SD0\n"); |
| break; |
| case SD2_BOOT: |
| puts("SD1\n"); |
| break; |
| case SD3_BOOT: |
| puts("SD2\n"); |
| break; |
| case MMC1_BOOT: |
| puts("MMC0\n"); |
| break; |
| case MMC2_BOOT: |
| puts("MMC1\n"); |
| break; |
| case MMC3_BOOT: |
| puts("MMC2\n"); |
| break; |
| case FLEXSPI_BOOT: |
| puts("FLEXSPI\n"); |
| break; |
| case SATA_BOOT: |
| puts("SATA\n"); |
| break; |
| case NAND_BOOT: |
| puts("NAND\n"); |
| break; |
| case USB_BOOT: |
| puts("USB\n"); |
| break; |
| default: |
| printf("Unknown device %u\n", bt_dev); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| enum boot_device get_boot_device(void) |
| { |
| enum boot_device boot_dev = SD1_BOOT; |
| |
| sc_rsrc_t dev_rsrc; |
| |
| sc_misc_get_boot_dev(-1, &dev_rsrc); |
| |
| switch (dev_rsrc) { |
| case SC_R_SDHC_0: |
| boot_dev = MMC1_BOOT; |
| break; |
| case SC_R_SDHC_1: |
| boot_dev = SD2_BOOT; |
| break; |
| case SC_R_SDHC_2: |
| boot_dev = SD3_BOOT; |
| break; |
| case SC_R_NAND: |
| boot_dev = NAND_BOOT; |
| break; |
| case SC_R_FSPI_0: |
| boot_dev = FLEXSPI_BOOT; |
| break; |
| case SC_R_SATA_0: |
| boot_dev = SATA_BOOT; |
| break; |
| case SC_R_USB_0: |
| case SC_R_USB_1: |
| case SC_R_USB_2: |
| boot_dev = USB_BOOT; |
| break; |
| default: |
| break; |
| } |
| |
| return boot_dev; |
| } |
| |
| #ifdef CONFIG_ENV_IS_IN_MMC |
| __weak int board_mmc_get_env_dev(int devno) |
| { |
| return CONFIG_SYS_MMC_ENV_DEV; |
| } |
| |
| int mmc_get_env_dev(void) |
| { |
| sc_rsrc_t dev_rsrc; |
| int devno; |
| |
| sc_misc_get_boot_dev(-1, &dev_rsrc); |
| |
| switch (dev_rsrc) { |
| case SC_R_SDHC_0: |
| devno = 0; |
| break; |
| case SC_R_SDHC_1: |
| devno = 1; |
| break; |
| case SC_R_SDHC_2: |
| devno = 2; |
| break; |
| default: |
| /* If not boot from sd/mmc, use default value */ |
| return CONFIG_SYS_MMC_ENV_DEV; |
| } |
| |
| return board_mmc_get_env_dev(devno); |
| } |
| #endif |
| |
| #define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */ |
| |
| static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start, |
| sc_faddr_t *addr_end) |
| { |
| sc_faddr_t start, end; |
| int ret; |
| bool owned; |
| |
| owned = sc_rm_is_memreg_owned(-1, mr); |
| if (owned) { |
| ret = sc_rm_get_memreg_info(-1, mr, &start, &end); |
| if (ret) { |
| printf("Memreg get info failed, %d\n", ret); |
| return -EINVAL; |
| } |
| debug("0x%llx -- 0x%llx\n", start, end); |
| *addr_start = start; |
| *addr_end = end; |
| |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| phys_size_t get_effective_memsize(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end, end1; |
| int err; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| |
| for (mr = 0; mr < 64; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| start = roundup(start, MEMSTART_ALIGNMENT); |
| /* Too small memory region, not use it */ |
| if (start > end) |
| continue; |
| |
| /* Find the memory region runs the u-boot */ |
| if (start >= PHYS_SDRAM_1 && start <= end1 && |
| (start <= CONFIG_SYS_TEXT_BASE && |
| end >= CONFIG_SYS_TEXT_BASE)) { |
| if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 + |
| PHYS_SDRAM_1_SIZE)) |
| return (end - PHYS_SDRAM_1 + 1); |
| else |
| return PHYS_SDRAM_1_SIZE; |
| } |
| } |
| } |
| |
| return PHYS_SDRAM_1_SIZE; |
| } |
| |
| int dram_init(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end, end1, end2; |
| int err; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; |
| for (mr = 0; mr < 64; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| start = roundup(start, MEMSTART_ALIGNMENT); |
| /* Too small memory region, not use it */ |
| if (start > end) |
| continue; |
| |
| if (start >= PHYS_SDRAM_1 && start <= end1) { |
| if ((end + 1) <= end1) |
| gd->ram_size += end - start + 1; |
| else |
| gd->ram_size += end1 - start; |
| } else if (start >= PHYS_SDRAM_2 && start <= end2) { |
| if ((end + 1) <= end2) |
| gd->ram_size += end - start + 1; |
| else |
| gd->ram_size += end2 - start; |
| } |
| } |
| } |
| |
| /* If error, set to the default value */ |
| if (!gd->ram_size) { |
| gd->ram_size = PHYS_SDRAM_1_SIZE; |
| gd->ram_size += PHYS_SDRAM_2_SIZE; |
| } |
| return 0; |
| } |
| |
| static void dram_bank_sort(int current_bank) |
| { |
| phys_addr_t start; |
| phys_size_t size; |
| |
| while (current_bank > 0) { |
| if (gd->bd->bi_dram[current_bank - 1].start > |
| gd->bd->bi_dram[current_bank].start) { |
| start = gd->bd->bi_dram[current_bank - 1].start; |
| size = gd->bd->bi_dram[current_bank - 1].size; |
| |
| gd->bd->bi_dram[current_bank - 1].start = |
| gd->bd->bi_dram[current_bank].start; |
| gd->bd->bi_dram[current_bank - 1].size = |
| gd->bd->bi_dram[current_bank].size; |
| |
| gd->bd->bi_dram[current_bank].start = start; |
| gd->bd->bi_dram[current_bank].size = size; |
| } |
| current_bank--; |
| } |
| } |
| |
| int dram_init_banksize(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end, end1, end2; |
| int i = 0; |
| int err; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; |
| |
| for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| start = roundup(start, MEMSTART_ALIGNMENT); |
| if (start > end) /* Small memory region, no use it */ |
| continue; |
| |
| if (start >= PHYS_SDRAM_1 && start <= end1) { |
| gd->bd->bi_dram[i].start = start; |
| |
| if ((end + 1) <= end1) |
| gd->bd->bi_dram[i].size = |
| end - start + 1; |
| else |
| gd->bd->bi_dram[i].size = end1 - start; |
| |
| dram_bank_sort(i); |
| i++; |
| } else if (start >= PHYS_SDRAM_2 && start <= end2) { |
| gd->bd->bi_dram[i].start = start; |
| |
| if ((end + 1) <= end2) |
| gd->bd->bi_dram[i].size = |
| end - start + 1; |
| else |
| gd->bd->bi_dram[i].size = end2 - start; |
| |
| dram_bank_sort(i); |
| i++; |
| } |
| } |
| } |
| |
| /* If error, set to the default value */ |
| if (!i) { |
| gd->bd->bi_dram[0].start = PHYS_SDRAM_1; |
| gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; |
| gd->bd->bi_dram[1].start = PHYS_SDRAM_2; |
| gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE; |
| } |
| |
| return 0; |
| } |
| |
| static u64 get_block_attrs(sc_faddr_t addr_start) |
| { |
| u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE | |
| PTE_BLOCK_PXN | PTE_BLOCK_UXN; |
| |
| if ((addr_start >= PHYS_SDRAM_1 && |
| addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) || |
| (addr_start >= PHYS_SDRAM_2 && |
| addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE))) |
| return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE); |
| |
| return attr; |
| } |
| |
| static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end) |
| { |
| sc_faddr_t end1, end2; |
| |
| end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE; |
| end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE; |
| |
| if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) { |
| if ((addr_end + 1) > end1) |
| return end1 - addr_start; |
| } else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) { |
| if ((addr_end + 1) > end2) |
| return end2 - addr_start; |
| } |
| |
| return (addr_end - addr_start + 1); |
| } |
| |
| #define MAX_PTE_ENTRIES 512 |
| #define MAX_MEM_MAP_REGIONS 16 |
| |
| static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS]; |
| struct mm_region *mem_map = imx8_mem_map; |
| |
| void enable_caches(void) |
| { |
| sc_rm_mr_t mr; |
| sc_faddr_t start, end; |
| int err, i; |
| |
| /* Create map for registers access from 0x1c000000 to 0x80000000*/ |
| imx8_mem_map[0].virt = 0x1c000000UL; |
| imx8_mem_map[0].phys = 0x1c000000UL; |
| imx8_mem_map[0].size = 0x64000000UL; |
| imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | |
| PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN; |
| |
| i = 1; |
| for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) { |
| err = get_owned_memreg(mr, &start, &end); |
| if (!err) { |
| imx8_mem_map[i].virt = start; |
| imx8_mem_map[i].phys = start; |
| imx8_mem_map[i].size = get_block_size(start, end); |
| imx8_mem_map[i].attrs = get_block_attrs(start); |
| i++; |
| } |
| } |
| |
| if (i < MAX_MEM_MAP_REGIONS) { |
| imx8_mem_map[i].size = 0; |
| imx8_mem_map[i].attrs = 0; |
| } else { |
| puts("Error, need more MEM MAP REGIONS reserved\n"); |
| icache_enable(); |
| return; |
| } |
| |
| for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) { |
| debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n", |
| i, imx8_mem_map[i].virt, imx8_mem_map[i].phys, |
| imx8_mem_map[i].size, imx8_mem_map[i].attrs); |
| } |
| |
| icache_enable(); |
| dcache_enable(); |
| } |
| |
| #ifndef CONFIG_SYS_DCACHE_OFF |
| u64 get_page_table_size(void) |
| { |
| u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); |
| u64 size = 0; |
| |
| /* |
| * For each memory region, the max table size: |
| * 2 level 3 tables + 2 level 2 tables + 1 level 1 table |
| */ |
| size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt; |
| |
| /* |
| * We need to duplicate our page table once to have an emergency pt to |
| * resort to when splitting page tables later on |
| */ |
| size *= 2; |
| |
| /* |
| * We may need to split page tables later on if dcache settings change, |
| * so reserve up to 4 (random pick) page tables for that. |
| */ |
| size += one_pt * 4; |
| |
| return size; |
| } |
| #endif |