blob: f73ce2fde3fbae85ece91ec4c9d85922bec7b65e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018 NXP
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <asm/arch/sci/sci.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/mach-imx/boot_mode.h>
DECLARE_GLOBAL_DATA_PTR;
u32 get_cpu_rev(void)
{
u32 id = 0, rev = 0;
int ret;
ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
if (ret)
return 0;
rev = (id >> 5) & 0xf;
id = (id & 0x1f) + MXC_SOC_IMX8; /* Dummy ID for chip */
return (id << 12) | rev;
}
#ifdef CONFIG_DISPLAY_CPUINFO
const char *get_imx8_type(u32 imxtype)
{
switch (imxtype) {
case MXC_CPU_IMX8QXP:
return "8QXP";
default:
return "??";
}
}
const char *get_imx8_rev(u32 rev)
{
switch (rev) {
case CHIP_REV_A:
return "A";
case CHIP_REV_B:
return "B";
default:
return "?";
}
}
const char *get_core_name(void)
{
if (is_cortex_a35())
return "A35";
else
return "?";
}
int print_cpuinfo(void)
{
struct udevice *dev;
struct clk cpu_clk;
int ret;
ret = uclass_get_device(UCLASS_CPU, 0, &dev);
if (ret)
return 0;
ret = clk_get_by_index(dev, 0, &cpu_clk);
if (ret) {
dev_err(dev, "failed to clk\n");
return 0;
}
u32 cpurev;
cpurev = get_cpu_rev();
printf("CPU: Freescale i.MX%s rev%s %s at %ld MHz\n",
get_imx8_type((cpurev & 0xFF000) >> 12),
get_imx8_rev((cpurev & 0xFFF)),
get_core_name(),
clk_get_rate(&cpu_clk) / 1000000);
return 0;
}
#endif
int print_bootinfo(void)
{
enum boot_device bt_dev = get_boot_device();
puts("Boot: ");
switch (bt_dev) {
case SD1_BOOT:
puts("SD0\n");
break;
case SD2_BOOT:
puts("SD1\n");
break;
case SD3_BOOT:
puts("SD2\n");
break;
case MMC1_BOOT:
puts("MMC0\n");
break;
case MMC2_BOOT:
puts("MMC1\n");
break;
case MMC3_BOOT:
puts("MMC2\n");
break;
case FLEXSPI_BOOT:
puts("FLEXSPI\n");
break;
case SATA_BOOT:
puts("SATA\n");
break;
case NAND_BOOT:
puts("NAND\n");
break;
case USB_BOOT:
puts("USB\n");
break;
default:
printf("Unknown device %u\n", bt_dev);
break;
}
return 0;
}
enum boot_device get_boot_device(void)
{
enum boot_device boot_dev = SD1_BOOT;
sc_rsrc_t dev_rsrc;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
boot_dev = MMC1_BOOT;
break;
case SC_R_SDHC_1:
boot_dev = SD2_BOOT;
break;
case SC_R_SDHC_2:
boot_dev = SD3_BOOT;
break;
case SC_R_NAND:
boot_dev = NAND_BOOT;
break;
case SC_R_FSPI_0:
boot_dev = FLEXSPI_BOOT;
break;
case SC_R_SATA_0:
boot_dev = SATA_BOOT;
break;
case SC_R_USB_0:
case SC_R_USB_1:
case SC_R_USB_2:
boot_dev = USB_BOOT;
break;
default:
break;
}
return boot_dev;
}
#ifdef CONFIG_ENV_IS_IN_MMC
__weak int board_mmc_get_env_dev(int devno)
{
return CONFIG_SYS_MMC_ENV_DEV;
}
int mmc_get_env_dev(void)
{
sc_rsrc_t dev_rsrc;
int devno;
sc_misc_get_boot_dev(-1, &dev_rsrc);
switch (dev_rsrc) {
case SC_R_SDHC_0:
devno = 0;
break;
case SC_R_SDHC_1:
devno = 1;
break;
case SC_R_SDHC_2:
devno = 2;
break;
default:
/* If not boot from sd/mmc, use default value */
return CONFIG_SYS_MMC_ENV_DEV;
}
return board_mmc_get_env_dev(devno);
}
#endif
#define MEMSTART_ALIGNMENT SZ_2M /* Align the memory start with 2MB */
static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
sc_faddr_t *addr_end)
{
sc_faddr_t start, end;
int ret;
bool owned;
owned = sc_rm_is_memreg_owned(-1, mr);
if (owned) {
ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
if (ret) {
printf("Memreg get info failed, %d\n", ret);
return -EINVAL;
}
debug("0x%llx -- 0x%llx\n", start, end);
*addr_start = start;
*addr_end = end;
return 0;
}
return -EINVAL;
}
phys_size_t get_effective_memsize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
/* Find the memory region runs the u-boot */
if (start >= PHYS_SDRAM_1 && start <= end1 &&
(start <= CONFIG_SYS_TEXT_BASE &&
end >= CONFIG_SYS_TEXT_BASE)) {
if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
PHYS_SDRAM_1_SIZE))
return (end - PHYS_SDRAM_1 + 1);
else
return PHYS_SDRAM_1_SIZE;
}
}
}
return PHYS_SDRAM_1_SIZE;
}
int dram_init(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
for (mr = 0; mr < 64; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
/* Too small memory region, not use it */
if (start > end)
continue;
if (start >= PHYS_SDRAM_1 && start <= end1) {
if ((end + 1) <= end1)
gd->ram_size += end - start + 1;
else
gd->ram_size += end1 - start;
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
if ((end + 1) <= end2)
gd->ram_size += end - start + 1;
else
gd->ram_size += end2 - start;
}
}
}
/* If error, set to the default value */
if (!gd->ram_size) {
gd->ram_size = PHYS_SDRAM_1_SIZE;
gd->ram_size += PHYS_SDRAM_2_SIZE;
}
return 0;
}
static void dram_bank_sort(int current_bank)
{
phys_addr_t start;
phys_size_t size;
while (current_bank > 0) {
if (gd->bd->bi_dram[current_bank - 1].start >
gd->bd->bi_dram[current_bank].start) {
start = gd->bd->bi_dram[current_bank - 1].start;
size = gd->bd->bi_dram[current_bank - 1].size;
gd->bd->bi_dram[current_bank - 1].start =
gd->bd->bi_dram[current_bank].start;
gd->bd->bi_dram[current_bank - 1].size =
gd->bd->bi_dram[current_bank].size;
gd->bd->bi_dram[current_bank].start = start;
gd->bd->bi_dram[current_bank].size = size;
}
current_bank--;
}
}
int dram_init_banksize(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end, end1, end2;
int i = 0;
int err;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
start = roundup(start, MEMSTART_ALIGNMENT);
if (start > end) /* Small memory region, no use it */
continue;
if (start >= PHYS_SDRAM_1 && start <= end1) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end1)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end1 - start;
dram_bank_sort(i);
i++;
} else if (start >= PHYS_SDRAM_2 && start <= end2) {
gd->bd->bi_dram[i].start = start;
if ((end + 1) <= end2)
gd->bd->bi_dram[i].size =
end - start + 1;
else
gd->bd->bi_dram[i].size = end2 - start;
dram_bank_sort(i);
i++;
}
}
}
/* If error, set to the default value */
if (!i) {
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
}
return 0;
}
static u64 get_block_attrs(sc_faddr_t addr_start)
{
u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN;
if ((addr_start >= PHYS_SDRAM_1 &&
addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
(addr_start >= PHYS_SDRAM_2 &&
addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
return attr;
}
static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
sc_faddr_t end1, end2;
end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
if ((addr_end + 1) > end1)
return end1 - addr_start;
} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
if ((addr_end + 1) > end2)
return end2 - addr_start;
}
return (addr_end - addr_start + 1);
}
#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16
static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;
void enable_caches(void)
{
sc_rm_mr_t mr;
sc_faddr_t start, end;
int err, i;
/* Create map for registers access from 0x1c000000 to 0x80000000*/
imx8_mem_map[0].virt = 0x1c000000UL;
imx8_mem_map[0].phys = 0x1c000000UL;
imx8_mem_map[0].size = 0x64000000UL;
imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
i = 1;
for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
err = get_owned_memreg(mr, &start, &end);
if (!err) {
imx8_mem_map[i].virt = start;
imx8_mem_map[i].phys = start;
imx8_mem_map[i].size = get_block_size(start, end);
imx8_mem_map[i].attrs = get_block_attrs(start);
i++;
}
}
if (i < MAX_MEM_MAP_REGIONS) {
imx8_mem_map[i].size = 0;
imx8_mem_map[i].attrs = 0;
} else {
puts("Error, need more MEM MAP REGIONS reserved\n");
icache_enable();
return;
}
for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
imx8_mem_map[i].size, imx8_mem_map[i].attrs);
}
icache_enable();
dcache_enable();
}
#ifndef CONFIG_SYS_DCACHE_OFF
u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size = 0;
/*
* For each memory region, the max table size:
* 2 level 3 tables + 2 level 2 tables + 1 level 1 table
*/
size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
#endif