blob: e9b34dd249a9c9333c7cccf2138a978319fc0d81 [file] [log] [blame]
/*
* (C) Copyright 2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
* Port to AMCC-440SPE Evaluation Board SOP - April 2005
*
* PCIe supporting routines derived from Linux 440SPe PCIe driver.
*/
#include <common.h>
#include <ppc4xx.h>
#include <asm/processor.h>
#include <i2c.h>
#include <asm-ppc/io.h>
#include "yucca.h"
#include "../cpu/ppc4xx/440spe_pcie.h"
#undef PCIE_ENDPOINT
/* #define PCIE_ENDPOINT 1 */
void fpga_init (void);
void get_sys_info(PPC440_SYS_INFO *board_cfg );
int compare_to_true(char *str );
char *remove_l_w_space(char *in_str );
char *remove_t_w_space(char *in_str );
int get_console_port(void);
unsigned long ppcMfcpr(unsigned long cpr_reg);
unsigned long ppcMfsdr(unsigned long sdr_reg);
int ppc440spe_init_pcie_rootport(int port);
void ppc440spe_setup_pcie(struct pci_controller *hose, int port);
#define DEBUG_ENV
#ifdef DEBUG_ENV
#define DEBUGF(fmt,args...) printf(fmt ,##args)
#else
#define DEBUGF(fmt,args...)
#endif
#define FALSE 0
#define TRUE 1
int board_early_init_f (void)
{
/*----------------------------------------------------------------------------+
| Define Boot devices
+----------------------------------------------------------------------------*/
#define BOOT_FROM_SMALL_FLASH 0x00
#define BOOT_FROM_LARGE_FLASH_OR_SRAM 0x01
#define BOOT_FROM_PCI 0x02
#define BOOT_DEVICE_UNKNOWN 0x03
/*----------------------------------------------------------------------------+
| EBC Devices Characteristics
| Peripheral Bank Access Parameters - EBC_BxAP
| Peripheral Bank Configuration Register - EBC_BxCR
+----------------------------------------------------------------------------*/
/*
* Small Flash and FRAM
* BU Value
* BxAP : 0x03800000 - 0 00000111 0 00 00 00 00 00 000 0 0 0 0 00000
* B0CR : 0xff098000 - BAS = ff0 - 100 11 00 0000000000000
* B2CR : 0xe7098000 - BAS = e70 - 100 11 00 0000000000000
*/
#define EBC_BXAP_SMALL_FLASH EBC_BXAP_BME_DISABLED | \
EBC_BXAP_TWT_ENCODE(7) | \
EBC_BXAP_BCE_DISABLE | \
EBC_BXAP_BCT_2TRANS | \
EBC_BXAP_CSN_ENCODE(0) | \
EBC_BXAP_OEN_ENCODE(0) | \
EBC_BXAP_WBN_ENCODE(0) | \
EBC_BXAP_WBF_ENCODE(0) | \
EBC_BXAP_TH_ENCODE(0) | \
EBC_BXAP_RE_DISABLED | \
EBC_BXAP_SOR_DELAYED | \
EBC_BXAP_BEM_WRITEONLY | \
EBC_BXAP_PEN_DISABLED
#define EBC_BXCR_SMALL_FLASH_CS0 EBC_BXCR_BAS_ENCODE(0xFF000000) | \
EBC_BXCR_BS_16MB | \
EBC_BXCR_BU_RW | \
EBC_BXCR_BW_8BIT
#define EBC_BXCR_SMALL_FLASH_CS2 EBC_BXCR_BAS_ENCODE(0xe7000000) | \
EBC_BXCR_BS_16MB | \
EBC_BXCR_BU_RW | \
EBC_BXCR_BW_8BIT
/*
* Large Flash and SRAM
* BU Value
* BxAP : 0x048ff240 - 0 00000111 0 00 00 00 00 00 000 0 0 0 0 00000
* B0CR : 0xff09a000 - BAS = ff0 - 100 11 01 0000000000000
* B2CR : 0xe709a000 - BAS = e70 - 100 11 01 0000000000000
*/
#define EBC_BXAP_LARGE_FLASH EBC_BXAP_BME_DISABLED | \
EBC_BXAP_TWT_ENCODE(7) | \
EBC_BXAP_BCE_DISABLE | \
EBC_BXAP_BCT_2TRANS | \
EBC_BXAP_CSN_ENCODE(0) | \
EBC_BXAP_OEN_ENCODE(0) | \
EBC_BXAP_WBN_ENCODE(0) | \
EBC_BXAP_WBF_ENCODE(0) | \
EBC_BXAP_TH_ENCODE(0) | \
EBC_BXAP_RE_DISABLED | \
EBC_BXAP_SOR_DELAYED | \
EBC_BXAP_BEM_WRITEONLY | \
EBC_BXAP_PEN_DISABLED
#define EBC_BXCR_LARGE_FLASH_CS0 EBC_BXCR_BAS_ENCODE(0xFF000000) | \
EBC_BXCR_BS_16MB | \
EBC_BXCR_BU_RW | \
EBC_BXCR_BW_16BIT
#define EBC_BXCR_LARGE_FLASH_CS2 EBC_BXCR_BAS_ENCODE(0xE7000000) | \
EBC_BXCR_BS_16MB | \
EBC_BXCR_BU_RW | \
EBC_BXCR_BW_16BIT
/*
* FPGA
* BU value :
* B1AP = 0x05895240 - 0 00001011 0 00 10 01 01 01 001 0 0 1 0 00000
* B1CR = 0xe201a000 - BAS = e20 - 000 11 01 00000000000000
*/
#define EBC_BXAP_FPGA EBC_BXAP_BME_DISABLED | \
EBC_BXAP_TWT_ENCODE(11) | \
EBC_BXAP_BCE_DISABLE | \
EBC_BXAP_BCT_2TRANS | \
EBC_BXAP_CSN_ENCODE(10) | \
EBC_BXAP_OEN_ENCODE(1) | \
EBC_BXAP_WBN_ENCODE(1) | \
EBC_BXAP_WBF_ENCODE(1) | \
EBC_BXAP_TH_ENCODE(1) | \
EBC_BXAP_RE_DISABLED | \
EBC_BXAP_SOR_DELAYED | \
EBC_BXAP_BEM_RW | \
EBC_BXAP_PEN_DISABLED
#define EBC_BXCR_FPGA_CS1 EBC_BXCR_BAS_ENCODE(0xe2000000) | \
EBC_BXCR_BS_1MB | \
EBC_BXCR_BU_RW | \
EBC_BXCR_BW_16BIT
unsigned long mfr;
/*
* Define Variables for EBC initialization depending on BOOTSTRAP option
*/
unsigned long sdr0_pinstp, sdr0_sdstp1 ;
unsigned long bootstrap_settings, ebc_data_width, boot_selection;
int computed_boot_device = BOOT_DEVICE_UNKNOWN;
/*-------------------------------------------------------------------+
| Initialize EBC CONFIG -
| Keep the Default value, but the bit PDT which has to be set to 1 ?TBC
| default value :
| 0x07C00000 - 0 0 000 1 1 1 1 1 0000 0 00000 000000000000
|
+-------------------------------------------------------------------*/
mtebc(xbcfg, EBC_CFG_LE_UNLOCK |
EBC_CFG_PTD_ENABLE |
EBC_CFG_RTC_16PERCLK |
EBC_CFG_ATC_PREVIOUS |
EBC_CFG_DTC_PREVIOUS |
EBC_CFG_CTC_PREVIOUS |
EBC_CFG_OEO_PREVIOUS |
EBC_CFG_EMC_DEFAULT |
EBC_CFG_PME_DISABLE |
EBC_CFG_PR_16);
/*-------------------------------------------------------------------+
|
| PART 1 : Initialize EBC Bank 1
| ==============================
| Bank1 is always associated to the EPLD.
| It has to be initialized prior to other banks settings computation
| since some board registers values may be needed to determine the
| boot type
|
+-------------------------------------------------------------------*/
mtebc(pb1ap, EBC_BXAP_FPGA);
mtebc(pb1cr, EBC_BXCR_FPGA_CS1);
/*-------------------------------------------------------------------+
|
| PART 2 : Determine which boot device was selected
| =================================================
|
| Read Pin Strap Register in PPC440SPe
| Result can either be :
| - Boot strap = boot from EBC 8bits => Small Flash
| - Boot strap = boot from PCI
| - Boot strap = IIC
| In case of boot from IIC, read Serial Device Strap Register1
|
| Result can either be :
| - Boot from EBC - EBC Bus Width = 8bits => Small Flash
| - Boot from EBC - EBC Bus Width = 16bits => Large Flash or SRAM
| - Boot from PCI
|
+-------------------------------------------------------------------*/
/* Read Pin Strap Register in PPC440SP */
sdr0_pinstp = ppcMfsdr(SDR0_PINSTP);
bootstrap_settings = sdr0_pinstp & SDR0_PINSTP_BOOTSTRAP_MASK;
switch (bootstrap_settings) {
case SDR0_PINSTP_BOOTSTRAP_SETTINGS0:
/*
* Strapping Option A
* Boot from EBC - 8 bits , Small Flash
*/
computed_boot_device = BOOT_FROM_SMALL_FLASH;
break;
case SDR0_PINSTP_BOOTSTRAP_SETTINGS1:
/*
* Strappping Option B
* Boot from PCI
*/
computed_boot_device = BOOT_FROM_PCI;
break;
case SDR0_PINSTP_BOOTSTRAP_IIC_50_EN:
case SDR0_PINSTP_BOOTSTRAP_IIC_54_EN:
/*
* Strapping Option C or D
* Boot Settings in IIC EEprom address 0x50 or 0x54
* Read Serial Device Strap Register1 in PPC440SPe
*/
sdr0_sdstp1 = ppcMfsdr(SDR0_SDSTP1);
boot_selection = sdr0_sdstp1 & SDR0_SDSTP1_ERPN_MASK;
ebc_data_width = sdr0_sdstp1 & SDR0_SDSTP1_EBCW_MASK;
switch (boot_selection) {
case SDR0_SDSTP1_ERPN_EBC:
switch (ebc_data_width) {
case SDR0_SDSTP1_EBCW_16_BITS:
computed_boot_device =
BOOT_FROM_LARGE_FLASH_OR_SRAM;
break;
case SDR0_SDSTP1_EBCW_8_BITS :
computed_boot_device = BOOT_FROM_SMALL_FLASH;
break;
}
break;
case SDR0_SDSTP1_ERPN_PCI:
computed_boot_device = BOOT_FROM_PCI;
break;
default:
/* should not occure */
computed_boot_device = BOOT_DEVICE_UNKNOWN;
}
break;
default:
/* should not be */
computed_boot_device = BOOT_DEVICE_UNKNOWN;
break;
}
/*-------------------------------------------------------------------+
|
| PART 3 : Compute EBC settings depending on selected boot device
| ====== ======================================================
|
| Resulting EBC init will be among following configurations :
|
| - Boot from EBC 8bits => boot from Small Flash selected
| EBC-CS0 = Small Flash
| EBC-CS2 = Large Flash and SRAM
|
| - Boot from EBC 16bits => boot from Large Flash or SRAM
| EBC-CS0 = Large Flash or SRAM
| EBC-CS2 = Small Flash
|
| - Boot from PCI
| EBC-CS0 = not initialized to avoid address contention
| EBC-CS2 = same as boot from Small Flash selected
|
+-------------------------------------------------------------------*/
unsigned long ebc0_cs0_bxap_value = 0, ebc0_cs0_bxcr_value = 0;
unsigned long ebc0_cs2_bxap_value = 0, ebc0_cs2_bxcr_value = 0;
switch (computed_boot_device) {
/*-------------------------------------------------------------------*/
case BOOT_FROM_PCI:
/*-------------------------------------------------------------------*/
/*
* By Default CS2 is affected to LARGE Flash
* do not initialize SMALL FLASH to avoid address contention
* Large Flash
*/
ebc0_cs2_bxap_value = EBC_BXAP_LARGE_FLASH;
ebc0_cs2_bxcr_value = EBC_BXCR_LARGE_FLASH_CS2;
break;
/*-------------------------------------------------------------------*/
case BOOT_FROM_SMALL_FLASH:
/*-------------------------------------------------------------------*/
ebc0_cs0_bxap_value = EBC_BXAP_SMALL_FLASH;
ebc0_cs0_bxcr_value = EBC_BXCR_SMALL_FLASH_CS0;
/*
* Large Flash or SRAM
*/
/* ebc0_cs2_bxap_value = EBC_BXAP_LARGE_FLASH; */
ebc0_cs2_bxap_value = 0x048ff240;
ebc0_cs2_bxcr_value = EBC_BXCR_LARGE_FLASH_CS2;
break;
/*-------------------------------------------------------------------*/
case BOOT_FROM_LARGE_FLASH_OR_SRAM:
/*-------------------------------------------------------------------*/
ebc0_cs0_bxap_value = EBC_BXAP_LARGE_FLASH;
ebc0_cs0_bxcr_value = EBC_BXCR_LARGE_FLASH_CS0;
/* Small flash */
ebc0_cs2_bxap_value = EBC_BXAP_SMALL_FLASH;
ebc0_cs2_bxcr_value = EBC_BXCR_SMALL_FLASH_CS2;
break;
/*-------------------------------------------------------------------*/
default:
/*-------------------------------------------------------------------*/
/* BOOT_DEVICE_UNKNOWN */
break;
}
mtebc(pb0ap, ebc0_cs0_bxap_value);
mtebc(pb0cr, ebc0_cs0_bxcr_value);
mtebc(pb2ap, ebc0_cs2_bxap_value);
mtebc(pb2cr, ebc0_cs2_bxcr_value);
/*--------------------------------------------------------------------+
| Interrupt controller setup for the AMCC 440SPe Evaluation board.
+--------------------------------------------------------------------+
+---------------------------------------------------------------------+
|Interrupt| Source | Pol. | Sensi.| Crit. |
+---------+-----------------------------------+-------+-------+-------+
| IRQ 00 | UART0 | High | Level | Non |
| IRQ 01 | UART1 | High | Level | Non |
| IRQ 02 | IIC0 | High | Level | Non |
| IRQ 03 | IIC1 | High | Level | Non |
| IRQ 04 | PCI0X0 MSG IN | High | Level | Non |
| IRQ 05 | PCI0X0 CMD Write | High | Level | Non |
| IRQ 06 | PCI0X0 Power Mgt | High | Level | Non |
| IRQ 07 | PCI0X0 VPD Access | Rising| Edge | Non |
| IRQ 08 | PCI0X0 MSI level 0 | High | Lvl/ed| Non |
| IRQ 09 | External IRQ 15 - (PCI-Express) | pgm H | Pgm | Non |
| IRQ 10 | UIC2 Non-critical Int. | NA | NA | Non |
| IRQ 11 | UIC2 Critical Interrupt | NA | NA | Crit |
| IRQ 12 | PCI Express MSI Level 0 | Rising| Edge | Non |
| IRQ 13 | PCI Express MSI Level 1 | Rising| Edge | Non |
| IRQ 14 | PCI Express MSI Level 2 | Rising| Edge | Non |
| IRQ 15 | PCI Express MSI Level 3 | Rising| Edge | Non |
| IRQ 16 | UIC3 Non-critical Int. | NA | NA | Non |
| IRQ 17 | UIC3 Critical Interrupt | NA | NA | Crit |
| IRQ 18 | External IRQ 14 - (PCI-Express) | Pgm | Pgm | Non |
| IRQ 19 | DMA Channel 0 FIFO Full | High | Level | Non |
| IRQ 20 | DMA Channel 0 Stat FIFO | High | Level | Non |
| IRQ 21 | DMA Channel 1 FIFO Full | High | Level | Non |
| IRQ 22 | DMA Channel 1 Stat FIFO | High | Level | Non |
| IRQ 23 | I2O Inbound Doorbell | High | Level | Non |
| IRQ 24 | Inbound Post List FIFO Not Empt | High | Level | Non |
| IRQ 25 | I2O Region 0 LL PLB Write | High | Level | Non |
| IRQ 26 | I2O Region 1 LL PLB Write | High | Level | Non |
| IRQ 27 | I2O Region 0 HB PLB Write | High | Level | Non |
| IRQ 28 | I2O Region 1 HB PLB Write | High | Level | Non |
| IRQ 29 | GPT Down Count Timer | Rising| Edge | Non |
| IRQ 30 | UIC1 Non-critical Int. | NA | NA | Non |
| IRQ 31 | UIC1 Critical Interrupt | NA | NA | Crit. |
|----------------------------------------------------------------------
| IRQ 32 | Ext. IRQ 13 - (PCI-Express) |pgm (H)|pgm/Lvl| Non |
| IRQ 33 | MAL Serr | High | Level | Non |
| IRQ 34 | MAL Txde | High | Level | Non |
| IRQ 35 | MAL Rxde | High | Level | Non |
| IRQ 36 | DMC CE or DMC UE | High | Level | Non |
| IRQ 37 | EBC or UART2 | High |Lvl Edg| Non |
| IRQ 38 | MAL TX EOB | High | Level | Non |
| IRQ 39 | MAL RX EOB | High | Level | Non |
| IRQ 40 | PCIX0 MSI Level 1 | High |Lvl Edg| Non |
| IRQ 41 | PCIX0 MSI level 2 | High |Lvl Edg| Non |
| IRQ 42 | PCIX0 MSI level 3 | High |Lvl Edg| Non |
| IRQ 43 | L2 Cache | Risin | Edge | Non |
| IRQ 44 | GPT Compare Timer 0 | Risin | Edge | Non |
| IRQ 45 | GPT Compare Timer 1 | Risin | Edge | Non |
| IRQ 46 | GPT Compare Timer 2 | Risin | Edge | Non |
| IRQ 47 | GPT Compare Timer 3 | Risin | Edge | Non |
| IRQ 48 | GPT Compare Timer 4 | Risin | Edge | Non |
| IRQ 49 | Ext. IRQ 12 - PCI-X |pgm/Fal|pgm/Lvl| Non |
| IRQ 50 | Ext. IRQ 11 - |pgm (H)|pgm/Lvl| Non |
| IRQ 51 | Ext. IRQ 10 - |pgm (H)|pgm/Lvl| Non |
| IRQ 52 | Ext. IRQ 9 |pgm (H)|pgm/Lvl| Non |
| IRQ 53 | Ext. IRQ 8 |pgm (H)|pgm/Lvl| Non |
| IRQ 54 | DMA Error | High | Level | Non |
| IRQ 55 | DMA I2O Error | High | Level | Non |
| IRQ 56 | Serial ROM | High | Level | Non |
| IRQ 57 | PCIX0 Error | High | Edge | Non |
| IRQ 58 | Ext. IRQ 7- |pgm (H)|pgm/Lvl| Non |
| IRQ 59 | Ext. IRQ 6- |pgm (H)|pgm/Lvl| Non |
| IRQ 60 | EMAC0 Interrupt | High | Level | Non |
| IRQ 61 | EMAC0 Wake-up | High | Level | Non |
| IRQ 62 | Reserved | High | Level | Non |
| IRQ 63 | XOR | High | Level | Non |
|----------------------------------------------------------------------
| IRQ 64 | PE0 AL | High | Level | Non |
| IRQ 65 | PE0 VPD Access | Risin | Edge | Non |
| IRQ 66 | PE0 Hot Reset Request | Risin | Edge | Non |
| IRQ 67 | PE0 Hot Reset Request | Falli | Edge | Non |
| IRQ 68 | PE0 TCR | High | Level | Non |
| IRQ 69 | PE0 BusMaster VCO | Falli | Edge | Non |
| IRQ 70 | PE0 DCR Error | High | Level | Non |
| IRQ 71 | Reserved | N/A | N/A | Non |
| IRQ 72 | PE1 AL | High | Level | Non |
| IRQ 73 | PE1 VPD Access | Risin | Edge | Non |
| IRQ 74 | PE1 Hot Reset Request | Risin | Edge | Non |
| IRQ 75 | PE1 Hot Reset Request | Falli | Edge | Non |
| IRQ 76 | PE1 TCR | High | Level | Non |
| IRQ 77 | PE1 BusMaster VCO | Falli | Edge | Non |
| IRQ 78 | PE1 DCR Error | High | Level | Non |
| IRQ 79 | Reserved | N/A | N/A | Non |
| IRQ 80 | PE2 AL | High | Level | Non |
| IRQ 81 | PE2 VPD Access | Risin | Edge | Non |
| IRQ 82 | PE2 Hot Reset Request | Risin | Edge | Non |
| IRQ 83 | PE2 Hot Reset Request | Falli | Edge | Non |
| IRQ 84 | PE2 TCR | High | Level | Non |
| IRQ 85 | PE2 BusMaster VCO | Falli | Edge | Non |
| IRQ 86 | PE2 DCR Error | High | Level | Non |
| IRQ 87 | Reserved | N/A | N/A | Non |
| IRQ 88 | External IRQ(5) | Progr | Progr | Non |
| IRQ 89 | External IRQ 4 - Ethernet | Progr | Progr | Non |
| IRQ 90 | External IRQ 3 - PCI-X | Progr | Progr | Non |
| IRQ 91 | External IRQ 2 - PCI-X | Progr | Progr | Non |
| IRQ 92 | External IRQ 1 - PCI-X | Progr | Progr | Non |
| IRQ 93 | External IRQ 0 - PCI-X | Progr | Progr | Non |
| IRQ 94 | Reserved | N/A | N/A | Non |
| IRQ 95 | Reserved | N/A | N/A | Non |
|---------------------------------------------------------------------
| IRQ 96 | PE0 INTA | High | Level | Non |
| IRQ 97 | PE0 INTB | High | Level | Non |
| IRQ 98 | PE0 INTC | High | Level | Non |
| IRQ 99 | PE0 INTD | High | Level | Non |
| IRQ 100 | PE1 INTA | High | Level | Non |
| IRQ 101 | PE1 INTB | High | Level | Non |
| IRQ 102 | PE1 INTC | High | Level | Non |
| IRQ 103 | PE1 INTD | High | Level | Non |
| IRQ 104 | PE2 INTA | High | Level | Non |
| IRQ 105 | PE2 INTB | High | Level | Non |
| IRQ 106 | PE2 INTC | High | Level | Non |
| IRQ 107 | PE2 INTD | Risin | Edge | Non |
| IRQ 108 | PCI Express MSI Level 4 | Risin | Edge | Non |
| IRQ 109 | PCI Express MSI Level 5 | Risin | Edge | Non |
| IRQ 110 | PCI Express MSI Level 6 | Risin | Edge | Non |
| IRQ 111 | PCI Express MSI Level 7 | Risin | Edge | Non |
| IRQ 116 | PCI Express MSI Level 12 | Risin | Edge | Non |
| IRQ 112 | PCI Express MSI Level 8 | Risin | Edge | Non |
| IRQ 113 | PCI Express MSI Level 9 | Risin | Edge | Non |
| IRQ 114 | PCI Express MSI Level 10 | Risin | Edge | Non |
| IRQ 115 | PCI Express MSI Level 11 | Risin | Edge | Non |
| IRQ 117 | PCI Express MSI Level 13 | Risin | Edge | Non |
| IRQ 118 | PCI Express MSI Level 14 | Risin | Edge | Non |
| IRQ 119 | PCI Express MSI Level 15 | Risin | Edge | Non |
| IRQ 120 | PCI Express MSI Level 16 | Risin | Edge | Non |
| IRQ 121 | PCI Express MSI Level 17 | Risin | Edge | Non |
| IRQ 122 | PCI Express MSI Level 18 | Risin | Edge | Non |
| IRQ 123 | PCI Express MSI Level 19 | Risin | Edge | Non |
| IRQ 124 | PCI Express MSI Level 20 | Risin | Edge | Non |
| IRQ 125 | PCI Express MSI Level 21 | Risin | Edge | Non |
| IRQ 126 | PCI Express MSI Level 22 | Risin | Edge | Non |
| IRQ 127 | PCI Express MSI Level 23 | Risin | Edge | Non |
+---------+-----------------------------------+-------+-------+------*/
/*--------------------------------------------------------------------+
| Put UICs in PowerPC440SPemode.
| Initialise UIC registers. Clear all interrupts. Disable all
| interrupts.
| Set critical interrupt values. Set interrupt polarities. Set
| interrupt trigger levels. Make bit 0 High priority. Clear all
| interrupts again.
+-------------------------------------------------------------------*/
mtdcr (uic3sr, 0xffffffff); /* Clear all interrupts */
mtdcr (uic3er, 0x00000000); /* disable all interrupts */
mtdcr (uic3cr, 0x00000000); /* Set Critical / Non Critical
* interrupts */
mtdcr (uic3pr, 0xffffffff); /* Set Interrupt Polarities */
mtdcr (uic3tr, 0x001fffff); /* Set Interrupt Trigger Levels */
mtdcr (uic3vr, 0x00000001); /* Set Vect base=0,INT31 Highest
* priority */
mtdcr (uic3sr, 0x00000000); /* clear all interrupts */
mtdcr (uic3sr, 0xffffffff); /* clear all interrupts */
mtdcr (uic2sr, 0xffffffff); /* Clear all interrupts */
mtdcr (uic2er, 0x00000000); /* disable all interrupts */
mtdcr (uic2cr, 0x00000000); /* Set Critical / Non Critical
* interrupts */
mtdcr (uic2pr, 0xebebebff); /* Set Interrupt Polarities */
mtdcr (uic2tr, 0x74747400); /* Set Interrupt Trigger Levels */
mtdcr (uic2vr, 0x00000001); /* Set Vect base=0,INT31 Highest
* priority */
mtdcr (uic2sr, 0x00000000); /* clear all interrupts */
mtdcr (uic2sr, 0xffffffff); /* clear all interrupts */
mtdcr (uic1sr, 0xffffffff); /* Clear all interrupts */
mtdcr (uic1er, 0x00000000); /* disable all interrupts */
mtdcr (uic1cr, 0x00000000); /* Set Critical / Non Critical
* interrupts */
mtdcr (uic1pr, 0xffffffff); /* Set Interrupt Polarities */
mtdcr (uic1tr, 0x001f8040); /* Set Interrupt Trigger Levels */
mtdcr (uic1vr, 0x00000001); /* Set Vect base=0,INT31 Highest
* priority */
mtdcr (uic1sr, 0x00000000); /* clear all interrupts */
mtdcr (uic1sr, 0xffffffff); /* clear all interrupts */
mtdcr (uic0sr, 0xffffffff); /* Clear all interrupts */
mtdcr (uic0er, 0x00000000); /* disable all interrupts excepted
* cascade to be checked */
mtdcr (uic0cr, 0x00104001); /* Set Critical / Non Critical
* interrupts */
mtdcr (uic0pr, 0xffffffff); /* Set Interrupt Polarities */
mtdcr (uic0tr, 0x010f0004); /* Set Interrupt Trigger Levels */
mtdcr (uic0vr, 0x00000001); /* Set Vect base=0,INT31 Highest
* priority */
mtdcr (uic0sr, 0x00000000); /* clear all interrupts */
mtdcr (uic0sr, 0xffffffff); /* clear all interrupts */
/* SDR0_MFR should be part of Ethernet init */
mfsdr (sdr_mfr, mfr);
mfr &= ~SDR0_MFR_ECS_MASK;
/*mtsdr(sdr_mfr, mfr);*/
fpga_init();
return 0;
}
int checkboard (void)
{
char *s = getenv("serial#");
printf("Board: Yucca - AMCC 440SPe Evaluation Board");
if (s != NULL) {
puts(", serial# ");
puts(s);
}
putc('\n');
return 0;
}
static long int yucca_probe_for_dimms(void)
{
int dimm_installed[MAXDIMMS];
int dimm_num, result;
int dimms_found = 0;
uchar dimm_addr = IIC0_DIMM0_ADDR;
uchar dimm_spd_data[MAX_SPD_BYTES];
for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
/* check if there is a chip at the dimm address */
switch (dimm_num) {
case 0:
dimm_addr = IIC0_DIMM0_ADDR;
break;
case 1:
dimm_addr = IIC0_DIMM1_ADDR;
break;
}
result = i2c_probe(dimm_addr);
memset(dimm_spd_data, 0, MAX_SPD_BYTES * sizeof(char));
if (result == 0) {
/* read first byte of SPD data, if there is any data */
result = i2c_read(dimm_addr, 0, 1, dimm_spd_data, 1);
if (result == 0) {
result = dimm_spd_data[0];
result = result > MAX_SPD_BYTES ?
MAX_SPD_BYTES : result;
result = i2c_read(dimm_addr, 0, 1,
dimm_spd_data, result);
}
}
if ((result == 0) &&
(dimm_spd_data[64] == MICRON_SPD_JEDEC_ID)) {
dimm_installed[dimm_num] = TRUE;
dimms_found++;
debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
} else {
dimm_installed[dimm_num] = FALSE;
debug("DIMM slot %d: Not populated or cannot sucessfully probe the DIMM\n", dimm_num);
}
}
if (dimms_found == 0) {
printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
hang();
}
if (dimm_installed[0] != TRUE) {
printf("\nERROR - DIMM slot 0 must be populated before DIMM slot 1.\n");
printf(" Unsupported configuration. Move DIMM module from DIMM slot 1 to slot 0.\n\n");
hang();
}
return dimms_found;
}
/*************************************************************************
* init SDRAM controller with fixed value
* the initialization values are for 2x MICRON DDR2
* PN: MT18HTF6472DY-53EB2
* 512MB, DDR2, 533, CL4, ECC, REG
************************************************************************/
static long int fixed_sdram(void)
{
long int yucca_dimms = 0;
yucca_dimms = yucca_probe_for_dimms();
/* SDRAM0_MCOPT2 (0X21) Clear DCEN BIT */
mtdcr( 0x10, 0x00000021 );
mtdcr( 0x11, 0x84000000 );
/* SDRAM0_MCOPT1 (0X20) ECC OFF / 64 bits / 4 banks / DDR2 */
mtdcr( 0x10, 0x00000020 );
mtdcr( 0x11, 0x2D122000 );
/* SET MCIF0_CODT Die Termination On */
mtdcr( 0x10, 0x00000026 );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x2A800021 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x02800021 );
/* On-Die Termination for Bank 0 */
mtdcr( 0x10, 0x00000022 );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x18000000 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x06000000 );
/* On-Die Termination for Bank 1 */
mtdcr( 0x10, 0x00000023 );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x18000000 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x01800000 );
/* On-Die Termination for Bank 2 */
mtdcr( 0x10, 0x00000024 );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x01800000 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x00000000 );
/* On-Die Termination for Bank 3 */
mtdcr( 0x10, 0x00000025 );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x01800000 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x00000000 );
/* Refresh Time register (0x30) Refresh every 7.8125uS */
mtdcr( 0x10, 0x00000030 );
mtdcr( 0x11, 0x08200000 );
/* SET MCIF0_MMODE CL 4 */
mtdcr( 0x10, 0x00000088 );
mtdcr( 0x11, 0x00000642 );
/* MCIF0_MEMODE */
mtdcr( 0x10, 0x00000089 );
mtdcr( 0x11, 0x00000004 );
/*SET MCIF0_MB0CF */
mtdcr( 0x10, 0x00000040 );
mtdcr( 0x11, 0x00000201 );
/* SET MCIF0_MB1CF */
mtdcr( 0x10, 0x00000044 );
mtdcr( 0x11, 0x00000201 );
/* SET MCIF0_MB2CF */
mtdcr( 0x10, 0x00000048 );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x00000201 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x00000000 );
/* SET MCIF0_MB3CF */
mtdcr( 0x10, 0x0000004c );
if (yucca_dimms == 2)
mtdcr( 0x11, 0x00000201 );
else if (yucca_dimms == 1)
mtdcr( 0x11, 0x00000000 );
/* SET MCIF0_INITPLR0 # NOP */
mtdcr( 0x10, 0x00000050 );
mtdcr( 0x11, 0xB5380000 );
/* SET MCIF0_INITPLR1 # PRE */
mtdcr( 0x10, 0x00000051 );
mtdcr( 0x11, 0x82100400 );
/* SET MCIF0_INITPLR2 # EMR2 */
mtdcr( 0x10, 0x00000052 );
mtdcr( 0x11, 0x80820000 );
/* SET MCIF0_INITPLR3 # EMR3 */
mtdcr( 0x10, 0x00000053 );
mtdcr( 0x11, 0x80830000 );
/* SET MCIF0_INITPLR4 # EMR DLL ENABLE */
mtdcr( 0x10, 0x00000054 );
mtdcr( 0x11, 0x80810000 );
/* SET MCIF0_INITPLR5 # MR DLL RESET */
mtdcr( 0x10, 0x00000055 );
mtdcr( 0x11, 0x80800542 );
/* SET MCIF0_INITPLR6 # PRE */
mtdcr( 0x10, 0x00000056 );
mtdcr( 0x11, 0x82100400 );
/* SET MCIF0_INITPLR7 # Refresh */
mtdcr( 0x10, 0x00000057 );
mtdcr( 0x11, 0x8A080000 );
/* SET MCIF0_INITPLR8 # Refresh */
mtdcr( 0x10, 0x00000058 );
mtdcr( 0x11, 0x8A080000 );
/* SET MCIF0_INITPLR9 # Refresh */
mtdcr( 0x10, 0x00000059 );
mtdcr( 0x11, 0x8A080000 );
/* SET MCIF0_INITPLR10 # Refresh */
mtdcr( 0x10, 0x0000005A );
mtdcr( 0x11, 0x8A080000 );
/* SET MCIF0_INITPLR11 # MR */
mtdcr( 0x10, 0x0000005B );
mtdcr( 0x11, 0x80800442 );
/* SET MCIF0_INITPLR12 # EMR OCD Default*/
mtdcr( 0x10, 0x0000005C );
mtdcr( 0x11, 0x80810380 );
/* SET MCIF0_INITPLR13 # EMR OCD Exit */
mtdcr( 0x10, 0x0000005D );
mtdcr( 0x11, 0x80810000 );
/* 0x80: Adv Addr clock by 180 deg */
mtdcr( 0x10, 0x00000080 );
mtdcr( 0x11, 0x80000000 );
/* 0x21: Exit self refresh, set DC_EN */
mtdcr( 0x10, 0x00000021 );
mtdcr( 0x11, 0x28000000 );
/* 0x81: Write DQS Adv 90 + Fractional DQS Delay */
mtdcr( 0x10, 0x00000081 );
mtdcr( 0x11, 0x80000800 );
/* MCIF0_SDTR1 */
mtdcr( 0x10, 0x00000085 );
mtdcr( 0x11, 0x80201000 );
/* MCIF0_SDTR2 */
mtdcr( 0x10, 0x00000086 );
mtdcr( 0x11, 0x42103242 );
/* MCIF0_SDTR3 */
mtdcr( 0x10, 0x00000087 );
mtdcr( 0x11, 0x0C100D14 );
/* SET MQ0_B0BAS base addr 00000000 / 256MB */
mtdcr( 0x40, 0x0000F800 );
/* SET MQ0_B1BAS base addr 10000000 / 256MB */
mtdcr( 0x41, 0x0400F800 );
/* SET MQ0_B2BAS base addr 20000000 / 256MB */
if (yucca_dimms == 2)
mtdcr( 0x42, 0x0800F800 );
else if (yucca_dimms == 1)
mtdcr( 0x42, 0x00000000 );
/* SET MQ0_B3BAS base addr 30000000 / 256MB */
if (yucca_dimms == 2)
mtdcr( 0x43, 0x0C00F800 );
else if (yucca_dimms == 1)
mtdcr( 0x43, 0x00000000 );
/* SDRAM_RQDC */
mtdcr( 0x10, 0x00000070 );
mtdcr( 0x11, 0x8000003F );
/* SDRAM_RDCC */
mtdcr( 0x10, 0x00000078 );
mtdcr( 0x11, 0x80000000 );
/* SDRAM_RFDC */
mtdcr( 0x10, 0x00000074 );
mtdcr( 0x11, 0x00000220 );
return (yucca_dimms * 512) << 20;
}
long int initdram (int board_type)
{
long dram_size = 0;
dram_size = fixed_sdram();
return dram_size;
}
#if defined(CFG_DRAM_TEST)
int testdram (void)
{
uint *pstart = (uint *) 0x00000000;
uint *pend = (uint *) 0x08000000;
uint *p;
for (p = pstart; p < pend; p++)
*p = 0xaaaaaaaa;
for (p = pstart; p < pend; p++) {
if (*p != 0xaaaaaaaa) {
printf ("SDRAM test fails at: %08x\n", (uint) p);
return 1;
}
}
for (p = pstart; p < pend; p++)
*p = 0x55555555;
for (p = pstart; p < pend; p++) {
if (*p != 0x55555555) {
printf ("SDRAM test fails at: %08x\n", (uint) p);
return 1;
}
}
return 0;
}
#endif
/*************************************************************************
* pci_pre_init
*
* This routine is called just prior to registering the hose and gives
* the board the opportunity to check things. Returning a value of zero
* indicates that things are bad & PCI initialization should be aborted.
*
* Different boards may wish to customize the pci controller structure
* (add regions, override default access routines, etc) or perform
* certain pre-initialization actions.
*
************************************************************************/
#if defined(CONFIG_PCI) && defined(CFG_PCI_PRE_INIT)
int pci_pre_init(struct pci_controller * hose )
{
unsigned long strap;
/*-------------------------------------------------------------------+
* The yucca board is always configured as the host & requires the
* PCI arbiter to be enabled.
*-------------------------------------------------------------------*/
mfsdr(sdr_sdstp1, strap);
if( (strap & SDR0_SDSTP1_PAE_MASK) == 0 ) {
printf("PCI: SDR0_STRP1[%08lX] - PCI Arbiter disabled.\n",strap);
return 0;
}
return 1;
}
#endif /* defined(CONFIG_PCI) && defined(CFG_PCI_PRE_INIT) */
/*************************************************************************
* pci_target_init
*
* The bootstrap configuration provides default settings for the pci
* inbound map (PIM). But the bootstrap config choices are limited and
* may not be sufficient for a given board.
*
************************************************************************/
#if defined(CONFIG_PCI) && defined(CFG_PCI_TARGET_INIT)
void pci_target_init(struct pci_controller * hose )
{
DECLARE_GLOBAL_DATA_PTR;
/*-------------------------------------------------------------------+
* Disable everything
*-------------------------------------------------------------------*/
out32r( PCIX0_PIM0SA, 0 ); /* disable */
out32r( PCIX0_PIM1SA, 0 ); /* disable */
out32r( PCIX0_PIM2SA, 0 ); /* disable */
out32r( PCIX0_EROMBA, 0 ); /* disable expansion rom */
/*-------------------------------------------------------------------+
* Map all of SDRAM to PCI address 0x0000_0000. Note that the 440
* strapping options to not support sizes such as 128/256 MB.
*-------------------------------------------------------------------*/
out32r( PCIX0_PIM0LAL, CFG_SDRAM_BASE );
out32r( PCIX0_PIM0LAH, 0 );
out32r( PCIX0_PIM0SA, ~(gd->ram_size - 1) | 1 );
out32r( PCIX0_BAR0, 0 );
/*-------------------------------------------------------------------+
* Program the board's subsystem id/vendor id
*-------------------------------------------------------------------*/
out16r( PCIX0_SBSYSVID, CFG_PCI_SUBSYS_VENDORID );
out16r( PCIX0_SBSYSID, CFG_PCI_SUBSYS_DEVICEID );
out16r( PCIX0_CMD, in16r(PCIX0_CMD) | PCI_COMMAND_MEMORY );
}
#endif /* defined(CONFIG_PCI) && defined(CFG_PCI_TARGET_INIT) */
#if defined(CONFIG_PCI)
/*************************************************************************
* is_pci_host
*
* This routine is called to determine if a pci scan should be
* performed. With various hardware environments (especially cPCI and
* PPMC) it's insufficient to depend on the state of the arbiter enable
* bit in the strap register, or generic host/adapter assumptions.
*
* Rather than hard-code a bad assumption in the general 440 code, the
* 440 pci code requires the board to decide at runtime.
*
* Return 0 for adapter mode, non-zero for host (monarch) mode.
*
*
************************************************************************/
int is_pci_host(struct pci_controller *hose)
{
/* The yucca board is always configured as host. */
return 1;
}
int yucca_pcie_card_present(int port)
{
u16 reg;
reg = in_be16((u16 *)FPGA_REG1C);
switch(port) {
case 0:
return !(reg & FPGA_REG1C_PE0_PRSNT);
case 1:
return !(reg & FPGA_REG1C_PE1_PRSNT);
case 2:
return !(reg & FPGA_REG1C_PE2_PRSNT);
default:
return 0;
}
}
/*
* For the given slot, set rootpoint mode, send power to the slot,
* turn on the green LED and turn off the yellow LED, enable the clock
* and turn off reset.
*/
void yucca_setup_pcie_fpga_rootpoint(int port)
{
u16 power, clock, green_led, yellow_led, reset_off, rootpoint, endpoint;
switch(port) {
case 0:
rootpoint = FPGA_REG1C_PE0_ROOTPOINT;
endpoint = 0;
power = FPGA_REG1A_PE0_PWRON;
green_led = FPGA_REG1A_PE0_GLED;
clock = FPGA_REG1A_PE0_REFCLK_ENABLE;
yellow_led = FPGA_REG1A_PE0_YLED;
reset_off = FPGA_REG1C_PE0_PERST;
break;
case 1:
rootpoint = 0;
endpoint = FPGA_REG1C_PE1_ENDPOINT;
power = FPGA_REG1A_PE1_PWRON;
green_led = FPGA_REG1A_PE1_GLED;
clock = FPGA_REG1A_PE1_REFCLK_ENABLE;
yellow_led = FPGA_REG1A_PE1_YLED;
reset_off = FPGA_REG1C_PE1_PERST;
break;
case 2:
rootpoint = 0;
endpoint = FPGA_REG1C_PE2_ENDPOINT;
power = FPGA_REG1A_PE2_PWRON;
green_led = FPGA_REG1A_PE2_GLED;
clock = FPGA_REG1A_PE2_REFCLK_ENABLE;
yellow_led = FPGA_REG1A_PE2_YLED;
reset_off = FPGA_REG1C_PE2_PERST;
break;
default:
return;
}
out_be16((u16 *)FPGA_REG1A,
~(power | clock | green_led) &
(yellow_led | in_be16((u16 *)FPGA_REG1A)));
out_be16((u16 *)FPGA_REG1C,
~(endpoint | reset_off) &
(rootpoint | in_be16((u16 *)FPGA_REG1C)));
/*
* Leave device in reset for a while after powering on the
* slot to give it a chance to initialize.
*/
udelay(250 * 1000);
out_be16((u16 *)FPGA_REG1C, reset_off | in_be16((u16 *)FPGA_REG1C));
}
/*
* For the given slot, set endpoint mode, send power to the slot,
* turn on the green LED and turn off the yellow LED, enable the clock
* .In end point mode reset bit is read only.
*/
void yucca_setup_pcie_fpga_endpoint(int port)
{
u16 power, clock, green_led, yellow_led, reset_off, rootpoint, endpoint;
switch(port) {
case 0:
rootpoint = FPGA_REG1C_PE0_ROOTPOINT;
endpoint = 0;
power = FPGA_REG1A_PE0_PWRON;
green_led = FPGA_REG1A_PE0_GLED;
clock = FPGA_REG1A_PE0_REFCLK_ENABLE;
yellow_led = FPGA_REG1A_PE0_YLED;
reset_off = FPGA_REG1C_PE0_PERST;
break;
case 1:
rootpoint = 0;
endpoint = FPGA_REG1C_PE1_ENDPOINT;
power = FPGA_REG1A_PE1_PWRON;
green_led = FPGA_REG1A_PE1_GLED;
clock = FPGA_REG1A_PE1_REFCLK_ENABLE;
yellow_led = FPGA_REG1A_PE1_YLED;
reset_off = FPGA_REG1C_PE1_PERST;
break;
case 2:
rootpoint = 0;
endpoint = FPGA_REG1C_PE2_ENDPOINT;
power = FPGA_REG1A_PE2_PWRON;
green_led = FPGA_REG1A_PE2_GLED;
clock = FPGA_REG1A_PE2_REFCLK_ENABLE;
yellow_led = FPGA_REG1A_PE2_YLED;
reset_off = FPGA_REG1C_PE2_PERST;
break;
default:
return;
}
out_be16((u16 *)FPGA_REG1A,
~(power | clock | green_led) &
(yellow_led | in_be16((u16 *)FPGA_REG1A)));
out_be16((u16 *)FPGA_REG1C,
~(rootpoint | reset_off) &
(endpoint | in_be16((u16 *)FPGA_REG1C)));
}
static struct pci_controller pcie_hose[3] = {{0},{0},{0}};
void pcie_setup_hoses(void)
{
struct pci_controller *hose;
int i, bus;
/*
* assume we're called after the PCIX hose is initialized, which takes
* bus ID 0 and therefore start numbering PCIe's from 1.
*/
bus = 1;
for (i = 0; i <= 2; i++) {
/* Check for yucca card presence */
if (!yucca_pcie_card_present(i))
continue;
#ifdef PCIE_ENDPOINT
yucca_setup_pcie_fpga_endpoint(i);
if (ppc440spe_init_pcie_endport(i)) {
#else
yucca_setup_pcie_fpga_rootpoint(i);
if (ppc440spe_init_pcie_rootport(i)) {
#endif
printf("PCIE%d: initialization failed\n", i);
continue;
}
hose = &pcie_hose[i];
hose->first_busno = bus;
hose->last_busno = bus;
bus++;
/* setup mem resource */
pci_set_region(hose->regions + 0,
CFG_PCIE_MEMBASE + i * CFG_PCIE_MEMSIZE,
CFG_PCIE_MEMBASE + i * CFG_PCIE_MEMSIZE,
CFG_PCIE_MEMSIZE,
PCI_REGION_MEM
);
hose->region_count = 1;
pci_register_hose(hose);
#ifdef PCIE_ENDPOINT
ppc440spe_setup_pcie_endpoint(hose, i);
/*
* Reson for no scanning is endpoint can not generate
* upstream configuration accesses.
*/
#else
ppc440spe_setup_pcie_rootpoint(hose, i);
/*
* Config access can only go down stream
*/
hose->last_busno = pci_hose_scan(hose);
#endif
}
}
#endif /* defined(CONFIG_PCI) */
int misc_init_f (void)
{
uint reg;
#if defined(CONFIG_STRESS)
uint i ;
uint disp;
#endif
out16(FPGA_REG10, (in16(FPGA_REG10) &
~(FPGA_REG10_AUTO_NEG_DIS|FPGA_REG10_RESET_ETH)) |
FPGA_REG10_10MHZ_ENABLE |
FPGA_REG10_100MHZ_ENABLE |
FPGA_REG10_GIGABIT_ENABLE |
FPGA_REG10_FULL_DUPLEX );
udelay(10000); /* wait 10ms */
out16(FPGA_REG10, (in16(FPGA_REG10) | FPGA_REG10_RESET_ETH));
/* minimal init for PCIe */
/* pci express 0 Endpoint Mode */
mfsdr(SDR0_PE0DLPSET, reg);
reg &= (~0x00400000);
mtsdr(SDR0_PE0DLPSET, reg);
/* pci express 1 Rootpoint Mode */
mfsdr(SDR0_PE1DLPSET, reg);
reg |= 0x00400000;
mtsdr(SDR0_PE1DLPSET, reg);
/* pci express 2 Rootpoint Mode */
mfsdr(SDR0_PE2DLPSET, reg);
reg |= 0x00400000;
mtsdr(SDR0_PE2DLPSET, reg);
out16(FPGA_REG1C,(in16 (FPGA_REG1C) &
~FPGA_REG1C_PE0_ROOTPOINT &
~FPGA_REG1C_PE1_ENDPOINT &
~FPGA_REG1C_PE2_ENDPOINT));
#if defined(CONFIG_STRESS)
/*
* all this setting done by linux only needed by stress an charac. test
* procedure
* PCIe 1 Rootpoint PCIe2 Endpoint
* PCIe 0 FIR Pre-emphasis Filter Coefficients & Transmit Driver
* Power Level
*/
for (i = 0, disp = 0; i < 8; i++, disp += 3) {
mfsdr(SDR0_PE0HSSSET1L0 + disp, reg);
reg |= 0x33000000;
mtsdr(SDR0_PE0HSSSET1L0 + disp, reg);
}
/*
* PCIe 1 FIR Pre-emphasis Filter Coefficients & Transmit Driver
* Power Level
*/
for (i = 0, disp = 0; i < 4; i++, disp += 3) {
mfsdr(SDR0_PE1HSSSET1L0 + disp, reg);
reg |= 0x33000000;
mtsdr(SDR0_PE1HSSSET1L0 + disp, reg);
}
/*
* PCIE 2 FIR Pre-emphasis Filter Coefficients & Transmit Driver
* Power Level
*/
for (i = 0, disp = 0; i < 4; i++, disp += 3) {
mfsdr(SDR0_PE2HSSSET1L0 + disp, reg);
reg |= 0x33000000;
mtsdr(SDR0_PE2HSSSET1L0 + disp, reg);
}
reg = 0x21242222;
mtsdr(SDR0_PE2UTLSET1, reg);
reg = 0x11000000;
mtsdr(SDR0_PE2UTLSET2, reg);
/* pci express 1 Endpoint Mode */
reg = 0x00004000;
mtsdr(SDR0_PE2DLPSET, reg);
mtsdr(SDR0_UART1, 0x2080005a); /* patch for TG */
#endif
return 0;
}
void fpga_init(void)
{
/*
* by default sdram access is disabled by fpga
*/
out16(FPGA_REG10, (in16 (FPGA_REG10) |
FPGA_REG10_SDRAM_ENABLE |
FPGA_REG10_ENABLE_DISPLAY ));
return;
}
#ifdef CONFIG_POST
/*
* Returns 1 if keys pressed to start the power-on long-running tests
* Called from board_init_f().
*/
int post_hotkeys_pressed(void)
{
return (ctrlc());
}
#endif
/*---------------------------------------------------------------------------+
| onboard_pci_arbiter_selected => from EPLD
+---------------------------------------------------------------------------*/
int onboard_pci_arbiter_selected(int core_pci)
{
#if 0
unsigned long onboard_pci_arbiter_sel;
onboard_pci_arbiter_sel = in16(FPGA_REG0) & FPGA_REG0_EXT_ARB_SEL_MASK;
if (onboard_pci_arbiter_sel == FPGA_REG0_EXT_ARB_SEL_EXTERNAL)
return (BOARD_OPTION_SELECTED);
else
#endif
return (BOARD_OPTION_NOT_SELECTED);
}
/*---------------------------------------------------------------------------+
| ppcMfcpr.
+---------------------------------------------------------------------------*/
unsigned long ppcMfcpr(unsigned long cpr_reg)
{
unsigned long msr;
unsigned long cpr_cfgaddr_temp;
unsigned long cpr_value;
msr = (mfmsr () & ~(MSR_EE));
cpr_cfgaddr_temp = mfdcr(CPR0_CFGADDR);
mtdcr(CPR0_CFGADDR, cpr_reg);
cpr_value = mfdcr(CPR0_CFGDATA);
mtdcr(CPR0_CFGADDR, cpr_cfgaddr_temp);
mtmsr(msr);
return (cpr_value);
}
/*----------------------------------------------------------------------------+
| Indirect Access of the System DCR's (SDR)
| ppcMfsdr
+----------------------------------------------------------------------------*/
unsigned long ppcMfsdr(unsigned long sdr_reg)
{
unsigned long msr;
unsigned long sdr_cfgaddr_temp;
unsigned long sdr_value;
msr = (mfmsr () & ~(MSR_EE));
sdr_cfgaddr_temp = mfdcr(SDR0_CFGADDR);
mtdcr(SDR0_CFGADDR, sdr_reg);
sdr_value = mfdcr(SDR0_CFGDATA);
mtdcr(SDR0_CFGADDR, sdr_cfgaddr_temp);
mtmsr(msr);
return (sdr_value);
}