blob: 903856d2d5700277fda7035b3d75e6bc4f6bcebb [file] [log] [blame]
/*
* (C) Copyright 2001
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* I2C Functions similar to the standard memory functions.
*
* There are several parameters in many of the commands that bear further
* explanations:
*
* {i2c_chip} is the I2C chip address (the first byte sent on the bus).
* Each I2C chip on the bus has a unique address. On the I2C data bus,
* the address is the upper seven bits and the LSB is the "read/write"
* bit. Note that the {i2c_chip} address specified on the command
* line is not shifted up: e.g. a typical EEPROM memory chip may have
* an I2C address of 0x50, but the data put on the bus will be 0xA0
* for write and 0xA1 for read. This "non shifted" address notation
* matches at least half of the data sheets :-/.
*
* {addr} is the address (or offset) within the chip. Small memory
* chips have 8 bit addresses. Large memory chips have 16 bit
* addresses. Other memory chips have 9, 10, or 11 bit addresses.
* Many non-memory chips have multiple registers and {addr} is used
* as the register index. Some non-memory chips have only one register
* and therefore don't need any {addr} parameter.
*
* The default {addr} parameter is one byte (.1) which works well for
* memories and registers with 8 bits of address space.
*
* You can specify the length of the {addr} field with the optional .0,
* .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
* manipulating a single register device which doesn't use an address
* field, use "0.0" for the address and the ".0" length field will
* suppress the address in the I2C data stream. This also works for
* successive reads using the I2C auto-incrementing memory pointer.
*
* If you are manipulating a large memory with 2-byte addresses, use
* the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
*
* Then there are the unfortunate memory chips that spill the most
* significant 1, 2, or 3 bits of address into the chip address byte.
* This effectively makes one chip (logically) look like 2, 4, or
* 8 chips. This is handled (awkwardly) by #defining
* CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
* {addr} field (since .1 is the default, it doesn't actually have to
* be specified). Examples: given a memory chip at I2C chip address
* 0x50, the following would happen...
* i2c md 50 0 10 display 16 bytes starting at 0x000
* On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
* i2c md 50 100 10 display 16 bytes starting at 0x100
* On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
* i2c md 50 210 10 display 16 bytes starting at 0x210
* On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
* This is awfully ugly. It would be nice if someone would think up
* a better way of handling this.
*
* Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
*/
#include <common.h>
#include <command.h>
#include <environment.h>
#include <i2c.h>
#include <malloc.h>
#include <asm/byteorder.h>
/* Display values from last command.
* Memory modify remembered values are different from display memory.
*/
static uchar i2c_dp_last_chip;
static uint i2c_dp_last_addr;
static uint i2c_dp_last_alen;
static uint i2c_dp_last_length = 0x10;
static uchar i2c_mm_last_chip;
static uint i2c_mm_last_addr;
static uint i2c_mm_last_alen;
/* If only one I2C bus is present, the list of devices to ignore when
* the probe command is issued is represented by a 1D array of addresses.
* When multiple buses are present, the list is an array of bus-address
* pairs. The following macros take care of this */
#if defined(CONFIG_SYS_I2C_NOPROBES)
#if defined(CONFIG_I2C_MULTI_BUS)
static struct
{
uchar bus;
uchar addr;
} i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
#define GET_BUS_NUM i2c_get_bus_num()
#define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
#else /* single bus */
static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
#define GET_BUS_NUM 0
#define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
#endif /* CONFIG_MULTI_BUS */
#define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
#endif
#if defined(CONFIG_I2C_MUX)
static I2C_MUX_DEVICE *i2c_mux_devices = NULL;
static int i2c_mux_busid = CONFIG_SYS_MAX_I2C_BUS;
DECLARE_GLOBAL_DATA_PTR;
#endif
static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
/* TODO: Implement architecture-specific get/set functions */
unsigned int __def_i2c_get_bus_speed(void)
{
return CONFIG_SYS_I2C_SPEED;
}
unsigned int i2c_get_bus_speed(void)
__attribute__((weak, alias("__def_i2c_get_bus_speed")));
int __def_i2c_set_bus_speed(unsigned int speed)
{
if (speed != CONFIG_SYS_I2C_SPEED)
return -1;
return 0;
}
int i2c_set_bus_speed(unsigned int)
__attribute__((weak, alias("__def_i2c_set_bus_speed")));
/*
* Syntax:
* i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
*/
#define DISP_LINE_LEN 16
int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
uint addr, alen, length;
int j, nbytes, linebytes;
/* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_dp_last_chip;
addr = i2c_dp_last_addr;
alen = i2c_dp_last_alen;
length = i2c_dp_last_length;
if (argc < 3) {
cmd_usage(cmdtp);
return 1;
}
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified.
*/
alen = 1;
/*
* I2C chip address
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
cmd_usage(cmdtp);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* If another parameter, it is the length to display.
* Length is the number of objects, not number of bytes.
*/
if (argc > 3)
length = simple_strtoul(argv[3], NULL, 16);
}
/*
* Print the lines.
*
* We buffer all read data, so we can make sure data is read only
* once.
*/
nbytes = length;
do {
unsigned char linebuf[DISP_LINE_LEN];
unsigned char *cp;
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
puts ("Error reading the chip.\n");
else {
printf("%04x:", addr);
cp = linebuf;
for (j=0; j<linebytes; j++) {
printf(" %02x", *cp++);
addr++;
}
puts (" ");
cp = linebuf;
for (j=0; j<linebytes; j++) {
if ((*cp < 0x20) || (*cp > 0x7e))
puts (".");
else
printf("%c", *cp);
cp++;
}
putc ('\n');
}
nbytes -= linebytes;
} while (nbytes > 0);
i2c_dp_last_chip = chip;
i2c_dp_last_addr = addr;
i2c_dp_last_alen = alen;
i2c_dp_last_length = length;
return 0;
}
int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
}
int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
}
/* Write (fill) memory
*
* Syntax:
* i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
*/
int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
uchar byte;
int count;
int j;
if ((argc < 4) || (argc > 5)) {
cmd_usage(cmdtp);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
cmd_usage(cmdtp);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* Value to write is always specified.
*/
byte = simple_strtoul(argv[3], NULL, 16);
/*
* Optional count
*/
if (argc == 5)
count = simple_strtoul(argv[4], NULL, 16);
else
count = 1;
while (count-- > 0) {
if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
puts ("Error writing the chip.\n");
/*
* Wait for the write to complete. The write can take
* up to 10mSec (we allow a little more time).
*
* On some chips, while the write is in progress, the
* chip doesn't respond. This apparently isn't a
* universal feature so we don't take advantage of it.
*/
/*
* No write delay with FRAM devices.
*/
#if !defined(CONFIG_SYS_I2C_FRAM)
udelay(11000);
#endif
#if 0
for (timeout = 0; timeout < 10; timeout++) {
udelay(2000);
if (i2c_probe(chip) == 0)
break;
}
#endif
}
return (0);
}
/* Calculate a CRC on memory
*
* Syntax:
* i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
*/
int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
int count;
uchar byte;
ulong crc;
ulong err;
int j;
if (argc < 4) {
cmd_usage(cmdtp);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
cmd_usage(cmdtp);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* Count is always specified
*/
count = simple_strtoul(argv[3], NULL, 16);
printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
/*
* CRC a byte at a time. This is going to be slooow, but hey, the
* memories are small and slow too so hopefully nobody notices.
*/
crc = 0;
err = 0;
while (count-- > 0) {
if (i2c_read(chip, addr, alen, &byte, 1) != 0)
err++;
crc = crc32 (crc, &byte, 1);
addr++;
}
if (err > 0)
puts ("Error reading the chip,\n");
else
printf ("%08lx\n", crc);
return 0;
}
/* Modify memory.
*
* Syntax:
* i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
* i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
*/
static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
ulong data;
int size = 1;
int nbytes;
int j;
extern char console_buffer[];
if (argc != 3) {
cmd_usage(cmdtp);
return 1;
}
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* got a good command to get here */
#endif
/*
* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_mm_last_chip;
addr = i2c_mm_last_addr;
alen = i2c_mm_last_alen;
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified. Check for a size specification.
* Defaults to byte if no or incorrect specification.
*/
size = cmd_get_data_size(argv[0], 1);
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
cmd_usage(cmdtp);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
}
/*
* Print the address, followed by value. Then accept input for
* the next value. A non-converted value exits.
*/
do {
printf("%08lx:", addr);
if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
puts ("\nError reading the chip,\n");
else {
data = cpu_to_be32(data);
if (size == 1)
printf(" %02lx", (data >> 24) & 0x000000FF);
else if (size == 2)
printf(" %04lx", (data >> 16) & 0x0000FFFF);
else
printf(" %08lx", data);
}
nbytes = readline (" ? ");
if (nbytes == 0) {
/*
* <CR> pressed as only input, don't modify current
* location and move to next.
*/
if (incrflag)
addr += size;
nbytes = size;
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* good enough to not time out */
#endif
}
#ifdef CONFIG_BOOT_RETRY_TIME
else if (nbytes == -2)
break; /* timed out, exit the command */
#endif
else {
char *endp;
data = simple_strtoul(console_buffer, &endp, 16);
if (size == 1)
data = data << 24;
else if (size == 2)
data = data << 16;
data = be32_to_cpu(data);
nbytes = endp - console_buffer;
if (nbytes) {
#ifdef CONFIG_BOOT_RETRY_TIME
/*
* good enough to not time out
*/
reset_cmd_timeout();
#endif
if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
puts ("Error writing the chip.\n");
#ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
#endif
if (incrflag)
addr += size;
}
}
} while (nbytes);
i2c_mm_last_chip = chip;
i2c_mm_last_addr = addr;
i2c_mm_last_alen = alen;
return 0;
}
/*
* Syntax:
* i2c probe {addr}{.0, .1, .2}
*/
int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int j;
#if defined(CONFIG_SYS_I2C_NOPROBES)
int k, skip;
uchar bus = GET_BUS_NUM;
#endif /* NOPROBES */
puts ("Valid chip addresses:");
for (j = 0; j < 128; j++) {
#if defined(CONFIG_SYS_I2C_NOPROBES)
skip = 0;
for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
skip = 1;
break;
}
}
if (skip)
continue;
#endif
if (i2c_probe(j) == 0)
printf(" %02X", j);
}
putc ('\n');
#if defined(CONFIG_SYS_I2C_NOPROBES)
puts ("Excluded chip addresses:");
for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
if (COMPARE_BUS(bus,k))
printf(" %02X", NO_PROBE_ADDR(k));
}
putc ('\n');
#endif
return 0;
}
/*
* Syntax:
* i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
* {length} - Number of bytes to read
* {delay} - A DECIMAL number and defaults to 1000 uSec
*/
int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
ulong alen;
uint addr;
uint length;
u_char bytes[16];
int delay;
int j;
if (argc < 3) {
cmd_usage(cmdtp);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
cmd_usage(cmdtp);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* Length is the number of objects, not number of bytes.
*/
length = 1;
length = simple_strtoul(argv[3], NULL, 16);
if (length > sizeof(bytes))
length = sizeof(bytes);
/*
* The delay time (uSec) is optional.
*/
delay = 1000;
if (argc > 3)
delay = simple_strtoul(argv[4], NULL, 10);
/*
* Run the loop...
*/
while (1) {
if (i2c_read(chip, addr, alen, bytes, length) != 0)
puts ("Error reading the chip.\n");
udelay(delay);
}
/* NOTREACHED */
return 0;
}
/*
* The SDRAM command is separately configured because many
* (most?) embedded boards don't use SDRAM DIMMs.
*/
#if defined(CONFIG_CMD_SDRAM)
static void print_ddr2_tcyc (u_char const b)
{
printf ("%d.", (b >> 4) & 0x0F);
switch (b & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf ("%d ns\n", b & 0x0F);
break;
case 0xA:
puts ("25 ns\n");
break;
case 0xB:
puts ("33 ns\n");
break;
case 0xC:
puts ("66 ns\n");
break;
case 0xD:
puts ("75 ns\n");
break;
default:
puts ("?? ns\n");
break;
}
}
static void decode_bits (u_char const b, char const *str[], int const do_once)
{
u_char mask;
for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
if (b & mask) {
puts (*str);
if (do_once)
return;
}
}
}
/*
* Syntax:
* i2c sdram {i2c_chip}
*/
int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
enum { unknown, EDO, SDRAM, DDR2 } type;
u_char chip;
u_char data[128];
u_char cksum;
int j;
static const char *decode_CAS_DDR2[] = {
" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
};
static const char *decode_CAS_default[] = {
" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
};
static const char *decode_CS_WE_default[] = {
" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
};
static const char *decode_byte21_default[] = {
" TBD (bit 7)\n",
" Redundant row address\n",
" Differential clock input\n",
" Registerd DQMB inputs\n",
" Buffered DQMB inputs\n",
" On-card PLL\n",
" Registered address/control lines\n",
" Buffered address/control lines\n"
};
static const char *decode_byte22_DDR2[] = {
" TBD (bit 7)\n",
" TBD (bit 6)\n",
" TBD (bit 5)\n",
" TBD (bit 4)\n",
" TBD (bit 3)\n",
" Supports partial array self refresh\n",
" Supports 50 ohm ODT\n",
" Supports weak driver\n"
};
static const char *decode_row_density_DDR2[] = {
"512 MiB", "256 MiB", "128 MiB", "16 GiB",
"8 GiB", "4 GiB", "2 GiB", "1 GiB"
};
static const char *decode_row_density_default[] = {
"512 MiB", "256 MiB", "128 MiB", "64 MiB",
"32 MiB", "16 MiB", "8 MiB", "4 MiB"
};
if (argc < 2) {
cmd_usage(cmdtp);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul (argv[1], NULL, 16);
if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
puts ("No SDRAM Serial Presence Detect found.\n");
return 1;
}
cksum = 0;
for (j = 0; j < 63; j++) {
cksum += data[j];
}
if (cksum != data[63]) {
printf ("WARNING: Configuration data checksum failure:\n"
" is 0x%02x, calculated 0x%02x\n", data[63], cksum);
}
printf ("SPD data revision %d.%d\n",
(data[62] >> 4) & 0x0F, data[62] & 0x0F);
printf ("Bytes used 0x%02X\n", data[0]);
printf ("Serial memory size 0x%02X\n", 1 << data[1]);
puts ("Memory type ");
switch (data[2]) {
case 2:
type = EDO;
puts ("EDO\n");
break;
case 4:
type = SDRAM;
puts ("SDRAM\n");
break;
case 8:
type = DDR2;
puts ("DDR2\n");
break;
default:
type = unknown;
puts ("unknown\n");
break;
}
puts ("Row address bits ");
if ((data[3] & 0x00F0) == 0)
printf ("%d\n", data[3] & 0x0F);
else
printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
puts ("Column address bits ");
if ((data[4] & 0x00F0) == 0)
printf ("%d\n", data[4] & 0x0F);
else
printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
switch (type) {
case DDR2:
printf ("Number of ranks %d\n",
(data[5] & 0x07) + 1);
break;
default:
printf ("Module rows %d\n", data[5]);
break;
}
switch (type) {
case DDR2:
printf ("Module data width %d bits\n", data[6]);
break;
default:
printf ("Module data width %d bits\n",
(data[7] << 8) | data[6]);
break;
}
puts ("Interface signal levels ");
switch(data[8]) {
case 0: puts ("TTL 5.0 V\n"); break;
case 1: puts ("LVTTL\n"); break;
case 2: puts ("HSTL 1.5 V\n"); break;
case 3: puts ("SSTL 3.3 V\n"); break;
case 4: puts ("SSTL 2.5 V\n"); break;
case 5: puts ("SSTL 1.8 V\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time ");
print_ddr2_tcyc (data[9]);
break;
default:
printf ("SDRAM cycle time %d.%d ns\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access time 0.%d%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
default:
printf ("SDRAM access time %d.%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
}
puts ("EDC configuration ");
switch (data[11]) {
case 0: puts ("None\n"); break;
case 1: puts ("Parity\n"); break;
case 2: puts ("ECC\n"); break;
default: puts ("unknown\n"); break;
}
if ((data[12] & 0x80) == 0)
puts ("No self refresh, rate ");
else
puts ("Self refresh, rate ");
switch(data[12] & 0x7F) {
case 0: puts ("15.625 us\n"); break;
case 1: puts ("3.9 us\n"); break;
case 2: puts ("7.8 us\n"); break;
case 3: puts ("31.3 us\n"); break;
case 4: puts ("62.5 us\n"); break;
case 5: puts ("125 us\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf ("SDRAM width (primary) %d\n", data[13]);
break;
default:
printf ("SDRAM width (primary) %d\n", data[13] & 0x7F);
if ((data[13] & 0x80) != 0) {
printf (" (second bank) %d\n",
2 * (data[13] & 0x7F));
}
break;
}
switch (type) {
case DDR2:
if (data[14] != 0)
printf ("EDC width %d\n", data[14]);
break;
default:
if (data[14] != 0) {
printf ("EDC width %d\n",
data[14] & 0x7F);
if ((data[14] & 0x80) != 0) {
printf (" (second bank) %d\n",
2 * (data[14] & 0x7F));
}
}
break;
}
if (DDR2 != type) {
printf ("Min clock delay, back-to-back random column addresses "
"%d\n", data[15]);
}
puts ("Burst length(s) ");
if (data[16] & 0x80) puts (" Page");
if (data[16] & 0x08) puts (" 8");
if (data[16] & 0x04) puts (" 4");
if (data[16] & 0x02) puts (" 2");
if (data[16] & 0x01) puts (" 1");
putc ('\n');
printf ("Number of banks %d\n", data[17]);
switch (type) {
case DDR2:
puts ("CAS latency(s) ");
decode_bits (data[18], decode_CAS_DDR2, 0);
putc ('\n');
break;
default:
puts ("CAS latency(s) ");
decode_bits (data[18], decode_CAS_default, 0);
putc ('\n');
break;
}
if (DDR2 != type) {
puts ("CS latency(s) ");
decode_bits (data[19], decode_CS_WE_default, 0);
putc ('\n');
}
if (DDR2 != type) {
puts ("WE latency(s) ");
decode_bits (data[20], decode_CS_WE_default, 0);
putc ('\n');
}
switch (type) {
case DDR2:
puts ("Module attributes:\n");
if (data[21] & 0x80)
puts (" TBD (bit 7)\n");
if (data[21] & 0x40)
puts (" Analysis probe installed\n");
if (data[21] & 0x20)
puts (" TBD (bit 5)\n");
if (data[21] & 0x10)
puts (" FET switch external enable\n");
printf (" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
if (data[20] & 0x11) {
printf (" %d active registers on DIMM\n",
(data[21] & 0x03) + 1);
}
break;
default:
puts ("Module attributes:\n");
if (!data[21])
puts (" (none)\n");
else
decode_bits (data[21], decode_byte21_default, 0);
break;
}
switch (type) {
case DDR2:
decode_bits (data[22], decode_byte22_DDR2, 0);
break;
default:
puts ("Device attributes:\n");
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
else puts (" Upper Vcc tolerance 10%\n");
if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
else puts (" Lower Vcc tolerance 10%\n");
if (data[22] & 0x08) puts (" Supports write1/read burst\n");
if (data[22] & 0x04) puts (" Supports precharge all\n");
if (data[22] & 0x02) puts (" Supports auto precharge\n");
if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time (2nd highest CAS latency) ");
print_ddr2_tcyc (data[23]);
break;
default:
printf ("SDRAM cycle time (2nd highest CAS latency) %d."
"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access from clock (2nd highest CAS latency) 0."
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
default:
printf ("SDRAM access from clock (2nd highest CAS latency) %d."
"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM cycle time (3rd highest CAS latency) ");
print_ddr2_tcyc (data[25]);
break;
default:
printf ("SDRAM cycle time (3rd highest CAS latency) %d."
"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("SDRAM access from clock (3rd highest CAS latency) 0."
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
default:
printf ("SDRAM access from clock (3rd highest CAS latency) %d."
"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Minimum row precharge %d.%02d ns\n",
(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
break;
default:
printf ("Minimum row precharge %d ns\n", data[27]);
break;
}
switch (type) {
case DDR2:
printf ("Row active to row active min %d.%02d ns\n",
(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
break;
default:
printf ("Row active to row active min %d ns\n", data[28]);
break;
}
switch (type) {
case DDR2:
printf ("RAS to CAS delay min %d.%02d ns\n",
(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
break;
default:
printf ("RAS to CAS delay min %d ns\n", data[29]);
break;
}
printf ("Minimum RAS pulse width %d ns\n", data[30]);
switch (type) {
case DDR2:
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_DDR2, 1);
putc ('\n');
break;
default:
puts ("Density of each row ");
decode_bits (data[31], decode_row_density_default, 1);
putc ('\n');
break;
}
switch (type) {
case DDR2:
puts ("Command and Address setup ");
if (data[32] >= 0xA0) {
printf ("1.%d%d ns\n",
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
} else {
printf ("0.%d%d ns\n",
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
}
break;
default:
printf ("Command and Address setup %c%d.%d ns\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
break;
}
switch (type) {
case DDR2:
puts ("Command and Address hold ");
if (data[33] >= 0xA0) {
printf ("1.%d%d ns\n",
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
} else {
printf ("0.%d%d ns\n",
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
}
break;
default:
printf ("Command and Address hold %c%d.%d ns\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Data signal input setup 0.%d%d ns\n",
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
break;
default:
printf ("Data signal input setup %c%d.%d ns\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf ("Data signal input hold 0.%d%d ns\n",
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
break;
default:
printf ("Data signal input hold %c%d.%d ns\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
break;
}
puts ("Manufacturer's JEDEC ID ");
for (j = 64; j <= 71; j++)
printf ("%02X ", data[j]);
putc ('\n');
printf ("Manufacturing Location %02X\n", data[72]);
puts ("Manufacturer's Part Number ");
for (j = 73; j <= 90; j++)
printf ("%02X ", data[j]);
putc ('\n');
printf ("Revision Code %02X %02X\n", data[91], data[92]);
printf ("Manufacturing Date %02X %02X\n", data[93], data[94]);
puts ("Assembly Serial Number ");
for (j = 95; j <= 98; j++)
printf ("%02X ", data[j]);
putc ('\n');
if (DDR2 != type) {
printf ("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
}
return 0;
}
#endif
int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
i2c_init (CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
return 0;
}
#if defined(CONFIG_I2C_MUX)
int do_i2c_add_bus(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
int ret=0;
if (argc == 1) {
/* show all busses */
I2C_MUX *mux;
I2C_MUX_DEVICE *device = i2c_mux_devices;
printf ("Busses reached over muxes:\n");
while (device != NULL) {
printf ("Bus ID: %x\n", device->busid);
printf (" reached over Mux(es):\n");
mux = device->mux;
while (mux != NULL) {
printf (" %s@%x ch: %x\n", mux->name, mux->chip, mux->channel);
mux = mux->next;
}
device = device->next;
}
} else {
I2C_MUX_DEVICE *dev;
dev = i2c_mux_ident_muxstring ((uchar *)argv[1]);
ret = 0;
}
return ret;
}
#endif /* CONFIG_I2C_MUX */
#if defined(CONFIG_I2C_MULTI_BUS)
int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
int bus_idx, ret=0;
if (argc == 1)
/* querying current setting */
printf("Current bus is %d\n", i2c_get_bus_num());
else {
bus_idx = simple_strtoul(argv[1], NULL, 10);
printf("Setting bus to %d\n", bus_idx);
ret = i2c_set_bus_num(bus_idx);
if (ret)
printf("Failure changing bus number (%d)\n", ret);
}
return ret;
}
#endif /* CONFIG_I2C_MULTI_BUS */
int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
int speed, ret=0;
if (argc == 1)
/* querying current speed */
printf("Current bus speed=%d\n", i2c_get_bus_speed());
else {
speed = simple_strtoul(argv[1], NULL, 10);
printf("Setting bus speed to %d Hz\n", speed);
ret = i2c_set_bus_speed(speed);
if (ret)
printf("Failure changing bus speed (%d)\n", ret);
}
return ret;
}
int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
#if defined(CONFIG_I2C_MUX)
if (!strncmp(argv[1], "bu", 2))
return do_i2c_add_bus(cmdtp, flag, --argc, ++argv);
#endif /* CONFIG_I2C_MUX */
if (!strncmp(argv[1], "sp", 2))
return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
#if defined(CONFIG_I2C_MULTI_BUS)
if (!strncmp(argv[1], "de", 2))
return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
#endif /* CONFIG_I2C_MULTI_BUS */
if (!strncmp(argv[1], "md", 2))
return do_i2c_md(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "mm", 2))
return do_i2c_mm(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "mw", 2))
return do_i2c_mw(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "nm", 2))
return do_i2c_nm(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "cr", 2))
return do_i2c_crc(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "pr", 2))
return do_i2c_probe(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "re", 2))
return do_i2c_reset(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "lo", 2))
return do_i2c_loop(cmdtp, flag, --argc, ++argv);
#if defined(CONFIG_CMD_SDRAM)
if (!strncmp(argv[1], "sd", 2))
return do_sdram(cmdtp, flag, --argc, ++argv);
#endif
else
cmd_usage(cmdtp);
return 0;
}
/***************************************************/
U_BOOT_CMD(
i2c, 6, 1, do_i2c,
"I2C sub-system",
#if defined(CONFIG_I2C_MUX)
"bus [muxtype:muxaddr:muxchannel] - add a new bus reached over muxes.\n"
#endif /* CONFIG_I2C_MUX */
"speed [speed] - show or set I2C bus speed\n"
#if defined(CONFIG_I2C_MULTI_BUS)
"i2c dev [dev] - show or set current I2C bus\n"
#endif /* CONFIG_I2C_MULTI_BUS */
"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
"i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
"i2c probe - show devices on the I2C bus\n"
"i2c reset - re-init the I2C Controller\n"
"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
#if defined(CONFIG_CMD_SDRAM)
"i2c sdram chip - print SDRAM configuration information\n"
#endif
);
#if defined(CONFIG_I2C_MUX)
int i2c_mux_add_device(I2C_MUX_DEVICE *dev)
{
I2C_MUX_DEVICE *devtmp = i2c_mux_devices;
if (i2c_mux_devices == NULL) {
i2c_mux_devices = dev;
return 0;
}
while (devtmp->next != NULL)
devtmp = devtmp->next;
devtmp->next = dev;
return 0;
}
I2C_MUX_DEVICE *i2c_mux_search_device(int id)
{
I2C_MUX_DEVICE *device = i2c_mux_devices;
while (device != NULL) {
if (device->busid == id)
return device;
device = device->next;
}
return NULL;
}
/* searches in the buf from *pos the next ':'.
* returns:
* 0 if found (with *pos = where)
* < 0 if an error occured
* > 0 if the end of buf is reached
*/
static int i2c_mux_search_next (int *pos, uchar *buf, int len)
{
while ((buf[*pos] != ':') && (*pos < len)) {
*pos += 1;
}
if (*pos >= len)
return 1;
if (buf[*pos] != ':')
return -1;
return 0;
}
static int i2c_mux_get_busid (void)
{
int tmp = i2c_mux_busid;
i2c_mux_busid ++;
return tmp;
}
/* Analyses a Muxstring and sends immediately the
Commands to the Muxes. Runs from Flash.
*/
int i2c_mux_ident_muxstring_f (uchar *buf)
{
int pos = 0;
int oldpos;
int ret = 0;
int len = strlen((char *)buf);
int chip;
uchar channel;
int was = 0;
while (ret == 0) {
oldpos = pos;
/* search name */
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("ERROR\n");
/* search address */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("ERROR\n");
buf[pos] = 0;
chip = simple_strtoul((char *)&buf[oldpos], NULL, 16);
buf[pos] = ':';
/* search channel */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret < 0)
printf ("ERROR\n");
was = 0;
if (buf[pos] != 0) {
buf[pos] = 0;
was = 1;
}
channel = simple_strtoul((char *)&buf[oldpos], NULL, 16);
if (was)
buf[pos] = ':';
if (i2c_write(chip, 0, 0, &channel, 1) != 0) {
printf ("Error setting Mux: chip:%x channel: \
%x\n", chip, channel);
return -1;
}
pos ++;
oldpos = pos;
}
return 0;
}
/* Analyses a Muxstring and if this String is correct
* adds a new I2C Bus.
*/
I2C_MUX_DEVICE *i2c_mux_ident_muxstring (uchar *buf)
{
I2C_MUX_DEVICE *device;
I2C_MUX *mux;
int pos = 0;
int oldpos;
int ret = 0;
int len = strlen((char *)buf);
int was = 0;
device = (I2C_MUX_DEVICE *)malloc (sizeof(I2C_MUX_DEVICE));
device->mux = NULL;
device->busid = i2c_mux_get_busid ();
device->next = NULL;
while (ret == 0) {
mux = (I2C_MUX *)malloc (sizeof(I2C_MUX));
mux->next = NULL;
/* search name of mux */
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("%s no name.\n", __FUNCTION__);
mux->name = (char *)malloc (pos - oldpos + 1);
memcpy (mux->name, &buf[oldpos], pos - oldpos);
mux->name[pos - oldpos] = 0;
/* search address */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret != 0)
printf ("%s no mux address.\n", __FUNCTION__);
buf[pos] = 0;
mux->chip = simple_strtoul((char *)&buf[oldpos], NULL, 16);
buf[pos] = ':';
/* search channel */
pos ++;
oldpos = pos;
ret = i2c_mux_search_next(&pos, buf, len);
if (ret < 0)
printf ("%s no mux channel.\n", __FUNCTION__);
was = 0;
if (buf[pos] != 0) {
buf[pos] = 0;
was = 1;
}
mux->channel = simple_strtoul((char *)&buf[oldpos], NULL, 16);
if (was)
buf[pos] = ':';
if (device->mux == NULL)
device->mux = mux;
else {
I2C_MUX *muxtmp = device->mux;
while (muxtmp->next != NULL) {
muxtmp = muxtmp->next;
}
muxtmp->next = mux;
}
pos ++;
oldpos = pos;
}
if (ret > 0) {
/* Add Device */
i2c_mux_add_device (device);
return device;
}
return NULL;
}
int i2x_mux_select_mux(int bus)
{
I2C_MUX_DEVICE *dev;
I2C_MUX *mux;
if ((gd->flags & GD_FLG_RELOC) != GD_FLG_RELOC) {
/* select Default Mux Bus */
#if defined(CONFIG_SYS_I2C_IVM_BUS)
i2c_mux_ident_muxstring_f ((uchar *)CONFIG_SYS_I2C_IVM_BUS);
#else
{
unsigned char *buf;
buf = (unsigned char *) getenv("EEprom_ivm");
if (buf != NULL)
i2c_mux_ident_muxstring_f (buf);
}
#endif
return 0;
}
dev = i2c_mux_search_device(bus);
if (dev == NULL)
return -1;
mux = dev->mux;
while (mux != NULL) {
if (i2c_write(mux->chip, 0, 0, &mux->channel, 1) != 0) {
printf ("Error setting Mux: chip:%x channel: \
%x\n", mux->chip, mux->channel);
return -1;
}
mux = mux->next;
}
return 0;
}
#endif /* CONFIG_I2C_MUX */