blob: 173e946465dea5e9ef31177ee3eb98439eaaaa05 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
*
* (C) Copyright 2007-2011
* Allwinner Technology Co., Ltd. <www.allwinnertech.com>
* Tom Cubie <tangliang@allwinnertech.com>
*
* Some init for sunxi platform.
*/
#include <common.h>
#include <cpu_func.h>
#include <init.h>
#include <log.h>
#include <mmc.h>
#include <i2c.h>
#include <serial.h>
#include <spl.h>
#include <asm/cache.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/spl.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/timer.h>
#include <asm/arch/tzpc.h>
#include <asm/arch/mmc.h>
#include <linux/compiler.h>
struct fel_stash {
uint32_t sp;
uint32_t lr;
uint32_t cpsr;
uint32_t sctlr;
uint32_t vbar;
uint32_t cr;
};
struct fel_stash fel_stash __section(".data");
#ifdef CONFIG_ARM64
#include <asm/armv8/mmu.h>
static struct mm_region sunxi_mem_map[] = {
{
/* SRAM, MMIO regions */
.virt = 0x0UL,
.phys = 0x0UL,
.size = 0x40000000UL,
.attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE
}, {
/* RAM */
.virt = 0x40000000UL,
.phys = 0x40000000UL,
.size = CONFIG_SUNXI_DRAM_MAX_SIZE,
.attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) |
PTE_BLOCK_INNER_SHARE
}, {
/* List terminator */
0,
}
};
struct mm_region *mem_map = sunxi_mem_map;
ulong board_get_usable_ram_top(ulong total_size)
{
/* Some devices (like the EMAC) have a 32-bit DMA limit. */
if (gd->ram_top > (1ULL << 32))
return 1ULL << 32;
return gd->ram_top;
}
#endif
#ifdef CONFIG_SPL_BUILD
static int gpio_init(void)
{
__maybe_unused uint val;
#if CONFIG_CONS_INDEX == 1 && defined(CONFIG_UART0_PORT_F)
#if defined(CONFIG_MACH_SUN4I) || \
defined(CONFIG_MACH_SUN7I) || \
defined(CONFIG_MACH_SUN8I_R40)
/* disable GPB22,23 as uart0 tx,rx to avoid conflict */
sunxi_gpio_set_cfgpin(SUNXI_GPB(22), SUNXI_GPIO_INPUT);
sunxi_gpio_set_cfgpin(SUNXI_GPB(23), SUNXI_GPIO_INPUT);
#endif
#if (defined(CONFIG_MACH_SUN8I) && !defined(CONFIG_MACH_SUN8I_R40)) || \
defined(CONFIG_MACH_SUNIV)
sunxi_gpio_set_cfgpin(SUNXI_GPF(2), SUN8I_GPF_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPF(4), SUN8I_GPF_UART0);
#else
sunxi_gpio_set_cfgpin(SUNXI_GPF(2), SUNXI_GPF_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPF(4), SUNXI_GPF_UART0);
#endif
sunxi_gpio_set_pull(SUNXI_GPF(4), 1);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUNIV)
sunxi_gpio_set_cfgpin(SUNXI_GPE(0), SUNIV_GPE_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPE(1), SUNIV_GPE_UART0);
sunxi_gpio_set_pull(SUNXI_GPE(1), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && (defined(CONFIG_MACH_SUN4I) || \
defined(CONFIG_MACH_SUN7I) || \
defined(CONFIG_MACH_SUN8I_R40))
sunxi_gpio_set_cfgpin(SUNXI_GPB(22), SUN4I_GPB_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPB(23), SUN4I_GPB_UART0);
sunxi_gpio_set_pull(SUNXI_GPB(23), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN5I)
sunxi_gpio_set_cfgpin(SUNXI_GPB(19), SUN5I_GPB_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPB(20), SUN5I_GPB_UART0);
sunxi_gpio_set_pull(SUNXI_GPB(20), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN6I)
sunxi_gpio_set_cfgpin(SUNXI_GPH(20), SUN6I_GPH_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPH(21), SUN6I_GPH_UART0);
sunxi_gpio_set_pull(SUNXI_GPH(21), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN8I_A33)
sunxi_gpio_set_cfgpin(SUNXI_GPB(0), SUN8I_A33_GPB_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPB(1), SUN8I_A33_GPB_UART0);
sunxi_gpio_set_pull(SUNXI_GPB(1), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUNXI_H3_H5)
sunxi_gpio_set_cfgpin(SUNXI_GPA(4), SUN8I_H3_GPA_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPA(5), SUN8I_H3_GPA_UART0);
sunxi_gpio_set_pull(SUNXI_GPA(5), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN50I)
sunxi_gpio_set_cfgpin(SUNXI_GPB(8), SUN50I_GPB_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPB(9), SUN50I_GPB_UART0);
sunxi_gpio_set_pull(SUNXI_GPB(9), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN50I_H6)
sunxi_gpio_set_cfgpin(SUNXI_GPH(0), SUN50I_H6_GPH_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPH(1), SUN50I_H6_GPH_UART0);
sunxi_gpio_set_pull(SUNXI_GPH(1), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN50I_H616)
sunxi_gpio_set_cfgpin(SUNXI_GPH(0), SUN50I_H616_GPH_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPH(1), SUN50I_H616_GPH_UART0);
sunxi_gpio_set_pull(SUNXI_GPH(1), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN8I_A83T)
sunxi_gpio_set_cfgpin(SUNXI_GPB(9), SUN8I_A83T_GPB_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPB(10), SUN8I_A83T_GPB_UART0);
sunxi_gpio_set_pull(SUNXI_GPB(10), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN8I_V3S)
sunxi_gpio_set_cfgpin(SUNXI_GPB(8), SUN8I_V3S_GPB_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPB(9), SUN8I_V3S_GPB_UART0);
sunxi_gpio_set_pull(SUNXI_GPB(9), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 1 && defined(CONFIG_MACH_SUN9I)
sunxi_gpio_set_cfgpin(SUNXI_GPH(12), SUN9I_GPH_UART0);
sunxi_gpio_set_cfgpin(SUNXI_GPH(13), SUN9I_GPH_UART0);
sunxi_gpio_set_pull(SUNXI_GPH(13), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 2 && defined(CONFIG_MACH_SUN5I)
sunxi_gpio_set_cfgpin(SUNXI_GPG(3), SUN5I_GPG_UART1);
sunxi_gpio_set_cfgpin(SUNXI_GPG(4), SUN5I_GPG_UART1);
sunxi_gpio_set_pull(SUNXI_GPG(4), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 3 && defined(CONFIG_MACH_SUN8I_H3)
sunxi_gpio_set_cfgpin(SUNXI_GPA(0), SUN8I_H3_GPA_UART2);
sunxi_gpio_set_cfgpin(SUNXI_GPA(1), SUN8I_H3_GPA_UART2);
sunxi_gpio_set_pull(SUNXI_GPA(1), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 3 && defined(CONFIG_MACH_SUN8I)
sunxi_gpio_set_cfgpin(SUNXI_GPB(0), SUN8I_GPB_UART2);
sunxi_gpio_set_cfgpin(SUNXI_GPB(1), SUN8I_GPB_UART2);
sunxi_gpio_set_pull(SUNXI_GPB(1), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 5 && defined(CONFIG_MACH_SUN8I)
sunxi_gpio_set_cfgpin(SUNXI_GPL(2), SUN8I_GPL_R_UART);
sunxi_gpio_set_cfgpin(SUNXI_GPL(3), SUN8I_GPL_R_UART);
sunxi_gpio_set_pull(SUNXI_GPL(3), SUNXI_GPIO_PULL_UP);
#elif CONFIG_CONS_INDEX == 2 && defined(CONFIG_MACH_SUN8I) && \
!defined(CONFIG_MACH_SUN8I_R40)
sunxi_gpio_set_cfgpin(SUNXI_GPG(6), SUN8I_GPG_UART1);
sunxi_gpio_set_cfgpin(SUNXI_GPG(7), SUN8I_GPG_UART1);
sunxi_gpio_set_pull(SUNXI_GPG(7), SUNXI_GPIO_PULL_UP);
#else
#error Unsupported console port number. Please fix pin mux settings in board.c
#endif
#ifdef CONFIG_SUN50I_GEN_H6
/* Update PIO power bias configuration by copy hardware detected value */
val = readl(SUNXI_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_VAL);
writel(val, SUNXI_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_SEL);
val = readl(SUNXI_R_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_VAL);
writel(val, SUNXI_R_PIO_BASE + SUN50I_H6_GPIO_POW_MOD_SEL);
#endif
return 0;
}
static int spl_board_load_image(struct spl_image_info *spl_image,
struct spl_boot_device *bootdev)
{
debug("Returning to FEL sp=%x, lr=%x\n", fel_stash.sp, fel_stash.lr);
return_to_fel(fel_stash.sp, fel_stash.lr);
return 0;
}
SPL_LOAD_IMAGE_METHOD("FEL", 0, BOOT_DEVICE_BOARD, spl_board_load_image);
#endif
#define SUNXI_INVALID_BOOT_SOURCE -1
static int suniv_get_boot_source(void)
{
/* Get the last function call from BootROM's stack. */
u32 brom_call = *(u32 *)(uintptr_t)(fel_stash.sp - 4);
/* translate SUNIV BootROM stack to standard SUNXI boot sources */
switch (brom_call) {
case SUNIV_BOOTED_FROM_MMC0:
return SUNXI_BOOTED_FROM_MMC0;
case SUNIV_BOOTED_FROM_SPI:
return SUNXI_BOOTED_FROM_SPI;
case SUNIV_BOOTED_FROM_MMC1:
return SUNXI_BOOTED_FROM_MMC2;
/* SPI NAND is not supported yet. */
case SUNIV_BOOTED_FROM_NAND:
return SUNXI_INVALID_BOOT_SOURCE;
}
/* If we get here something went wrong try to boot from FEL.*/
printf("Unknown boot source from BROM: 0x%x\n", brom_call);
return SUNXI_INVALID_BOOT_SOURCE;
}
static int sunxi_egon_valid(struct boot_file_head *egon_head)
{
return !memcmp(egon_head->magic, BOOT0_MAGIC, 8); /* eGON.BT0 */
}
static int sunxi_toc0_valid(struct toc0_main_info *toc0_info)
{
return !memcmp(toc0_info->name, TOC0_MAIN_INFO_NAME, 8); /* TOC0.GLH */
}
static int sunxi_get_boot_source(void)
{
struct boot_file_head *egon_head = (void *)SPL_ADDR;
struct toc0_main_info *toc0_info = (void *)SPL_ADDR;
/*
* On the ARMv5 SoCs, the SPL header in SRAM is overwritten by the
* exception vectors in U-Boot proper, so we won't find any
* information there. Also the FEL stash is only valid in the SPL,
* so we can't use that either. So if this is called from U-Boot
* proper, just return MMC0 as a placeholder, for now.
*/
if (IS_ENABLED(CONFIG_MACH_SUNIV) &&
!IS_ENABLED(CONFIG_SPL_BUILD))
return SUNXI_BOOTED_FROM_MMC0;
if (IS_ENABLED(CONFIG_MACH_SUNIV))
return suniv_get_boot_source();
if (sunxi_egon_valid(egon_head))
return readb(&egon_head->boot_media);
if (sunxi_toc0_valid(toc0_info))
return readb(&toc0_info->platform[0]);
/* Not a valid image, so we must have been booted via FEL. */
return SUNXI_INVALID_BOOT_SOURCE;
}
/* The sunxi internal brom will try to loader external bootloader
* from mmc0, nand flash, mmc2.
*/
uint32_t sunxi_get_boot_device(void)
{
int boot_source = sunxi_get_boot_source();
/*
* When booting from the SD card or NAND memory, the "eGON.BT0"
* signature is expected to be found in memory at the address 0x0004
* (see the "mksunxiboot" tool, which generates this header).
*
* When booting in the FEL mode over USB, this signature is patched in
* memory and replaced with something else by the 'fel' tool. This other
* signature is selected in such a way, that it can't be present in a
* valid bootable SD card image (because the BROM would refuse to
* execute the SPL in this case).
*
* This checks for the signature and if it is not found returns to
* the FEL code in the BROM to wait and receive the main u-boot
* binary over USB. If it is found, it determines where SPL was
* read from.
*/
switch (boot_source) {
case SUNXI_INVALID_BOOT_SOURCE:
return BOOT_DEVICE_BOARD;
case SUNXI_BOOTED_FROM_MMC0:
case SUNXI_BOOTED_FROM_MMC0_HIGH:
return BOOT_DEVICE_MMC1;
case SUNXI_BOOTED_FROM_NAND:
return BOOT_DEVICE_NAND;
case SUNXI_BOOTED_FROM_MMC2:
case SUNXI_BOOTED_FROM_MMC2_HIGH:
return BOOT_DEVICE_MMC2;
case SUNXI_BOOTED_FROM_SPI:
return BOOT_DEVICE_SPI;
}
panic("Unknown boot source %d\n", boot_source);
return -1; /* Never reached */
}
#ifdef CONFIG_SPL_BUILD
uint32_t sunxi_get_spl_size(void)
{
struct boot_file_head *egon_head = (void *)SPL_ADDR;
struct toc0_main_info *toc0_info = (void *)SPL_ADDR;
if (sunxi_egon_valid(egon_head))
return readl(&egon_head->length);
if (sunxi_toc0_valid(toc0_info))
return readl(&toc0_info->length);
/* Not a valid image, so use the default U-Boot offset. */
return 0;
}
/*
* The eGON SPL image can be located at 8KB or at 128KB into an SD card or
* an eMMC device. The boot source has bit 4 set in the latter case.
* By adding 120KB to the normal offset when booting from a "high" location
* we can support both cases.
* Also U-Boot proper is located at least 32KB after the SPL, but will
* immediately follow the SPL if that is bigger than that.
*/
unsigned long spl_mmc_get_uboot_raw_sector(struct mmc *mmc,
unsigned long raw_sect)
{
unsigned long spl_size = sunxi_get_spl_size();
unsigned long sector;
sector = max(raw_sect, spl_size / 512);
switch (sunxi_get_boot_source()) {
case SUNXI_BOOTED_FROM_MMC0_HIGH:
case SUNXI_BOOTED_FROM_MMC2_HIGH:
sector += (128 - 8) * 2;
break;
}
return sector;
}
u32 spl_boot_device(void)
{
return sunxi_get_boot_device();
}
__weak void sunxi_sram_init(void)
{
}
/*
* When booting from an eMMC boot partition, the SPL puts the same boot
* source code into SRAM A1 as when loading the SPL from the normal
* eMMC user data partition: 0x2. So to know where we have been loaded
* from, we repeat the BROM algorithm here: checking for a valid eGON boot
* image at offset 0 of a (potentially) selected boot partition.
* If any of the conditions is not met, it must have been the eMMC user
* data partition.
*/
static bool sunxi_valid_emmc_boot(struct mmc *mmc)
{
struct blk_desc *bd = mmc_get_blk_desc(mmc);
uint32_t *buffer = (void *)(uintptr_t)CONFIG_SYS_TEXT_BASE;
struct boot_file_head *egon_head = (void *)buffer;
int bootpart = EXT_CSD_EXTRACT_BOOT_PART(mmc->part_config);
uint32_t spl_size, emmc_checksum, chksum = 0;
ulong count;
/* The BROM requires BOOT_ACK to be enabled. */
if (!EXT_CSD_EXTRACT_BOOT_ACK(mmc->part_config))
return false;
/*
* The BOOT_BUS_CONDITION register must be 4-bit SDR, with (0x09)
* or without (0x01) high speed timings.
*/
if ((mmc->ext_csd[EXT_CSD_BOOT_BUS_WIDTH] & 0x1b) != 0x01 &&
(mmc->ext_csd[EXT_CSD_BOOT_BUS_WIDTH] & 0x1b) != 0x09)
return false;
/* Partition 0 is the user data partition, bootpart must be 1 or 2. */
if (bootpart != 1 && bootpart != 2)
return false;
/* Failure to switch to the boot partition is fatal. */
if (mmc_switch_part(mmc, bootpart))
return false;
/* Read the first block to do some sanity checks on the eGON header. */
count = blk_dread(bd, 0, 1, buffer);
if (count != 1 || !sunxi_egon_valid(egon_head))
return false;
/* Read the rest of the SPL now we know it's halfway sane. */
spl_size = buffer[4];
count = blk_dread(bd, 1, DIV_ROUND_UP(spl_size, bd->blksz) - 1,
buffer + bd->blksz / 4);
/* Save the checksum and replace it with the "stamp value". */
emmc_checksum = buffer[3];
buffer[3] = 0x5f0a6c39;
/* The checksum is a simple ignore-carry addition of all words. */
for (count = 0; count < spl_size / 4; count++)
chksum += buffer[count];
debug("eMMC boot part SPL checksum: stored: 0x%08x, computed: 0x%08x\n",
emmc_checksum, chksum);
return emmc_checksum == chksum;
}
u32 spl_mmc_boot_mode(struct mmc *mmc, const u32 boot_device)
{
static u32 result = ~0;
if (result != ~0)
return result;
result = MMCSD_MODE_RAW;
if (!IS_SD(mmc) && IS_ENABLED(CONFIG_SUPPORT_EMMC_BOOT)) {
if (sunxi_valid_emmc_boot(mmc))
result = MMCSD_MODE_EMMCBOOT;
else
mmc_switch_part(mmc, 0);
}
debug("%s(): %s part\n", __func__,
result == MMCSD_MODE_RAW ? "user" : "boot");
return result;
}
void board_init_f(ulong dummy)
{
sunxi_sram_init();
#if defined CONFIG_MACH_SUN6I || defined CONFIG_MACH_SUN8I_H3
/* Enable non-secure access to some peripherals */
tzpc_init();
#endif
clock_init();
timer_init();
gpio_init();
spl_init();
preloader_console_init();
#if CONFIG_IS_ENABLED(I2C) && CONFIG_IS_ENABLED(SYS_I2C_LEGACY)
/* Needed early by sunxi_board_init if PMU is enabled */
i2c_init_board();
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
#endif
sunxi_board_init();
}
#endif
#if !CONFIG_IS_ENABLED(SYSRESET)
void reset_cpu(void)
{
#if defined(CONFIG_SUNXI_GEN_SUN4I) || defined(CONFIG_MACH_SUN8I_R40)
static const struct sunxi_wdog *wdog =
&((struct sunxi_timer_reg *)SUNXI_TIMER_BASE)->wdog;
/* Set the watchdog for its shortest interval (.5s) and wait */
writel(WDT_MODE_RESET_EN | WDT_MODE_EN, &wdog->mode);
writel(WDT_CTRL_KEY | WDT_CTRL_RESTART, &wdog->ctl);
while (1) {
/* sun5i sometimes gets stuck without this */
writel(WDT_MODE_RESET_EN | WDT_MODE_EN, &wdog->mode);
}
#elif defined(CONFIG_SUNXI_GEN_SUN6I) || defined(CONFIG_SUN50I_GEN_H6)
#if defined(CONFIG_MACH_SUN50I_H6)
/* WDOG is broken for some H6 rev. use the R_WDOG instead */
static const struct sunxi_wdog *wdog =
(struct sunxi_wdog *)SUNXI_R_WDOG_BASE;
#else
static const struct sunxi_wdog *wdog =
((struct sunxi_timer_reg *)SUNXI_TIMER_BASE)->wdog;
#endif
/* Set the watchdog for its shortest interval (.5s) and wait */
writel(WDT_CFG_RESET, &wdog->cfg);
writel(WDT_MODE_EN, &wdog->mode);
writel(WDT_CTRL_KEY | WDT_CTRL_RESTART, &wdog->ctl);
while (1) { }
#endif
}
#endif
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) && !defined(CONFIG_ARM64)
void enable_caches(void)
{
/* Enable D-cache. I-cache is already enabled in start.S */
dcache_enable();
}
#endif