blob: a94a769a2b6bd12af8230a26b63d4e421916367f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2022, Linaro Limited
*/
#include <dm.h>
#include <efi.h>
#include <efi_loader.h>
#include <efi_variable.h>
#include <event.h>
#include <fwu.h>
#include <fwu_mdata.h>
#include <log.h>
#include <malloc.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <u-boot/crc.h>
struct fwu_data g_fwu_data;
static struct udevice *g_dev;
static u8 in_trial;
static u8 boottime_check;
enum {
IMAGE_ACCEPT_SET = 1,
IMAGE_ACCEPT_CLEAR,
};
/**
* fwu_bank_accepted() - Has the bank been accepted
* @data: Version agnostic FWU metadata information
* @bank: Update bank to check
*
* Check in the given bank if all the images have been accepted.
*
* Return: true if all images accepted, false otherwise
*/
bool fwu_bank_accepted(struct fwu_data *data, uint32_t bank)
{
u32 i;
struct fwu_image_entry *img_entry;
struct fwu_image_bank_info *img_bank_info;
img_entry = &data->fwu_images[0];
for (i = 0; i < CONFIG_FWU_NUM_IMAGES_PER_BANK; i++) {
img_bank_info = &img_entry[i].img_bank_info[bank];
if (!img_bank_info->accepted)
return false;
}
return true;
}
static int trial_counter_update(u16 *trial_state_ctr)
{
bool delete;
u32 var_attr;
efi_status_t status;
efi_uintn_t var_size;
delete = !trial_state_ctr ? true : false;
var_size = !trial_state_ctr ? 0 : (efi_uintn_t)sizeof(*trial_state_ctr);
var_attr = !trial_state_ctr ? 0 : EFI_VARIABLE_NON_VOLATILE |
EFI_VARIABLE_BOOTSERVICE_ACCESS;
status = efi_set_variable_int(u"TrialStateCtr",
&efi_global_variable_guid,
var_attr,
var_size, trial_state_ctr, false);
if ((delete && (status != EFI_NOT_FOUND &&
status != EFI_SUCCESS)) ||
(!delete && status != EFI_SUCCESS))
return -1;
return 0;
}
static int trial_counter_read(u16 *trial_state_ctr)
{
efi_status_t status;
efi_uintn_t var_size;
var_size = (efi_uintn_t)sizeof(trial_state_ctr);
status = efi_get_variable_int(u"TrialStateCtr",
&efi_global_variable_guid,
NULL,
&var_size, trial_state_ctr,
NULL);
if (status != EFI_SUCCESS) {
log_err("Unable to read TrialStateCtr variable\n");
return -1;
}
return 0;
}
static int fwu_trial_count_update(void)
{
int ret;
u16 trial_state_ctr;
ret = trial_counter_read(&trial_state_ctr);
if (ret) {
log_debug("Unable to read trial_state_ctr\n");
goto out;
}
++trial_state_ctr;
if (trial_state_ctr > CONFIG_FWU_TRIAL_STATE_CNT) {
log_info("Trial State count exceeded. Revert back to previous_active_index\n");
ret = fwu_revert_boot_index();
if (ret)
log_err("Unable to revert active_index\n");
ret = 1;
} else {
log_info("Trial State count: attempt %d out of %d\n",
trial_state_ctr, CONFIG_FWU_TRIAL_STATE_CNT);
ret = trial_counter_update(&trial_state_ctr);
if (ret)
log_err("Unable to increment TrialStateCtr variable\n");
}
out:
return ret;
}
static u32 in_trial_state(void)
{
return g_fwu_data.trial_state;
}
static int fwu_get_image_type_id(u8 image_index, efi_guid_t *image_type_id)
{
int i;
struct efi_fw_image *image;
image = update_info.images;
for (i = 0; i < update_info.num_images; i++) {
if (image_index == image[i].image_index) {
guidcpy(image_type_id, &image[i].image_type_id);
return 0;
}
}
return -ENOENT;
}
static int mdata_crc_check(struct fwu_mdata *mdata)
{
int ret;
u32 calc_crc32;
uint32_t mdata_size;
void *buf = &mdata->version;
ret = fwu_get_mdata_size(&mdata_size);
if (ret)
return ret;
calc_crc32 = crc32(0, buf, mdata_size - sizeof(u32));
return calc_crc32 == mdata->crc32 ? 0 : -EINVAL;
}
static void fwu_data_crc_update(uint32_t crc32)
{
g_fwu_data.crc32 = crc32;
}
/**
* fwu_get_data() - Return the version agnostic FWU structure
*
* Return the pointer to the version agnostic FWU structure.
*
* Return: Pointer to the FWU data structure
*/
struct fwu_data *fwu_get_data(void)
{
return &g_fwu_data;
}
static void fwu_populate_mdata_bank_index(struct fwu_data *fwu_data)
{
struct fwu_mdata *mdata = fwu_data->fwu_mdata;
mdata->active_index = fwu_data->active_index;
mdata->previous_active_index = fwu_data->previous_active_index;
}
/**
* fwu_get_dev() - Return the FWU metadata device
*
* Return the pointer to the FWU metadata device.
*
* Return: Pointer to the FWU metadata dev
*/
struct udevice *fwu_get_dev(void)
{
return g_dev;
}
/**
* fwu_sync_mdata() - Update given meta-data partition(s) with the copy provided
* @data: FWU Data structure
* @part: Bitmask of FWU metadata partitions to be written to
*
* Return: 0 if OK, -ve on error
*/
int fwu_sync_mdata(struct fwu_mdata *mdata, int part)
{
int err;
uint mdata_size;
void *buf = &mdata->version;
if (part == BOTH_PARTS) {
err = fwu_sync_mdata(mdata, SECONDARY_PART);
if (err)
return err;
part = PRIMARY_PART;
}
err = fwu_get_mdata_size(&mdata_size);
if (err)
return err;
/*
* Calculate the crc32 for the updated FWU metadata
* and put the updated value in the FWU metadata crc32
* field
*/
mdata->crc32 = crc32(0, buf, mdata_size - sizeof(u32));
fwu_data_crc_update(mdata->crc32);
err = fwu_write_mdata(g_dev, mdata, part == PRIMARY_PART, mdata_size);
if (err) {
log_err("Unable to write %s mdata\n",
part == PRIMARY_PART ? "primary" : "secondary");
return err;
}
return 0;
}
/**
* fwu_mdata_copies_allocate() - Allocate memory for metadata
* @mdata_size: Size of the metadata structure
*
* Allocate memory for storing both the copies of the FWU metadata. The
* copies are then used as a cache for storing FWU metadata contents.
*
* Return: 0 if OK, -ve on error
*/
int fwu_mdata_copies_allocate(u32 mdata_size)
{
if (g_fwu_data.fwu_mdata)
return 0;
/*
* Allocate the total memory that would be needed for both
* the copies.
*/
g_fwu_data.fwu_mdata = calloc(2, mdata_size);
if (!g_fwu_data.fwu_mdata) {
log_err("Unable to allocate space for FWU metadata\n");
return -ENOMEM;
}
return 0;
}
/**
* fwu_get_mdata() - Read, verify and return the FWU metadata
* @mdata: Output FWU metadata read or NULL
*
* Read both the metadata copies from the storage media, verify their checksum,
* and ascertain that both copies match. If one of the copies has gone bad,
* restore it from the good copy.
*
* Return: 0 if OK, -ve on error
*/
int fwu_get_mdata(struct fwu_mdata *mdata)
{
int err;
uint32_t mdata_size;
bool parts_ok[2] = { false };
struct fwu_mdata *parts_mdata[2];
err = fwu_get_mdata_size(&mdata_size);
if (err)
return err;
parts_mdata[0] = g_fwu_data.fwu_mdata;
if (!parts_mdata[0]) {
log_err("Memory not allocated for the FWU Metadata copies\n");
return -ENOMEM;
}
parts_mdata[1] = (struct fwu_mdata *)((char *)parts_mdata[0] +
mdata_size);
/* if mdata already read and ready */
err = mdata_crc_check(parts_mdata[0]);
if (!err)
goto ret_mdata;
/* else read, verify and, if needed, fix mdata */
for (int i = 0; i < 2; i++) {
parts_ok[i] = false;
err = fwu_read_mdata(g_dev, parts_mdata[i], !i, mdata_size);
if (!err) {
err = mdata_crc_check(parts_mdata[i]);
if (!err)
parts_ok[i] = true;
else
log_debug("mdata : %s crc32 failed\n", i ? "secondary" : "primary");
}
}
if (parts_ok[0] && parts_ok[1]) {
/*
* Before returning, check that both the
* FWU metadata copies are the same.
*/
err = memcmp(parts_mdata[0], parts_mdata[1], mdata_size);
if (!err)
goto ret_mdata;
/*
* If not, populate the secondary partition from the
* primary partition copy.
*/
log_info("Both FWU metadata copies are valid but do not match.");
log_info(" Restoring the secondary partition from the primary\n");
parts_ok[1] = false;
}
for (int i = 0; i < 2; i++) {
if (parts_ok[i])
continue;
memcpy(parts_mdata[i], parts_mdata[1 - i], mdata_size);
err = fwu_sync_mdata(parts_mdata[i], i ? SECONDARY_PART : PRIMARY_PART);
if (err) {
log_debug("mdata : %s write failed\n", i ? "secondary" : "primary");
return err;
}
}
ret_mdata:
if (!err && mdata)
memcpy(mdata, parts_mdata[0], mdata_size);
return err;
}
/**
* fwu_get_active_index() - Get active_index from the FWU metadata
* @active_idx: active_index value to be read
*
* Read the active_index field from the FWU metadata and place it in
* the variable pointed to be the function argument.
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_get_active_index(uint *active_idx)
{
int ret = 0;
struct fwu_data *data = &g_fwu_data;
/*
* Found the FWU metadata partition, now read the active_index
* value
*/
*active_idx = data->active_index;
if (*active_idx >= CONFIG_FWU_NUM_BANKS) {
log_debug("Active index value read is incorrect\n");
ret = -EINVAL;
}
return ret;
}
/**
* fwu_set_active_index() - Set active_index in the FWU metadata
* @active_idx: active_index value to be set
*
* Update the active_index field in the FWU metadata
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_set_active_index(uint active_idx)
{
int ret;
struct fwu_data *data = &g_fwu_data;
if (active_idx >= CONFIG_FWU_NUM_BANKS) {
log_debug("Invalid active index value\n");
return -EINVAL;
}
/*
* Update the active index and previous_active_index fields
* in the FWU metadata
*/
data->previous_active_index = data->active_index;
data->active_index = active_idx;
fwu_populate_mdata_bank_index(data);
/*
* Now write this updated FWU metadata to both the
* FWU metadata partitions
*/
ret = fwu_sync_mdata(data->fwu_mdata, BOTH_PARTS);
if (ret) {
log_debug("Failed to update FWU metadata partitions\n");
ret = -EIO;
}
return ret;
}
/**
* fwu_get_dfu_alt_num() - Get the dfu_alt_num to be used for capsule update
* @image_index: The Image Index for the image
* @alt_num: pointer to store dfu_alt_num
*
* Currently, the capsule update driver uses the DFU framework for
* the updates. This function gets the DFU alt number which is to
* be used for capsule update.
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_get_dfu_alt_num(u8 image_index, u8 *alt_num)
{
int ret, i;
uint update_bank;
efi_guid_t *image_guid, image_type_id;
struct fwu_data *data = &g_fwu_data;
struct fwu_image_entry *img_entry;
struct fwu_image_bank_info *img_bank_info;
ret = fwu_plat_get_update_index(&update_bank);
if (ret) {
log_debug("Failed to get the FWU update bank\n");
goto out;
}
ret = fwu_get_image_type_id(image_index, &image_type_id);
if (ret) {
log_debug("Unable to get image_type_id for image_index %u\n",
image_index);
goto out;
}
ret = -EINVAL;
/*
* The FWU metadata has been read. Now get the image_guid for the
* image with the update_bank.
*/
for (i = 0; i < CONFIG_FWU_NUM_IMAGES_PER_BANK; i++) {
if (!guidcmp(&image_type_id,
&data->fwu_images[i].image_type_guid)) {
img_entry = &data->fwu_images[i];
img_bank_info = &img_entry->img_bank_info[update_bank];
image_guid = &img_bank_info->image_guid;
ret = fwu_plat_get_alt_num(g_dev, image_guid, alt_num);
if (ret)
log_debug("alt_num not found for partition with GUID %pUs\n",
image_guid);
else
log_debug("alt_num %d for partition %pUs\n",
*alt_num, image_guid);
goto out;
}
}
log_err("Partition with the image type %pUs not found\n",
&image_type_id);
out:
return ret;
}
/**
* fwu_revert_boot_index() - Revert the active index in the FWU metadata
*
* Revert the active_index value in the FWU metadata, by swapping the values
* of active_index and previous_active_index in both copies of the
* FWU metadata.
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_revert_boot_index(void)
{
int ret;
u32 cur_active_index;
struct fwu_data *data = &g_fwu_data;
/*
* Swap the active index and previous_active_index fields
* in the FWU metadata
*/
cur_active_index = data->active_index;
data->active_index = data->previous_active_index;
data->previous_active_index = cur_active_index;
fwu_populate_mdata_bank_index(data);
/*
* Now write this updated FWU metadata to both the
* FWU metadata partitions
*/
ret = fwu_sync_mdata(data->fwu_mdata, BOTH_PARTS);
if (ret) {
log_debug("Failed to update FWU metadata partitions\n");
ret = -EIO;
}
return ret;
}
/**
* fwu_clrset_image_accept() - Set or Clear the Acceptance bit for the image
* @img_type_id: GUID of the image type for which the accepted bit is to be
* set or cleared
* @bank: Bank of which the image's Accept bit is to be set or cleared
* @action: Action which specifies whether image's Accept bit is to be set or
* cleared
*
* Set/Clear the accepted bit for the image specified by the img_guid parameter.
* This indicates acceptance or rejection of image for subsequent boots by some
* governing component like OS(or firmware).
*
* Return: 0 if OK, -ve on error
*
*/
static int fwu_clrset_image_accept(efi_guid_t *img_type_id, u32 bank, u8 action)
{
int ret, i;
struct fwu_data *data = &g_fwu_data;
struct fwu_image_entry *img_entry;
struct fwu_image_bank_info *img_bank_info;
img_entry = &data->fwu_images[0];
for (i = 0; i < CONFIG_FWU_NUM_IMAGES_PER_BANK; i++) {
if (!guidcmp(&img_entry[i].image_type_guid, img_type_id)) {
img_bank_info = &img_entry[i].img_bank_info[bank];
if (action == IMAGE_ACCEPT_SET)
img_bank_info->accepted |= FWU_IMAGE_ACCEPTED;
else
img_bank_info->accepted = 0;
fwu_populate_mdata_image_info(data);
ret = fwu_sync_mdata(data->fwu_mdata, BOTH_PARTS);
goto out;
}
}
/* Image not found */
ret = -ENOENT;
out:
return ret;
}
/**
* fwu_accept_image() - Set the Acceptance bit for the image
* @img_type_id: GUID of the image type for which the accepted bit is to be
* cleared
* @bank: Bank of which the image's Accept bit is to be set
*
* Set the accepted bit for the image specified by the img_guid parameter. This
* indicates acceptance of image for subsequent boots by some governing component
* like OS(or firmware).
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_accept_image(efi_guid_t *img_type_id, u32 bank)
{
return fwu_clrset_image_accept(img_type_id, bank,
IMAGE_ACCEPT_SET);
}
/**
* fwu_clear_accept_image() - Clear the Acceptance bit for the image
* @img_type_id: GUID of the image type for which the accepted bit is to be
* cleared
* @bank: Bank of which the image's Accept bit is to be cleared
*
* Clear the accepted bit for the image type specified by the img_type_id parameter.
* This function is called after the image has been updated. The accepted bit is
* cleared to be set subsequently after passing the image acceptance criteria, by
* either the OS(or firmware)
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_clear_accept_image(efi_guid_t *img_type_id, u32 bank)
{
return fwu_clrset_image_accept(img_type_id, bank,
IMAGE_ACCEPT_CLEAR);
}
/**
* fwu_plat_get_update_index() - Get the value of the update bank
* @update_idx: Bank number to which images are to be updated
*
* Get the value of the bank(partition) to which the update needs to be
* made.
*
* Note: This is a weak function and platforms can override this with
* their own implementation for selection of the update bank.
*
* Return: 0 if OK, -ve on error
*
*/
__weak int fwu_plat_get_update_index(uint *update_idx)
{
int ret;
u32 active_idx;
ret = fwu_get_active_index(&active_idx);
if (ret < 0)
return -1;
*update_idx = (active_idx + 1) % CONFIG_FWU_NUM_BANKS;
return ret;
}
/**
* fwu_plat_get_bootidx() - Get the value of the boot index
* @boot_idx: Boot index value
*
* Get the value of the bank(partition) from which the platform
* has booted. This value is passed to U-Boot from the earlier
* stage bootloader which loads and boots all the relevant
* firmware images
*/
__weak void fwu_plat_get_bootidx(uint *boot_idx)
{
int ret;
ret = fwu_get_active_index(boot_idx);
if (ret < 0)
*boot_idx = 0; /* Dummy value */
}
/**
* fwu_update_checks_pass() - Check if FWU update can be done
*
* Check if the FWU update can be executed. The updates are
* allowed only when the platform is not in Trial State and
* the boot time checks have passed
*
* Return: 1 if OK, 0 if checks do not pass
*
*/
u8 fwu_update_checks_pass(void)
{
return !in_trial && boottime_check;
}
/**
* fwu_empty_capsule_checks_pass() - Check if empty capsule can be processed
*
* Check if the empty capsule can be processed to either accept or revert
* an earlier executed update. The empty capsules need to be processed
* only when the platform is in Trial State and the boot time checks have
* passed
*
* Return: 1 if OK, 0 if not to be allowed
*
*/
u8 fwu_empty_capsule_checks_pass(void)
{
return in_trial && boottime_check;
}
/**
* fwu_trial_state_ctr_start() - Start the Trial State counter
*
* Start the counter to identify the platform booting in the
* Trial State. The counter is implemented as an EFI variable.
*
* Return: 0 if OK, -ve on error
*
*/
int fwu_trial_state_ctr_start(void)
{
int ret;
u16 trial_state_ctr;
trial_state_ctr = 0;
ret = trial_counter_update(&trial_state_ctr);
if (ret)
log_err("Unable to initialise TrialStateCtr\n");
return ret;
}
static int fwu_boottime_checks(void)
{
int ret;
u32 boot_idx, active_idx;
ret = uclass_first_device_err(UCLASS_FWU_MDATA, &g_dev);
if (ret) {
log_debug("Cannot find fwu device\n");
return ret;
}
/* Don't have boot time checks on sandbox */
if (IS_ENABLED(CONFIG_SANDBOX)) {
boottime_check = 1;
return 0;
}
ret = fwu_init();
if (ret) {
log_debug("fwu_init() failed\n");
return ret;
}
/*
* Get the Boot Index, i.e. the bank from
* which the platform has booted. This value
* gets passed from the ealier stage bootloader
* which booted u-boot, e.g. tf-a. If the
* boot index is not the same as the
* active_index read from the FWU metadata,
* update the active_index.
*/
fwu_plat_get_bootidx(&boot_idx);
if (boot_idx >= CONFIG_FWU_NUM_BANKS) {
log_err("Received incorrect value of boot_index\n");
return 0;
}
ret = fwu_get_active_index(&active_idx);
if (ret) {
log_err("Unable to read active_index\n");
return 0;
}
if (boot_idx != active_idx) {
log_info("Boot idx %u is not matching active idx %u, changing active_idx\n",
boot_idx, active_idx);
ret = fwu_set_active_index(boot_idx);
if (!ret)
boottime_check = 1;
}
if (efi_init_obj_list() != EFI_SUCCESS)
return 0;
in_trial = in_trial_state();
if (!in_trial || (ret = fwu_trial_count_update()) > 0)
ret = trial_counter_update(NULL);
if (!ret)
boottime_check = 1;
return 0;
}
EVENT_SPY_SIMPLE(EVT_MAIN_LOOP, fwu_boottime_checks);