blob: cb1a7bdd6544ac00631c88006bc3c06cac22b7b6 [file] [log] [blame]
/*
* (C) Copyright 2008
* Texas Instruments, <www.ti.com>
* Sukumar Ghorai <s-ghorai@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation's version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <mmc.h>
#include <part.h>
#include <i2c.h>
#include <twl4030.h>
#include <twl6030.h>
#include <twl6035.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
/* common definitions for all OMAPs */
#define SYSCTL_SRC (1 << 25)
#define SYSCTL_SRD (1 << 26)
struct omap_hsmmc_data {
struct hsmmc *base_addr;
int cd_gpio;
};
/* If we fail after 1 second wait, something is really bad */
#define MAX_RETRY_MS 1000
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int siz);
static struct mmc hsmmc_dev[3];
static struct omap_hsmmc_data hsmmc_dev_data[3];
#if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
static int omap_mmc_setup_gpio_in(int gpio, const char *label)
{
if (!gpio_is_valid(gpio))
return -1;
if (gpio_request(gpio, label) < 0)
return -1;
if (gpio_direction_input(gpio) < 0)
return -1;
return gpio;
}
static int omap_mmc_getcd(struct mmc *mmc)
{
int cd_gpio = ((struct omap_hsmmc_data *)mmc->priv)->cd_gpio;
return gpio_get_value(cd_gpio);
}
#else
static inline int omap_mmc_setup_gpio_in(int gpio, const char *label)
{
return -1;
}
#define omap_mmc_getcd NULL
#endif
#if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
static void omap4_vmmc_pbias_config(struct mmc *mmc)
{
u32 value = 0;
struct omap_sys_ctrl_regs *const ctrl =
(struct omap_sys_ctrl_regs *) SYSCTRL_GENERAL_CORE_BASE;
value = readl(&ctrl->control_pbiaslite);
value &= ~(MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ);
writel(value, &ctrl->control_pbiaslite);
/* set VMMC to 3V */
twl6030_power_mmc_init();
value = readl(&ctrl->control_pbiaslite);
value |= MMC1_PBIASLITE_VMODE | MMC1_PBIASLITE_PWRDNZ | MMC1_PWRDNZ;
writel(value, &ctrl->control_pbiaslite);
}
#endif
#if defined(CONFIG_OMAP54XX) && defined(CONFIG_TWL6035_POWER)
static void omap5_pbias_config(struct mmc *mmc)
{
u32 value = 0;
struct omap_sys_ctrl_regs *const ctrl =
(struct omap_sys_ctrl_regs *) SYSCTRL_GENERAL_CORE_BASE;
value = readl(&ctrl->control_pbias);
value &= ~(SDCARD_PWRDNZ | SDCARD_BIAS_PWRDNZ);
value |= SDCARD_BIAS_HIZ_MODE;
writel(value, &ctrl->control_pbias);
twl6035_mmc1_poweron_ldo();
value = readl(&ctrl->control_pbias);
value &= ~SDCARD_BIAS_HIZ_MODE;
value |= SDCARD_PBIASLITE_VMODE | SDCARD_PWRDNZ | SDCARD_BIAS_PWRDNZ;
writel(value, &ctrl->control_pbias);
value = readl(&ctrl->control_pbias);
if (value & (1 << 23)) {
value &= ~(SDCARD_PWRDNZ | SDCARD_BIAS_PWRDNZ);
value |= SDCARD_BIAS_HIZ_MODE;
writel(value, &ctrl->control_pbias);
}
}
#endif
unsigned char mmc_board_init(struct mmc *mmc)
{
#if defined(CONFIG_OMAP34XX)
t2_t *t2_base = (t2_t *)T2_BASE;
struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
u32 pbias_lite;
pbias_lite = readl(&t2_base->pbias_lite);
pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
writel(pbias_lite, &t2_base->pbias_lite);
#endif
#if defined(CONFIG_TWL4030_POWER)
twl4030_power_mmc_init();
mdelay(100); /* ramp-up delay from Linux code */
#endif
#if defined(CONFIG_OMAP34XX)
writel(pbias_lite | PBIASLITEPWRDNZ1 |
PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
&t2_base->pbias_lite);
writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
&t2_base->devconf0);
writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
&t2_base->devconf1);
/* Change from default of 52MHz to 26MHz if necessary */
if (!(mmc->host_caps & MMC_MODE_HS_52MHz))
writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
&t2_base->ctl_prog_io1);
writel(readl(&prcm_base->fclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->fclken1_core);
writel(readl(&prcm_base->iclken1_core) |
EN_MMC1 | EN_MMC2 | EN_MMC3,
&prcm_base->iclken1_core);
#endif
#if defined(CONFIG_OMAP44XX) && defined(CONFIG_TWL6030_POWER)
/* PBIAS config needed for MMC1 only */
if (mmc->block_dev.dev == 0)
omap4_vmmc_pbias_config(mmc);
#endif
#if defined(CONFIG_OMAP54XX) && defined(CONFIG_TWL6035_POWER)
if (mmc->block_dev.dev == 0)
omap5_pbias_config(mmc);
#endif
return 0;
}
void mmc_init_stream(struct hsmmc *mmc_base)
{
ulong start;
writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
writel(MMC_CMD0, &mmc_base->cmd);
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc!\n", __func__);
return;
}
}
writel(CC_MASK, &mmc_base->stat)
;
writel(MMC_CMD0, &mmc_base->cmd)
;
start = get_timer(0);
while (!(readl(&mmc_base->stat) & CC_MASK)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return;
}
}
writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
}
static int mmc_init_setup(struct mmc *mmc)
{
struct hsmmc *mmc_base;
unsigned int reg_val;
unsigned int dsor;
ulong start;
mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
mmc_board_init(mmc);
writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
&mmc_base->sysconfig);
start = get_timer(0);
while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for cc2!\n", __func__);
return TIMEOUT;
}
}
writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for softresetall!\n",
__func__);
return TIMEOUT;
}
}
writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
&mmc_base->capa);
reg_val = readl(&mmc_base->con) & RESERVED_MASK;
writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
dsor = 240;
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO | CEN_DISABLE));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return TIMEOUT;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
writel(IE_BADA | IE_CERR | IE_DEB | IE_DCRC | IE_DTO | IE_CIE |
IE_CEB | IE_CCRC | IE_CTO | IE_BRR | IE_BWR | IE_TC | IE_CC,
&mmc_base->ie);
mmc_init_stream(mmc_base);
return 0;
}
/*
* MMC controller internal finite state machine reset
*
* Used to reset command or data internal state machines, using respectively
* SRC or SRD bit of SYSCTL register
*/
static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
{
ulong start;
mmc_reg_out(&mmc_base->sysctl, bit, bit);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & bit) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for sysctl %x to clear\n",
__func__, bit);
return;
}
}
}
static int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct hsmmc *mmc_base;
unsigned int flags, mmc_stat;
ulong start;
mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
start = get_timer(0);
while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting on cmd inhibit to clear\n",
__func__);
return TIMEOUT;
}
}
writel(0xFFFFFFFF, &mmc_base->stat);
start = get_timer(0);
while (readl(&mmc_base->stat)) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for STAT (%x) to clear\n",
__func__, readl(&mmc_base->stat));
return TIMEOUT;
}
}
/*
* CMDREG
* CMDIDX[13:8] : Command index
* DATAPRNT[5] : Data Present Select
* ENCMDIDX[4] : Command Index Check Enable
* ENCMDCRC[3] : Command CRC Check Enable
* RSPTYP[1:0]
* 00 = No Response
* 01 = Length 136
* 10 = Length 48
* 11 = Length 48 Check busy after response
*/
/* Delay added before checking the status of frq change
* retry not supported by mmc.c(core file)
*/
if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
udelay(50000); /* wait 50 ms */
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = 0;
else if (cmd->resp_type & MMC_RSP_136)
flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
else if (cmd->resp_type & MMC_RSP_BUSY)
flags = RSP_TYPE_LGHT48B;
else
flags = RSP_TYPE_LGHT48;
/* enable default flags */
flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
MSBS_SGLEBLK | ACEN_DISABLE | BCE_DISABLE | DE_DISABLE);
if (cmd->resp_type & MMC_RSP_CRC)
flags |= CCCE_CHECK;
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= CICE_CHECK;
if (data) {
if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
(cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
flags |= (MSBS_MULTIBLK | BCE_ENABLE);
data->blocksize = 512;
writel(data->blocksize | (data->blocks << 16),
&mmc_base->blk);
} else
writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
if (data->flags & MMC_DATA_READ)
flags |= (DP_DATA | DDIR_READ);
else
flags |= (DP_DATA | DDIR_WRITE);
}
writel(cmd->cmdarg, &mmc_base->arg);
writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s : timeout: No status update\n", __func__);
return TIMEOUT;
}
} while (!mmc_stat);
if ((mmc_stat & IE_CTO) != 0) {
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
return TIMEOUT;
} else if ((mmc_stat & ERRI_MASK) != 0)
return -1;
if (mmc_stat & CC_MASK) {
writel(CC_MASK, &mmc_base->stat);
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
/* response type 2 */
cmd->response[3] = readl(&mmc_base->rsp10);
cmd->response[2] = readl(&mmc_base->rsp32);
cmd->response[1] = readl(&mmc_base->rsp54);
cmd->response[0] = readl(&mmc_base->rsp76);
} else
/* response types 1, 1b, 3, 4, 5, 6 */
cmd->response[0] = readl(&mmc_base->rsp10);
}
}
if (data && (data->flags & MMC_DATA_READ)) {
mmc_read_data(mmc_base, data->dest,
data->blocksize * data->blocks);
} else if (data && (data->flags & MMC_DATA_WRITE)) {
mmc_write_data(mmc_base, data->src,
data->blocksize * data->blocks);
}
return 0;
}
static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
{
unsigned int *output_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Read
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return TIMEOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BRR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
*output_buf = readl(&mmc_base->data);
output_buf++;
}
size -= (count*4);
}
if (mmc_stat & BWR_MASK)
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
unsigned int size)
{
unsigned int *input_buf = (unsigned int *)buf;
unsigned int mmc_stat;
unsigned int count;
/*
* Start Polled Read
*/
count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
count /= 4;
while (size) {
ulong start = get_timer(0);
do {
mmc_stat = readl(&mmc_base->stat);
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for status!\n",
__func__);
return TIMEOUT;
}
} while (mmc_stat == 0);
if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
if ((mmc_stat & ERRI_MASK) != 0)
return 1;
if (mmc_stat & BWR_MASK) {
unsigned int k;
writel(readl(&mmc_base->stat) | BWR_MASK,
&mmc_base->stat);
for (k = 0; k < count; k++) {
writel(*input_buf, &mmc_base->data);
input_buf++;
}
size -= (count*4);
}
if (mmc_stat & BRR_MASK)
writel(readl(&mmc_base->stat) | BRR_MASK,
&mmc_base->stat);
if (mmc_stat & TC_MASK) {
writel(readl(&mmc_base->stat) | TC_MASK,
&mmc_base->stat);
break;
}
}
return 0;
}
static void mmc_set_ios(struct mmc *mmc)
{
struct hsmmc *mmc_base;
unsigned int dsor = 0;
ulong start;
mmc_base = ((struct omap_hsmmc_data *)mmc->priv)->base_addr;
/* configue bus width */
switch (mmc->bus_width) {
case 8:
writel(readl(&mmc_base->con) | DTW_8_BITMODE,
&mmc_base->con);
break;
case 4:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
&mmc_base->hctl);
break;
case 1:
default:
writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
&mmc_base->con);
writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
&mmc_base->hctl);
break;
}
/* configure clock with 96Mhz system clock.
*/
if (mmc->clock != 0) {
dsor = (MMC_CLOCK_REFERENCE * 1000000 / mmc->clock);
if ((MMC_CLOCK_REFERENCE * 1000000) / dsor > mmc->clock)
dsor++;
}
mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
(ICE_STOP | DTO_15THDTO | CEN_DISABLE));
mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
(dsor << CLKD_OFFSET) | ICE_OSCILLATE);
start = get_timer(0);
while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
if (get_timer(0) - start > MAX_RETRY_MS) {
printf("%s: timedout waiting for ics!\n", __func__);
return;
}
}
writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
}
int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio)
{
struct mmc *mmc = &hsmmc_dev[dev_index];
struct omap_hsmmc_data *priv_data = &hsmmc_dev_data[dev_index];
sprintf(mmc->name, "OMAP SD/MMC");
mmc->send_cmd = mmc_send_cmd;
mmc->set_ios = mmc_set_ios;
mmc->init = mmc_init_setup;
mmc->getcd = omap_mmc_getcd;
mmc->priv = priv_data;
switch (dev_index) {
case 0:
priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
break;
#ifdef OMAP_HSMMC2_BASE
case 1:
priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
break;
#endif
#ifdef OMAP_HSMMC3_BASE
case 2:
priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
break;
#endif
default:
priv_data->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
return 1;
}
priv_data->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
mmc->host_caps = (MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS |
MMC_MODE_HC) & ~host_caps_mask;
mmc->f_min = 400000;
if (f_max != 0)
mmc->f_max = f_max;
else {
if (mmc->host_caps & MMC_MODE_HS) {
if (mmc->host_caps & MMC_MODE_HS_52MHz)
mmc->f_max = 52000000;
else
mmc->f_max = 26000000;
} else
mmc->f_max = 20000000;
}
mmc->b_max = 0;
#if defined(CONFIG_OMAP34XX)
/*
* Silicon revs 2.1 and older do not support multiblock transfers.
*/
if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
mmc->b_max = 1;
#endif
mmc_register(mmc);
return 0;
}