blob: 5076054acd688ba5e5c48001bab9caeca4dbb349 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2017 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*/
#define LOG_CATEGORY LOGC_DT
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <fdt_support.h>
#include <log.h>
#include <malloc.h>
#include <of_live.h>
#include <linux/libfdt.h>
#include <dm/of_access.h>
#include <dm/of_addr.h>
#include <dm/ofnode.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <asm/global_data.h>
DECLARE_GLOBAL_DATA_PTR;
#if CONFIG_IS_ENABLED(OFNODE_MULTI_TREE)
static void *oftree_list[CONFIG_OFNODE_MULTI_TREE_MAX];
static int oftree_count;
void oftree_reset(void)
{
if (gd->flags & GD_FLG_RELOC) {
oftree_count = 0;
oftree_list[oftree_count++] = (void *)gd->fdt_blob;
}
}
static int oftree_find(const void *fdt)
{
int i;
for (i = 0; i < oftree_count; i++) {
if (fdt == oftree_list[i])
return i;
}
return -1;
}
static oftree oftree_ensure(void *fdt)
{
oftree tree;
int i;
if (of_live_active()) {
struct device_node *root;
int ret;
ret = unflatten_device_tree(fdt, &root);
if (ret) {
log_err("Failed to create live tree: err=%d\n", ret);
return oftree_null();
}
tree = oftree_from_np(root);
return tree;
}
if (gd->flags & GD_FLG_RELOC) {
i = oftree_find(fdt);
if (i == -1) {
if (oftree_count == CONFIG_OFNODE_MULTI_TREE_MAX) {
log_warning("Too many registered device trees (max %d)\n",
CONFIG_OFNODE_MULTI_TREE_MAX);
return oftree_null();
}
/* register the new tree */
i = oftree_count++;
oftree_list[i] = fdt;
log_debug("oftree: registered tree %d: %p\n", i, fdt);
}
} else {
if (fdt != gd->fdt_blob) {
log_debug("Only the control FDT can be accessed before relocation\n");
return oftree_null();
}
}
tree.fdt = fdt;
return tree;
}
void oftree_dispose(oftree tree)
{
if (of_live_active())
of_live_free(tree.np);
}
void *ofnode_lookup_fdt(ofnode node)
{
if (gd->flags & GD_FLG_RELOC) {
uint i = OFTREE_TREE_ID(node.of_offset);
if (i >= oftree_count) {
log_debug("Invalid tree ID %x\n", i);
return NULL;
}
return oftree_list[i];
} else {
return (void *)gd->fdt_blob;
}
}
void *ofnode_to_fdt(ofnode node)
{
#ifdef OF_CHECKS
if (of_live_active())
return NULL;
#endif
if (CONFIG_IS_ENABLED(OFNODE_MULTI_TREE) && ofnode_valid(node))
return ofnode_lookup_fdt(node);
/* Use the control FDT by default */
return (void *)gd->fdt_blob;
}
/**
* ofnode_to_offset() - convert an ofnode to a flat DT offset
*
* This cannot be called if the reference contains a node pointer.
*
* @node: Reference containing offset (possibly invalid)
* Return: DT offset (can be -1)
*/
int ofnode_to_offset(ofnode node)
{
#ifdef OF_CHECKS
if (of_live_active())
return -1;
#endif
if (CONFIG_IS_ENABLED(OFNODE_MULTI_TREE) && node.of_offset >= 0)
return OFTREE_OFFSET(node.of_offset);
return node.of_offset;
}
oftree oftree_from_fdt(void *fdt)
{
oftree tree;
if (CONFIG_IS_ENABLED(OFNODE_MULTI_TREE))
return oftree_ensure(fdt);
#ifdef OF_CHECKS
if (of_live_active())
return oftree_null();
#endif
tree.fdt = fdt;
return tree;
}
/**
* noffset_to_ofnode() - convert a DT offset to an ofnode
*
* @other_node: Node in the same tree to use as a reference
* @of_offset: DT offset (either valid, or -1)
* Return: reference to the associated DT offset
*/
ofnode noffset_to_ofnode(ofnode other_node, int of_offset)
{
ofnode node;
if (of_live_active())
node.np = NULL;
else if (!CONFIG_IS_ENABLED(OFNODE_MULTI_TREE) || of_offset < 0 ||
!ofnode_valid(other_node))
node.of_offset = of_offset;
else
node.of_offset = OFTREE_MAKE_NODE(other_node.of_offset,
of_offset);
return node;
}
#else /* !OFNODE_MULTI_TREE */
static inline int oftree_find(const void *fdt)
{
return 0;
}
#endif /* OFNODE_MULTI_TREE */
/**
* ofnode_from_tree_offset() - get an ofnode from a tree offset (flat tree)
*
* Looks up the tree and returns an ofnode with the correct of_offset (i.e.
* containing the tree ID).
*
* If @offset is < 0 then this returns an ofnode with that offset and no tree
* ID.
*
* @tree: tree to check
* @offset: offset within that tree (can be < 0)
* @return node for that offset, with the correct ID
*/
static ofnode ofnode_from_tree_offset(oftree tree, int offset)
{
ofnode node;
if (CONFIG_IS_ENABLED(OFNODE_MULTI_TREE) && offset >= 0) {
int tree_id = oftree_find(tree.fdt);
if (tree_id == -1)
return ofnode_null();
node.of_offset = OFTREE_NODE(tree_id, offset);
} else {
node.of_offset = offset;
}
return node;
}
bool ofnode_name_eq(ofnode node, const char *name)
{
const char *node_name;
size_t len;
assert(ofnode_valid(node));
node_name = ofnode_get_name(node);
len = strchrnul(node_name, '@') - node_name;
return (strlen(name) == len) && !strncmp(node_name, name, len);
}
int ofnode_read_u8(ofnode node, const char *propname, u8 *outp)
{
const u8 *cell;
int len;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node))
return of_read_u8(ofnode_to_np(node), propname, outp);
cell = fdt_getprop(gd->fdt_blob, ofnode_to_offset(node), propname,
&len);
if (!cell || len < sizeof(*cell)) {
debug("(not found)\n");
return -EINVAL;
}
*outp = *cell;
debug("%#x (%d)\n", *outp, *outp);
return 0;
}
u8 ofnode_read_u8_default(ofnode node, const char *propname, u8 def)
{
assert(ofnode_valid(node));
ofnode_read_u8(node, propname, &def);
return def;
}
int ofnode_read_u16(ofnode node, const char *propname, u16 *outp)
{
const fdt16_t *cell;
int len;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node))
return of_read_u16(ofnode_to_np(node), propname, outp);
cell = fdt_getprop(gd->fdt_blob, ofnode_to_offset(node), propname,
&len);
if (!cell || len < sizeof(*cell)) {
debug("(not found)\n");
return -EINVAL;
}
*outp = be16_to_cpup(cell);
debug("%#x (%d)\n", *outp, *outp);
return 0;
}
u16 ofnode_read_u16_default(ofnode node, const char *propname, u16 def)
{
assert(ofnode_valid(node));
ofnode_read_u16(node, propname, &def);
return def;
}
int ofnode_read_u32(ofnode node, const char *propname, u32 *outp)
{
return ofnode_read_u32_index(node, propname, 0, outp);
}
u32 ofnode_read_u32_default(ofnode node, const char *propname, u32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32_index(node, propname, 0, &def);
return def;
}
int ofnode_read_u32_index(ofnode node, const char *propname, int index,
u32 *outp)
{
const fdt32_t *cell;
int len;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node))
return of_read_u32_index(ofnode_to_np(node), propname, index,
outp);
cell = fdt_getprop(ofnode_to_fdt(node), ofnode_to_offset(node),
propname, &len);
if (!cell) {
debug("(not found)\n");
return -EINVAL;
}
if (len < (sizeof(int) * (index + 1))) {
debug("(not large enough)\n");
return -EOVERFLOW;
}
*outp = fdt32_to_cpu(cell[index]);
debug("%#x (%d)\n", *outp, *outp);
return 0;
}
int ofnode_read_u64_index(ofnode node, const char *propname, int index,
u64 *outp)
{
const fdt64_t *cell;
int len;
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return of_read_u64_index(ofnode_to_np(node), propname, index,
outp);
cell = fdt_getprop(ofnode_to_fdt(node), ofnode_to_offset(node),
propname, &len);
if (!cell) {
debug("(not found)\n");
return -EINVAL;
}
if (len < (sizeof(u64) * (index + 1))) {
debug("(not large enough)\n");
return -EOVERFLOW;
}
*outp = fdt64_to_cpu(cell[index]);
debug("%#llx (%lld)\n", *outp, *outp);
return 0;
}
u32 ofnode_read_u32_index_default(ofnode node, const char *propname, int index,
u32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32_index(node, propname, index, &def);
return def;
}
int ofnode_read_s32_default(ofnode node, const char *propname, s32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32(node, propname, (u32 *)&def);
return def;
}
int ofnode_read_u64(ofnode node, const char *propname, u64 *outp)
{
const unaligned_fdt64_t *cell;
int len;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node))
return of_read_u64(ofnode_to_np(node), propname, outp);
cell = fdt_getprop(ofnode_to_fdt(node), ofnode_to_offset(node),
propname, &len);
if (!cell || len < sizeof(*cell)) {
debug("(not found)\n");
return -EINVAL;
}
*outp = fdt64_to_cpu(cell[0]);
debug("%#llx (%lld)\n", (unsigned long long)*outp,
(unsigned long long)*outp);
return 0;
}
u64 ofnode_read_u64_default(ofnode node, const char *propname, u64 def)
{
assert(ofnode_valid(node));
ofnode_read_u64(node, propname, &def);
return def;
}
bool ofnode_read_bool(ofnode node, const char *propname)
{
const void *prop;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
prop = ofnode_get_property(node, propname, NULL);
debug("%s\n", prop ? "true" : "false");
return prop ? true : false;
}
const void *ofnode_read_prop(ofnode node, const char *propname, int *sizep)
{
const char *val = NULL;
int len;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
struct property *prop = of_find_property(
ofnode_to_np(node), propname, &len);
if (prop) {
val = prop->value;
len = prop->length;
}
} else {
val = fdt_getprop(ofnode_to_fdt(node), ofnode_to_offset(node),
propname, &len);
}
if (!val) {
debug("<not found>\n");
if (sizep)
*sizep = -FDT_ERR_NOTFOUND;
return NULL;
}
if (sizep)
*sizep = len;
return val;
}
const char *ofnode_read_string(ofnode node, const char *propname)
{
const char *str;
int len;
str = ofnode_read_prop(node, propname, &len);
if (!str)
return NULL;
if (strnlen(str, len) >= len) {
debug("<invalid>\n");
return NULL;
}
debug("%s\n", str);
return str;
}
int ofnode_read_size(ofnode node, const char *propname)
{
int len;
if (!ofnode_read_prop(node, propname, &len))
return -EINVAL;
return len;
}
ofnode ofnode_find_subnode(ofnode node, const char *subnode_name)
{
ofnode subnode;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, subnode_name);
if (ofnode_is_np(node)) {
struct device_node *np = ofnode_to_np(node);
for (np = np->child; np; np = np->sibling) {
if (!strcmp(subnode_name, np->name))
break;
}
subnode = np_to_ofnode(np);
} else {
int ooffset = fdt_subnode_offset(ofnode_to_fdt(node),
ofnode_to_offset(node), subnode_name);
subnode = noffset_to_ofnode(node, ooffset);
}
debug("%s\n", ofnode_valid(subnode) ?
ofnode_get_name(subnode) : "<none>");
return subnode;
}
int ofnode_read_u32_array(ofnode node, const char *propname,
u32 *out_values, size_t sz)
{
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
return of_read_u32_array(ofnode_to_np(node), propname,
out_values, sz);
} else {
int ret;
ret = fdtdec_get_int_array(ofnode_to_fdt(node),
ofnode_to_offset(node), propname,
out_values, sz);
/* get the error right, but space is more important in SPL */
if (!IS_ENABLED(CONFIG_SPL_BUILD)) {
if (ret == -FDT_ERR_NOTFOUND)
return -EINVAL;
else if (ret == -FDT_ERR_BADLAYOUT)
return -EOVERFLOW;
}
return ret;
}
}
#if !CONFIG_IS_ENABLED(DM_INLINE_OFNODE)
bool ofnode_is_enabled(ofnode node)
{
if (ofnode_is_np(node)) {
return of_device_is_available(ofnode_to_np(node));
} else {
return fdtdec_get_is_enabled(ofnode_to_fdt(node),
ofnode_to_offset(node));
}
}
ofnode ofnode_first_subnode(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return np_to_ofnode(node.np->child);
return noffset_to_ofnode(node,
fdt_first_subnode(ofnode_to_fdt(node), ofnode_to_offset(node)));
}
ofnode ofnode_next_subnode(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return np_to_ofnode(node.np->sibling);
return noffset_to_ofnode(node,
fdt_next_subnode(ofnode_to_fdt(node), ofnode_to_offset(node)));
}
#endif /* !DM_INLINE_OFNODE */
ofnode ofnode_get_parent(ofnode node)
{
ofnode parent;
assert(ofnode_valid(node));
if (ofnode_is_np(node))
parent = np_to_ofnode(of_get_parent(ofnode_to_np(node)));
else
parent.of_offset = fdt_parent_offset(ofnode_to_fdt(node),
ofnode_to_offset(node));
return parent;
}
const char *ofnode_get_name(ofnode node)
{
if (!ofnode_valid(node)) {
debug("%s node not valid\n", __func__);
return NULL;
}
if (ofnode_is_np(node))
return node.np->name;
return fdt_get_name(ofnode_to_fdt(node), ofnode_to_offset(node), NULL);
}
int ofnode_get_path(ofnode node, char *buf, int buflen)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node)) {
if (strlen(node.np->full_name) >= buflen)
return -ENOSPC;
strcpy(buf, node.np->full_name);
return 0;
} else {
int res;
res = fdt_get_path(ofnode_to_fdt(node), ofnode_to_offset(node), buf,
buflen);
if (!res)
return res;
else if (res == -FDT_ERR_NOSPACE)
return -ENOSPC;
else
return -EINVAL;
}
}
ofnode ofnode_get_by_phandle(uint phandle)
{
ofnode node;
if (of_live_active())
node = np_to_ofnode(of_find_node_by_phandle(NULL, phandle));
else
node.of_offset = fdt_node_offset_by_phandle(gd->fdt_blob,
phandle);
return node;
}
ofnode oftree_get_by_phandle(oftree tree, uint phandle)
{
ofnode node;
if (of_live_active())
node = np_to_ofnode(of_find_node_by_phandle(tree.np, phandle));
else
node = ofnode_from_tree_offset(tree,
fdt_node_offset_by_phandle(oftree_lookup_fdt(tree),
phandle));
return node;
}
static fdt_addr_t __ofnode_get_addr_size_index(ofnode node, int index,
fdt_size_t *size, bool translate)
{
int na, ns;
if (size)
*size = FDT_SIZE_T_NONE;
if (ofnode_is_np(node)) {
const __be32 *prop_val;
u64 size64;
uint flags;
prop_val = of_get_address(ofnode_to_np(node), index, &size64,
&flags);
if (!prop_val)
return FDT_ADDR_T_NONE;
if (size)
*size = size64;
ns = of_n_size_cells(ofnode_to_np(node));
if (translate && IS_ENABLED(CONFIG_OF_TRANSLATE) && ns > 0) {
return of_translate_address(ofnode_to_np(node), prop_val);
} else {
na = of_n_addr_cells(ofnode_to_np(node));
return of_read_number(prop_val, na);
}
} else {
na = ofnode_read_simple_addr_cells(ofnode_get_parent(node));
ns = ofnode_read_simple_size_cells(ofnode_get_parent(node));
return fdtdec_get_addr_size_fixed(ofnode_to_fdt(node),
ofnode_to_offset(node), "reg",
index, na, ns, size,
translate);
}
}
fdt_addr_t ofnode_get_addr_size_index(ofnode node, int index, fdt_size_t *size)
{
return __ofnode_get_addr_size_index(node, index, size, true);
}
fdt_addr_t ofnode_get_addr_size_index_notrans(ofnode node, int index,
fdt_size_t *size)
{
return __ofnode_get_addr_size_index(node, index, size, false);
}
fdt_addr_t ofnode_get_addr_index(ofnode node, int index)
{
fdt_size_t size;
return ofnode_get_addr_size_index(node, index, &size);
}
fdt_addr_t ofnode_get_addr(ofnode node)
{
return ofnode_get_addr_index(node, 0);
}
fdt_size_t ofnode_get_size(ofnode node)
{
fdt_size_t size;
ofnode_get_addr_size_index(node, 0, &size);
return size;
}
int ofnode_stringlist_search(ofnode node, const char *property,
const char *string)
{
if (ofnode_is_np(node)) {
return of_property_match_string(ofnode_to_np(node),
property, string);
} else {
int ret;
ret = fdt_stringlist_search(ofnode_to_fdt(node),
ofnode_to_offset(node), property,
string);
if (ret == -FDT_ERR_NOTFOUND)
return -ENODATA;
else if (ret < 0)
return -EINVAL;
return ret;
}
}
int ofnode_read_string_index(ofnode node, const char *property, int index,
const char **outp)
{
if (ofnode_is_np(node)) {
return of_property_read_string_index(ofnode_to_np(node),
property, index, outp);
} else {
int len;
*outp = fdt_stringlist_get(ofnode_to_fdt(node),
ofnode_to_offset(node),
property, index, &len);
if (len < 0)
return -EINVAL;
return 0;
}
}
int ofnode_read_string_count(ofnode node, const char *property)
{
if (ofnode_is_np(node)) {
return of_property_count_strings(ofnode_to_np(node), property);
} else {
return fdt_stringlist_count(ofnode_to_fdt(node),
ofnode_to_offset(node), property);
}
}
int ofnode_read_string_list(ofnode node, const char *property,
const char ***listp)
{
const char **prop;
int count;
int i;
*listp = NULL;
count = ofnode_read_string_count(node, property);
if (count < 0)
return count;
if (!count)
return 0;
prop = calloc(count + 1, sizeof(char *));
if (!prop)
return -ENOMEM;
for (i = 0; i < count; i++)
ofnode_read_string_index(node, property, i, &prop[i]);
prop[count] = NULL;
*listp = prop;
return count;
}
static void ofnode_from_fdtdec_phandle_args(struct fdtdec_phandle_args *in,
struct ofnode_phandle_args *out)
{
assert(OF_MAX_PHANDLE_ARGS == MAX_PHANDLE_ARGS);
out->node = offset_to_ofnode(in->node);
out->args_count = in->args_count;
memcpy(out->args, in->args, sizeof(out->args));
}
static void ofnode_from_of_phandle_args(struct of_phandle_args *in,
struct ofnode_phandle_args *out)
{
assert(OF_MAX_PHANDLE_ARGS == MAX_PHANDLE_ARGS);
out->node = np_to_ofnode(in->np);
out->args_count = in->args_count;
memcpy(out->args, in->args, sizeof(out->args));
}
int ofnode_parse_phandle_with_args(ofnode node, const char *list_name,
const char *cells_name, int cell_count,
int index,
struct ofnode_phandle_args *out_args)
{
if (ofnode_is_np(node)) {
struct of_phandle_args args;
int ret;
ret = of_parse_phandle_with_args(ofnode_to_np(node),
list_name, cells_name,
cell_count, index,
&args);
if (ret)
return ret;
ofnode_from_of_phandle_args(&args, out_args);
} else {
struct fdtdec_phandle_args args;
int ret;
ret = fdtdec_parse_phandle_with_args(ofnode_to_fdt(node),
ofnode_to_offset(node),
list_name, cells_name,
cell_count, index, &args);
if (ret)
return ret;
ofnode_from_fdtdec_phandle_args(&args, out_args);
}
return 0;
}
int ofnode_count_phandle_with_args(ofnode node, const char *list_name,
const char *cells_name, int cell_count)
{
if (ofnode_is_np(node))
return of_count_phandle_with_args(ofnode_to_np(node),
list_name, cells_name, cell_count);
else
return fdtdec_parse_phandle_with_args(ofnode_to_fdt(node),
ofnode_to_offset(node), list_name, cells_name,
cell_count, -1, NULL);
}
ofnode ofnode_path(const char *path)
{
if (of_live_active())
return np_to_ofnode(of_find_node_by_path(path));
else
return offset_to_ofnode(fdt_path_offset(gd->fdt_blob, path));
}
ofnode oftree_root(oftree tree)
{
if (of_live_active()) {
return np_to_ofnode(tree.np);
} else {
return ofnode_from_tree_offset(tree, 0);
}
}
ofnode oftree_path(oftree tree, const char *path)
{
if (of_live_active()) {
return np_to_ofnode(of_find_node_opts_by_path(tree.np, path,
NULL));
} else if (*path != '/' && tree.fdt != gd->fdt_blob) {
return ofnode_null(); /* Aliases only on control FDT */
} else {
int offset = fdt_path_offset(tree.fdt, path);
return ofnode_from_tree_offset(tree, offset);
}
}
const void *ofnode_read_chosen_prop(const char *propname, int *sizep)
{
ofnode chosen_node;
chosen_node = ofnode_path("/chosen");
return ofnode_read_prop(chosen_node, propname, sizep);
}
const char *ofnode_read_chosen_string(const char *propname)
{
return ofnode_read_chosen_prop(propname, NULL);
}
ofnode ofnode_get_chosen_node(const char *name)
{
const char *prop;
prop = ofnode_read_chosen_prop(name, NULL);
if (!prop)
return ofnode_null();
return ofnode_path(prop);
}
const void *ofnode_read_aliases_prop(const char *propname, int *sizep)
{
ofnode node;
node = ofnode_path("/aliases");
return ofnode_read_prop(node, propname, sizep);
}
ofnode ofnode_get_aliases_node(const char *name)
{
const char *prop;
prop = ofnode_read_aliases_prop(name, NULL);
if (!prop)
return ofnode_null();
debug("%s: node_path: %s\n", __func__, prop);
return ofnode_path(prop);
}
int ofnode_get_child_count(ofnode parent)
{
ofnode child;
int num = 0;
ofnode_for_each_subnode(child, parent)
num++;
return num;
}
static int decode_timing_property(ofnode node, const char *name,
struct timing_entry *result)
{
int length, ret = 0;
length = ofnode_read_size(node, name);
if (length < 0) {
debug("%s: could not find property %s\n",
ofnode_get_name(node), name);
return length;
}
if (length == sizeof(u32)) {
result->typ = ofnode_read_u32_default(node, name, 0);
result->min = result->typ;
result->max = result->typ;
} else {
ret = ofnode_read_u32_array(node, name, &result->min, 3);
}
return ret;
}
int ofnode_decode_display_timing(ofnode parent, int index,
struct display_timing *dt)
{
int i;
ofnode timings, node;
u32 val = 0;
int ret = 0;
timings = ofnode_find_subnode(parent, "display-timings");
if (!ofnode_valid(timings))
return -EINVAL;
i = 0;
ofnode_for_each_subnode(node, timings) {
if (i++ == index)
break;
}
if (!ofnode_valid(node))
return -EINVAL;
memset(dt, 0, sizeof(*dt));
ret |= decode_timing_property(node, "hback-porch", &dt->hback_porch);
ret |= decode_timing_property(node, "hfront-porch", &dt->hfront_porch);
ret |= decode_timing_property(node, "hactive", &dt->hactive);
ret |= decode_timing_property(node, "hsync-len", &dt->hsync_len);
ret |= decode_timing_property(node, "vback-porch", &dt->vback_porch);
ret |= decode_timing_property(node, "vfront-porch", &dt->vfront_porch);
ret |= decode_timing_property(node, "vactive", &dt->vactive);
ret |= decode_timing_property(node, "vsync-len", &dt->vsync_len);
ret |= decode_timing_property(node, "clock-frequency", &dt->pixelclock);
dt->flags = 0;
val = ofnode_read_u32_default(node, "vsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
DISPLAY_FLAGS_VSYNC_LOW;
}
val = ofnode_read_u32_default(node, "hsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
DISPLAY_FLAGS_HSYNC_LOW;
}
val = ofnode_read_u32_default(node, "de-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
DISPLAY_FLAGS_DE_LOW;
}
val = ofnode_read_u32_default(node, "pixelclk-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
DISPLAY_FLAGS_PIXDATA_NEGEDGE;
}
if (ofnode_read_bool(node, "interlaced"))
dt->flags |= DISPLAY_FLAGS_INTERLACED;
if (ofnode_read_bool(node, "doublescan"))
dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
if (ofnode_read_bool(node, "doubleclk"))
dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
return ret;
}
int ofnode_decode_panel_timing(ofnode parent,
struct display_timing *dt)
{
ofnode timings;
u32 val = 0;
int ret = 0;
timings = ofnode_find_subnode(parent, "panel-timing");
if (!ofnode_valid(timings))
return -EINVAL;
memset(dt, 0, sizeof(*dt));
ret |= decode_timing_property(timings, "hback-porch", &dt->hback_porch);
ret |= decode_timing_property(timings, "hfront-porch", &dt->hfront_porch);
ret |= decode_timing_property(timings, "hactive", &dt->hactive);
ret |= decode_timing_property(timings, "hsync-len", &dt->hsync_len);
ret |= decode_timing_property(timings, "vback-porch", &dt->vback_porch);
ret |= decode_timing_property(timings, "vfront-porch", &dt->vfront_porch);
ret |= decode_timing_property(timings, "vactive", &dt->vactive);
ret |= decode_timing_property(timings, "vsync-len", &dt->vsync_len);
ret |= decode_timing_property(timings, "clock-frequency", &dt->pixelclock);
dt->flags = 0;
if (!ofnode_read_u32(timings, "vsync-active", &val)) {
dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
DISPLAY_FLAGS_VSYNC_LOW;
}
if (!ofnode_read_u32(timings, "hsync-active", &val)) {
dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
DISPLAY_FLAGS_HSYNC_LOW;
}
if (!ofnode_read_u32(timings, "de-active", &val)) {
dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
DISPLAY_FLAGS_DE_LOW;
}
if (!ofnode_read_u32(timings, "pixelclk-active", &val)) {
dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
DISPLAY_FLAGS_PIXDATA_NEGEDGE;
}
if (ofnode_read_bool(timings, "interlaced"))
dt->flags |= DISPLAY_FLAGS_INTERLACED;
if (ofnode_read_bool(timings, "doublescan"))
dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
if (ofnode_read_bool(timings, "doubleclk"))
dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
return ret;
}
const void *ofnode_get_property(ofnode node, const char *propname, int *lenp)
{
if (ofnode_is_np(node))
return of_get_property(ofnode_to_np(node), propname, lenp);
else
return fdt_getprop(ofnode_to_fdt(node), ofnode_to_offset(node),
propname, lenp);
}
int ofnode_first_property(ofnode node, struct ofprop *prop)
{
prop->node = node;
if (ofnode_is_np(node)) {
prop->prop = of_get_first_property(ofnode_to_np(prop->node));
if (!prop->prop)
return -FDT_ERR_NOTFOUND;
} else {
prop->offset =
fdt_first_property_offset(ofnode_to_fdt(node),
ofnode_to_offset(prop->node));
if (prop->offset < 0)
return prop->offset;
}
return 0;
}
int ofnode_next_property(struct ofprop *prop)
{
if (ofnode_is_np(prop->node)) {
prop->prop = of_get_next_property(ofnode_to_np(prop->node),
prop->prop);
if (!prop->prop)
return -FDT_ERR_NOTFOUND;
} else {
prop->offset =
fdt_next_property_offset(ofnode_to_fdt(prop->node),
prop->offset);
if (prop->offset < 0)
return prop->offset;
}
return 0;
}
const void *ofprop_get_property(const struct ofprop *prop,
const char **propname, int *lenp)
{
if (ofnode_is_np(prop->node))
return of_get_property_by_prop(ofnode_to_np(prop->node),
prop->prop, propname, lenp);
else
return fdt_getprop_by_offset(ofnode_to_fdt(prop->node),
prop->offset,
propname, lenp);
}
fdt_addr_t ofnode_get_addr_size(ofnode node, const char *property,
fdt_size_t *sizep)
{
if (ofnode_is_np(node)) {
int na, ns;
int psize;
const struct device_node *np = ofnode_to_np(node);
const __be32 *prop = of_get_property(np, property, &psize);
if (!prop)
return FDT_ADDR_T_NONE;
na = of_n_addr_cells(np);
ns = of_n_size_cells(np);
*sizep = of_read_number(prop + na, ns);
if (CONFIG_IS_ENABLED(OF_TRANSLATE) && ns > 0)
return of_translate_address(np, prop);
else
return of_read_number(prop, na);
} else {
return fdtdec_get_addr_size(ofnode_to_fdt(node),
ofnode_to_offset(node), property,
sizep);
}
}
const uint8_t *ofnode_read_u8_array_ptr(ofnode node, const char *propname,
size_t sz)
{
if (ofnode_is_np(node)) {
const struct device_node *np = ofnode_to_np(node);
int psize;
const __be32 *prop = of_get_property(np, propname, &psize);
if (!prop || sz != psize)
return NULL;
return (uint8_t *)prop;
} else {
return fdtdec_locate_byte_array(ofnode_to_fdt(node),
ofnode_to_offset(node), propname, sz);
}
}
int ofnode_read_pci_addr(ofnode node, enum fdt_pci_space type,
const char *propname, struct fdt_pci_addr *addr)
{
const fdt32_t *cell;
int len;
int ret = -ENOENT;
debug("%s: %s: ", __func__, propname);
/*
* If we follow the pci bus bindings strictly, we should check
* the value of the node's parent node's #address-cells and
* #size-cells. They need to be 3 and 2 accordingly. However,
* for simplicity we skip the check here.
*/
cell = ofnode_get_property(node, propname, &len);
if (!cell)
goto fail;
if ((len % FDT_PCI_REG_SIZE) == 0) {
int num = len / FDT_PCI_REG_SIZE;
int i;
for (i = 0; i < num; i++) {
debug("pci address #%d: %08lx %08lx %08lx\n", i,
(ulong)fdt32_to_cpu(cell[0]),
(ulong)fdt32_to_cpu(cell[1]),
(ulong)fdt32_to_cpu(cell[2]));
if ((fdt32_to_cpu(*cell) & type) == type) {
addr->phys_hi = fdt32_to_cpu(cell[0]);
addr->phys_mid = fdt32_to_cpu(cell[1]);
addr->phys_lo = fdt32_to_cpu(cell[2]);
break;
}
cell += (FDT_PCI_ADDR_CELLS +
FDT_PCI_SIZE_CELLS);
}
if (i == num) {
ret = -ENXIO;
goto fail;
}
return 0;
}
ret = -EINVAL;
fail:
debug("(not found)\n");
return ret;
}
int ofnode_read_pci_vendev(ofnode node, u16 *vendor, u16 *device)
{
const char *list, *end;
int len;
list = ofnode_get_property(node, "compatible", &len);
if (!list)
return -ENOENT;
end = list + len;
while (list < end) {
len = strlen(list);
if (len >= strlen("pciVVVV,DDDD")) {
char *s = strstr(list, "pci");
/*
* check if the string is something like pciVVVV,DDDD.RR
* or just pciVVVV,DDDD
*/
if (s && s[7] == ',' &&
(s[12] == '.' || s[12] == 0)) {
s += 3;
*vendor = simple_strtol(s, NULL, 16);
s += 5;
*device = simple_strtol(s, NULL, 16);
return 0;
}
}
list += (len + 1);
}
return -ENOENT;
}
int ofnode_read_eth_phy_id(ofnode node, u16 *vendor, u16 *device)
{
const char *list, *end;
int len;
list = ofnode_get_property(node, "compatible", &len);
if (!list)
return -ENOENT;
end = list + len;
while (list < end) {
len = strlen(list);
if (len >= strlen("ethernet-phy-idVVVV.DDDD")) {
char *s = strstr(list, "ethernet-phy-id");
/*
* check if the string is something like
* ethernet-phy-idVVVV.DDDD
*/
if (s && s[19] == '.') {
s += strlen("ethernet-phy-id");
*vendor = simple_strtol(s, NULL, 16);
s += 5;
*device = simple_strtol(s, NULL, 16);
return 0;
}
}
list += (len + 1);
}
return -ENOENT;
}
int ofnode_read_addr_cells(ofnode node)
{
if (ofnode_is_np(node)) {
return of_n_addr_cells(ofnode_to_np(node));
} else {
int parent = fdt_parent_offset(ofnode_to_fdt(node),
ofnode_to_offset(node));
return fdt_address_cells(ofnode_to_fdt(node), parent);
}
}
int ofnode_read_size_cells(ofnode node)
{
if (ofnode_is_np(node)) {
return of_n_size_cells(ofnode_to_np(node));
} else {
int parent = fdt_parent_offset(ofnode_to_fdt(node),
ofnode_to_offset(node));
return fdt_size_cells(ofnode_to_fdt(node), parent);
}
}
int ofnode_read_simple_addr_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_simple_addr_cells(ofnode_to_np(node));
else
return fdt_address_cells(ofnode_to_fdt(node),
ofnode_to_offset(node));
}
int ofnode_read_simple_size_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_simple_size_cells(ofnode_to_np(node));
else
return fdt_size_cells(ofnode_to_fdt(node),
ofnode_to_offset(node));
}
bool ofnode_pre_reloc(ofnode node)
{
#if defined(CONFIG_SPL_BUILD) || defined(CONFIG_TPL_BUILD)
/* for SPL and TPL the remaining nodes after the fdtgrep 1st pass
* had property bootph-all or bootph-pre-sram/bootph-pre-ram.
* They are removed in final dtb (fdtgrep 2nd pass)
*/
return true;
#else
if (ofnode_read_bool(node, "bootph-all"))
return true;
if (ofnode_read_bool(node, "bootph-some-ram"))
return true;
/*
* In regular builds individual spl and tpl handling both
* count as handled pre-relocation for later second init.
*/
if (ofnode_read_bool(node, "bootph-pre-ram") ||
ofnode_read_bool(node, "bootph-pre-sram"))
return true;
if (IS_ENABLED(CONFIG_OF_TAG_MIGRATE)) {
/* detect and handle old tags */
if (ofnode_read_bool(node, "u-boot,dm-pre-reloc") ||
ofnode_read_bool(node, "u-boot,dm-pre-proper") ||
ofnode_read_bool(node, "u-boot,dm-spl") ||
ofnode_read_bool(node, "u-boot,dm-tpl") ||
ofnode_read_bool(node, "u-boot,dm-vpl")) {
gd->flags |= GD_FLG_OF_TAG_MIGRATE;
return true;
}
}
return false;
#endif
}
int ofnode_read_resource(ofnode node, uint index, struct resource *res)
{
if (ofnode_is_np(node)) {
return of_address_to_resource(ofnode_to_np(node), index, res);
} else {
struct fdt_resource fres;
int ret;
ret = fdt_get_resource(ofnode_to_fdt(node),
ofnode_to_offset(node),
"reg", index, &fres);
if (ret < 0)
return -EINVAL;
memset(res, '\0', sizeof(*res));
res->start = fres.start;
res->end = fres.end;
return 0;
}
}
int ofnode_read_resource_byname(ofnode node, const char *name,
struct resource *res)
{
int index;
index = ofnode_stringlist_search(node, "reg-names", name);
if (index < 0)
return index;
return ofnode_read_resource(node, index, res);
}
u64 ofnode_translate_address(ofnode node, const fdt32_t *in_addr)
{
if (ofnode_is_np(node))
return of_translate_address(ofnode_to_np(node), in_addr);
else
return fdt_translate_address(ofnode_to_fdt(node),
ofnode_to_offset(node), in_addr);
}
u64 ofnode_translate_dma_address(ofnode node, const fdt32_t *in_addr)
{
if (ofnode_is_np(node))
return of_translate_dma_address(ofnode_to_np(node), in_addr);
else
return fdt_translate_dma_address(ofnode_to_fdt(node),
ofnode_to_offset(node), in_addr);
}
int ofnode_get_dma_range(ofnode node, phys_addr_t *cpu, dma_addr_t *bus, u64 *size)
{
if (ofnode_is_np(node))
return of_get_dma_range(ofnode_to_np(node), cpu, bus, size);
else
return fdt_get_dma_range(ofnode_to_fdt(node),
ofnode_to_offset(node),
cpu, bus, size);
}
int ofnode_device_is_compatible(ofnode node, const char *compat)
{
if (ofnode_is_np(node))
return of_device_is_compatible(ofnode_to_np(node), compat,
NULL, NULL);
else
return !fdt_node_check_compatible(ofnode_to_fdt(node),
ofnode_to_offset(node),
compat);
}
ofnode ofnode_by_compatible(ofnode from, const char *compat)
{
if (of_live_active()) {
return np_to_ofnode(of_find_compatible_node(
(struct device_node *)ofnode_to_np(from), NULL,
compat));
} else {
return noffset_to_ofnode(from,
fdt_node_offset_by_compatible(ofnode_to_fdt(from),
ofnode_to_offset(from), compat));
}
}
ofnode ofnode_by_prop_value(ofnode from, const char *propname,
const void *propval, int proplen)
{
if (of_live_active()) {
return np_to_ofnode(of_find_node_by_prop_value(
(struct device_node *)ofnode_to_np(from), propname,
propval, proplen));
} else {
return noffset_to_ofnode(from,
fdt_node_offset_by_prop_value(ofnode_to_fdt(from),
ofnode_to_offset(from), propname, propval,
proplen));
}
}
int ofnode_write_prop(ofnode node, const char *propname, const void *value,
int len, bool copy)
{
if (of_live_active()) {
void *newval;
int ret;
if (copy) {
newval = malloc(len);
if (!newval)
return log_ret(-ENOMEM);
memcpy(newval, value, len);
value = newval;
}
ret = of_write_prop(ofnode_to_np(node), propname, len, value);
if (ret && copy)
free(newval);
return ret;
} else {
return fdt_setprop(ofnode_to_fdt(node), ofnode_to_offset(node),
propname, value, len);
}
}
int ofnode_write_string(ofnode node, const char *propname, const char *value)
{
assert(ofnode_valid(node));
debug("%s: %s = %s", __func__, propname, value);
return ofnode_write_prop(node, propname, value, strlen(value) + 1,
false);
}
int ofnode_write_u32(ofnode node, const char *propname, u32 value)
{
fdt32_t *val;
assert(ofnode_valid(node));
log_debug("%s = %x", propname, value);
val = malloc(sizeof(*val));
if (!val)
return -ENOMEM;
*val = cpu_to_fdt32(value);
return ofnode_write_prop(node, propname, val, sizeof(value), false);
}
int ofnode_set_enabled(ofnode node, bool value)
{
assert(ofnode_valid(node));
if (value)
return ofnode_write_string(node, "status", "okay");
else
return ofnode_write_string(node, "status", "disabled");
}
bool ofnode_conf_read_bool(const char *prop_name)
{
ofnode node;
node = ofnode_path("/config");
if (!ofnode_valid(node))
return false;
return ofnode_read_bool(node, prop_name);
}
int ofnode_conf_read_int(const char *prop_name, int default_val)
{
ofnode node;
node = ofnode_path("/config");
if (!ofnode_valid(node))
return default_val;
return ofnode_read_u32_default(node, prop_name, default_val);
}
const char *ofnode_conf_read_str(const char *prop_name)
{
ofnode node;
node = ofnode_path("/config");
if (!ofnode_valid(node))
return NULL;
return ofnode_read_string(node, prop_name);
}
int ofnode_read_bootscript_address(u64 *bootscr_address, u64 *bootscr_offset)
{
int ret;
ofnode uboot;
*bootscr_address = 0;
*bootscr_offset = 0;
uboot = ofnode_path("/options/u-boot");
if (!ofnode_valid(uboot)) {
printf("%s: Missing /u-boot node\n", __func__);
return -EINVAL;
}
ret = ofnode_read_u64(uboot, "bootscr-address", bootscr_address);
if (ret) {
ret = ofnode_read_u64(uboot, "bootscr-ram-offset",
bootscr_offset);
if (ret)
return -EINVAL;
}
return 0;
}
ofnode ofnode_get_phy_node(ofnode node)
{
/* DT node properties that reference a PHY node */
static const char * const phy_handle_str[] = {
"phy-handle", "phy", "phy-device",
};
struct ofnode_phandle_args args = {
.node = ofnode_null()
};
int i;
assert(ofnode_valid(node));
for (i = 0; i < ARRAY_SIZE(phy_handle_str); i++)
if (!ofnode_parse_phandle_with_args(node, phy_handle_str[i],
NULL, 0, 0, &args))
break;
return args.node;
}
phy_interface_t ofnode_read_phy_mode(ofnode node)
{
const char *mode;
int i;
assert(ofnode_valid(node));
mode = ofnode_read_string(node, "phy-mode");
if (!mode)
mode = ofnode_read_string(node, "phy-connection-type");
if (!mode)
return PHY_INTERFACE_MODE_NA;
for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
if (!strcmp(mode, phy_interface_strings[i]))
return i;
debug("%s: Invalid PHY interface '%s'\n", __func__, mode);
return PHY_INTERFACE_MODE_NA;
}
int ofnode_add_subnode(ofnode node, const char *name, ofnode *subnodep)
{
ofnode subnode;
int ret = 0;
assert(ofnode_valid(node));
if (ofnode_is_np(node)) {
struct device_node *np, *child;
np = (struct device_node *)ofnode_to_np(node);
ret = of_add_subnode(np, name, -1, &child);
if (ret && ret != -EEXIST)
return ret;
subnode = np_to_ofnode(child);
} else {
void *fdt = ofnode_to_fdt(node);
int poffset = ofnode_to_offset(node);
int offset;
offset = fdt_add_subnode(fdt, poffset, name);
if (offset == -FDT_ERR_EXISTS) {
offset = fdt_subnode_offset(fdt, poffset, name);
ret = -EEXIST;
}
if (offset < 0)
return -EINVAL;
subnode = noffset_to_ofnode(node, offset);
}
*subnodep = subnode;
return ret; /* 0 or -EEXIST */
}
int ofnode_copy_props(ofnode src, ofnode dst)
{
struct ofprop prop;
ofnode_for_each_prop(prop, src) {
const char *name;
const char *val;
int len, ret;
val = ofprop_get_property(&prop, &name, &len);
if (!val) {
log_debug("Cannot read prop (err=%d)\n", len);
return log_msg_ret("get", -EINVAL);
}
ret = ofnode_write_prop(dst, name, val, len, true);
if (ret) {
log_debug("Cannot write prop (err=%d)\n", ret);
return log_msg_ret("wr", -EINVAL);
}
}
return 0;
}