blob: 5d4ffea608d9ba5bec7d9a23591cd9660f1ce123 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* LPC32xx MLC NAND flash controller driver
*
* (C) Copyright 2014 3ADEV <http://3adev.com>
* Written by Albert ARIBAUD <albert.aribaud@3adev.fr>
*
* NOTE:
*
* The MLC NAND flash controller provides hardware Reed-Solomon ECC
* covering in- and out-of-band data together. Therefore, in- and out-
* of-band data must be written together in order to have a valid ECC.
*
* Consequently, pages with meaningful in-band data are written with
* blank (all-ones) out-of-band data and a valid ECC, and any later
* out-of-band data write will void the ECC.
*
* Therefore, code which reads such late-written out-of-band data
* should not rely on the ECC validity.
*/
#include <common.h>
#include <nand.h>
#include <linux/errno.h>
#include <asm/io.h>
#include <nand.h>
#include <asm/arch/clk.h>
#include <asm/arch/sys_proto.h>
/*
* MLC NAND controller registers.
*/
struct lpc32xx_nand_mlc_registers {
u8 buff[32768]; /* controller's serial data buffer */
u8 data[32768]; /* NAND's raw data buffer */
u32 cmd;
u32 addr;
u32 ecc_enc_reg;
u32 ecc_dec_reg;
u32 ecc_auto_enc_reg;
u32 ecc_auto_dec_reg;
u32 rpr;
u32 wpr;
u32 rubp;
u32 robp;
u32 sw_wp_add_low;
u32 sw_wp_add_hig;
u32 icr;
u32 time_reg;
u32 irq_mr;
u32 irq_sr;
u32 lock_pr;
u32 isr;
u32 ceh;
};
/* LOCK_PR register defines */
#define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */
/* ICR defines */
#define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */
#define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */
/* CEH defines */
#define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */
/* ISR register defines */
#define ISR_NAND_READY 0x00000001
#define ISR_CONTROLLER_READY 0x00000002
#define ISR_ECC_READY 0x00000004
#define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1)
#define ISR_DECODER_FAILURE 0x00000040
#define ISR_DECODER_ERROR 0x00000008
/* time-out for NAND chip / controller loops, in us */
#define LPC32X_NAND_TIMEOUT 5000
/*
* There is a single instance of the NAND MLC controller
*/
static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers
= (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE;
#define clkdiv(v, w, o) (((1+(clk/v)) & w) << o)
/**
* OOB data in each small page are 6 'free' then 10 ECC bytes.
* To make things easier, when reading large pages, the four pages'
* 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer,
* while the the four ECC bytes are groupe in its last 40 bytes.
*
* The struct below represents how free vs ecc oob bytes are stored
* in the buffer.
*
* Note: the OOB bytes contain the bad block marker at offsets 0 and 1.
*/
struct lpc32xx_oob {
struct {
uint8_t free_oob_bytes[6];
} free[4];
struct {
uint8_t ecc_oob_bytes[10];
} ecc[4];
};
/*
* Initialize the controller
*/
static void lpc32xx_nand_init(void)
{
unsigned int clk;
/* Configure controller for no software write protection, x8 bus
width, large block device, and 4 address words */
/* unlock controller registers with magic key */
writel(LOCK_PR_UNLOCK_KEY,
&lpc32xx_nand_mlc_registers->lock_pr);
/* enable large blocks and large NANDs */
writel(ICR_LARGE_BLOCKS | ICR_ADDR4,
&lpc32xx_nand_mlc_registers->icr);
/* Make sure MLC interrupts are disabled */
writel(0, &lpc32xx_nand_mlc_registers->irq_mr);
/* Normal chip enable operation */
writel(CEH_NORMAL_CE,
&lpc32xx_nand_mlc_registers->ceh);
/* Setup NAND timing */
clk = get_hclk_clk_rate();
writel(
clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) |
clkdiv(CONFIG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) |
clkdiv(CONFIG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) |
clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) |
clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) |
clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) |
clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0),
&lpc32xx_nand_mlc_registers->time_reg);
}
#if !defined(CONFIG_SPL_BUILD)
/**
* lpc32xx_cmd_ctrl - write command to either cmd or data register
*/
static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd);
else if (ctrl & NAND_ALE)
writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr);
}
/**
* lpc32xx_read_byte - read a byte from the NAND
* @mtd: MTD device structure
*/
static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
{
return readb(&lpc32xx_nand_mlc_registers->data);
}
/**
* lpc32xx_dev_ready - test if NAND device (actually controller) is ready
* @mtd: MTD device structure
* @mode: mode to set the ECC HW to.
*/
static int lpc32xx_dev_ready(struct mtd_info *mtd)
{
/* means *controller* ready for us */
int status = readl(&lpc32xx_nand_mlc_registers->isr);
return status & ISR_CONTROLLER_READY;
}
/**
* ECC layout -- this is needed whatever ECC mode we are using.
* In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes.
* To make U-Boot's life easier, we pack 'useable' OOB at the
* front and R/S ECC at the back.
*/
static struct nand_ecclayout lpc32xx_largepage_ecclayout = {
.eccbytes = 40,
.eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 48, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = {
/* bytes 0 and 1 are used for the bad block marker */
{
.offset = 2,
.length = 22
},
}
};
/**
* lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Use large block Auto Decode Read Mode(1) as described in User Manual
* section 8.6.2.1.
*
* The initial Read Mode and Read Start commands are sent by the caller.
*
* ECC will be false if out-of-band data has been updated since in-band
* data was initially written.
*/
static int lpc32xx_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
unsigned int i, status, timeout, err, max_bitflips = 0;
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
/* go through all four small pages */
for (i = 0; i < 4; i++) {
/* start auto decode (reads 528 NAND bytes) */
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
/* wait for controller to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_CONTROLLER_READY)
break;
udelay(1);
}
/* if decoder failed, return failure */
if (status & ISR_DECODER_FAILURE)
return -1;
/* keep count of maximum bitflips performed */
if (status & ISR_DECODER_ERROR) {
err = ISR_DECODER_ERRORS(status);
if (err > max_bitflips)
max_bitflips = err;
}
/* copy first 512 bytes into buffer */
memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512);
/* copy next 6 bytes at front of OOB buffer */
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
}
return max_bitflips;
}
/**
* lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Read NAND directly; can read pages with invalid ECC.
*/
static int lpc32xx_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required,
int page)
{
unsigned int i, status, timeout;
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
/* when we get here we've already had the Read Mode(1) */
/* go through all four small pages */
for (i = 0; i < 4; i++) {
/* wait for NAND to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_NAND_READY)
break;
udelay(1);
}
/* if NAND stalled, return failure */
if (!(status & ISR_NAND_READY))
return -1;
/* copy first 512 bytes into buffer */
memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512);
/* copy next 6 bytes at front of OOB buffer */
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6);
/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10);
}
return 0;
}
/**
* lpc32xx_read_oob - read out-of-band data
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*
* Read out-of-band data. User Manual section 8.6.4 suggests using Read
* Mode(3) which the controller will turn into a Read Mode(1) internally
* but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0)
* directly.
*
* ECC covers in- and out-of-band data and was written when out-of-band
* data was blank. Therefore, if the out-of-band being read here is not
* blank, then the ECC will be false and the read will return bitflips,
* even in case of ECC failure where we will return 5 bitflips. The
* caller should be prepared to handle this.
*/
static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
unsigned int i, status, timeout, err, max_bitflips = 0;
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
/* No command was sent before calling read_oob() so send one */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
/* go through all four small pages */
for (i = 0; i < 4; i++) {
/* start auto decode (reads 528 NAND bytes) */
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
/* wait for controller to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_CONTROLLER_READY)
break;
udelay(1);
}
/* if decoder failure, count 'one too many' bitflips */
if (status & ISR_DECODER_FAILURE)
max_bitflips = 5;
/* keep count of maximum bitflips performed */
if (status & ISR_DECODER_ERROR) {
err = ISR_DECODER_ERRORS(status);
if (err > max_bitflips)
max_bitflips = err;
}
/* set read pointer to OOB area */
writel(0, &lpc32xx_nand_mlc_registers->robp);
/* copy next 6 bytes at front of OOB buffer */
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
/* copy next 10 bytes (R/S ECC) at back of OOB buffer */
memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
}
return max_bitflips;
}
/**
* lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: data buffer
* @oob_required: must write chip->oob_poi to OOB
*
* Use large block Auto Encode as per User Manual section 8.6.4.
*
* The initial Write Serial Input and final Auto Program commands are
* sent by the caller.
*/
static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required,
int page)
{
unsigned int i, status, timeout;
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
/* when we get here we've already had the SEQIN */
for (i = 0; i < 4; i++) {
/* start encode (expects 518 writes to buff) */
writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg);
/* copy first 512 bytes from buffer */
memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
/* copy next 6 bytes from OOB buffer -- excluding ECC */
memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
/* wait for ECC to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_ECC_READY)
break;
udelay(1);
}
/* if ECC stalled, return failure */
if (!(status & ISR_ECC_READY))
return -1;
/* Trigger auto encode (writes 528 bytes to NAND) */
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg);
/* wait for controller to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_CONTROLLER_READY)
break;
udelay(1);
}
/* if controller stalled, return error */
if (!(status & ISR_CONTROLLER_READY))
return -1;
}
return 0;
}
/**
* lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller requires OOB data read to chip->oob_poi
* @page: page number to read
*
* Use large block write but without encode.
*
* The initial Write Serial Input and final Auto Program commands are
* sent by the caller.
*
* This function will write the full out-of-band data, including the
* ECC area. Therefore, it can write pages with valid *or* invalid ECC.
*/
static int lpc32xx_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required,
int page)
{
unsigned int i;
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
/* when we get here we've already had the Read Mode(1) */
for (i = 0; i < 4; i++) {
/* copy first 512 bytes from buffer */
memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
/* copy next 6 bytes into OOB buffer -- excluding ECC */
memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
/* copy next 10 bytes into OOB buffer -- that is 'ECC' */
memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10);
}
return 0;
}
/**
* lpc32xx_write_oob - write out-of-band data
* @mtd: mtd info structure
* @chip: nand chip info structure
* @page: page number to read
*
* Since ECC covers in- and out-of-band data, writing out-of-band data
* with ECC will render the page ECC wrong -- or, if the page was blank,
* then it will produce a good ECC but a later in-band data write will
* render it wrong.
*
* Therefore, do not compute or write any ECC, and always return success.
*
* This implies that we do four writes, since non-ECC out-of-band data
* are not contiguous in a large page.
*/
static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
/* update oob on all 4 subpages in sequence */
unsigned int i, status, timeout;
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
for (i = 0; i < 4; i++) {
/* start data input */
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page);
/* copy 6 non-ECC out-of-band bytes directly into NAND */
memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6);
/* program page */
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
/* wait for NAND to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_NAND_READY)
break;
udelay(1);
}
/* if NAND stalled, return error */
if (!(status & ISR_NAND_READY))
return -1;
}
return 0;
}
/**
* lpc32xx_waitfunc - wait until a command is done
* @mtd: MTD device structure
* @chip: NAND chip structure
*
* Wait for controller and FLASH to both be ready.
*/
static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
int status;
unsigned int timeout;
/* wait until both controller and NAND are ready */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
== (ISR_CONTROLLER_READY || ISR_NAND_READY))
break;
udelay(1);
}
/* if controller or NAND stalled, return error */
if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
!= (ISR_CONTROLLER_READY || ISR_NAND_READY))
return -1;
/* write NAND status command */
writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd);
/* read back status and return it */
return readb(&lpc32xx_nand_mlc_registers->data);
}
/*
* We are self-initializing, so we need our own chip struct
*/
static struct nand_chip lpc32xx_chip;
/*
* Initialize the controller
*/
void board_nand_init(void)
{
struct mtd_info *mtd = nand_to_mtd(&lpc32xx_chip);
int ret;
/* Set all BOARDSPECIFIC (actually core-specific) fields */
lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff;
lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff;
lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl;
/* do not set init_size: nand_base.c will read sizes from chip */
lpc32xx_chip.dev_ready = lpc32xx_dev_ready;
/* do not set setup_read_retry: this is NAND-chip-specific */
/* do not set chip_delay: we have dev_ready defined. */
lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE;
/* Set needed ECC fields */
lpc32xx_chip.ecc.mode = NAND_ECC_HW;
lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout;
lpc32xx_chip.ecc.size = 512;
lpc32xx_chip.ecc.bytes = 10;
lpc32xx_chip.ecc.strength = 4;
lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc;
lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw;
lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc;
lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw;
lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob;
lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob;
lpc32xx_chip.waitfunc = lpc32xx_waitfunc;
lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */
/* BBT options: read from last two pages */
lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK
| NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE
| NAND_BBT_WRITE;
/* Initialize NAND interface */
lpc32xx_nand_init();
/* identify chip */
ret = nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL);
if (ret) {
pr_err("nand_scan_ident returned %i", ret);
return;
}
/* finish scanning the chip */
ret = nand_scan_tail(mtd);
if (ret) {
pr_err("nand_scan_tail returned %i", ret);
return;
}
/* chip is good, register it */
ret = nand_register(0, mtd);
if (ret)
pr_err("nand_register returned %i", ret);
}
#else /* defined(CONFIG_SPL_BUILD) */
void nand_init(void)
{
/* enable NAND controller */
lpc32xx_mlc_nand_init();
/* initialize NAND controller */
lpc32xx_nand_init();
}
void nand_deselect(void)
{
/* nothing to do, but SPL requires this function */
}
static int read_single_page(uint8_t *dest, int page,
struct lpc32xx_oob *oob)
{
int status, i, timeout, err, max_bitflips = 0;
/* enter read mode */
writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd);
/* send column (lsb then MSB) and page (lsb to MSB) */
writel(0, &lpc32xx_nand_mlc_registers->addr);
writel(0, &lpc32xx_nand_mlc_registers->addr);
writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr);
writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr);
writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr);
/* start reading */
writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd);
/* large page auto decode read */
for (i = 0; i < 4; i++) {
/* start auto decode (reads 528 NAND bytes) */
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
/* wait for controller to return to ready state */
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
status = readl(&lpc32xx_nand_mlc_registers->isr);
if (status & ISR_CONTROLLER_READY)
break;
udelay(1);
}
/* if controller stalled, return error */
if (!(status & ISR_CONTROLLER_READY))
return -1;
/* if decoder failure, return error */
if (status & ISR_DECODER_FAILURE)
return -1;
/* keep count of maximum bitflips performed */
if (status & ISR_DECODER_ERROR) {
err = ISR_DECODER_ERRORS(status);
if (err > max_bitflips)
max_bitflips = err;
}
/* copy first 512 bytes into buffer */
memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512);
/* copy next 6 bytes bytes into OOB buffer */
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
}
return max_bitflips;
}
/*
* Load U-Boot signed image.
* This loads an image from NAND, skipping bad blocks.
* A block is declared bad if at least one of its readable pages has
* a bad block marker in its OOB at position 0.
* If all pages ion a block are unreadable, the block is considered
* bad (i.e., assumed not to be part of the image) and skipped.
*
* IMPORTANT NOTE:
*
* If the first block of the image is fully unreadable, it will be
* ignored and skipped as if it had been marked bad. If it was not
* actually marked bad at the time of writing the image, the resulting
* image loaded will lack a header and magic number. It could thus be
* considered as a raw, headerless, image and SPL might erroneously
* jump into it.
*
* In order to avoid this risk, LPC32XX-based boards which use this
* driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE.
*/
#define BYTES_PER_PAGE 2048
#define PAGES_PER_BLOCK 64
#define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK)
#define PAGES_PER_CHIP_MAX 524288
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
{
int bytes_left = size;
int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE);
int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK);
int block = 0;
int page = offs / BYTES_PER_PAGE;
/* perform reads block by block */
while (blocks_left) {
/* compute first page number to read */
void *block_page_dst = dst;
/* read at most one block, possibly less */
int block_bytes_left = bytes_left;
if (block_bytes_left > BYTES_PER_BLOCK)
block_bytes_left = BYTES_PER_BLOCK;
/* keep track of good, failed, and "bad" pages */
int block_pages_good = 0;
int block_pages_bad = 0;
int block_pages_err = 0;
/* we shall read a full block of pages, maybe less */
int block_pages_left = pages_left;
if (block_pages_left > PAGES_PER_BLOCK)
block_pages_left = PAGES_PER_BLOCK;
int block_pages = block_pages_left;
int block_page = page;
/* while pages are left and the block is not known as bad */
while ((block_pages > 0) && (block_pages_bad == 0)) {
/* we will read OOB, too, for bad block markers */
struct lpc32xx_oob oob;
/* read page */
int res = read_single_page(block_page_dst, block_page,
&oob);
/* count readable pages */
if (res >= 0) {
/* this page is good */
block_pages_good++;
/* this page is bad */
if ((oob.free[0].free_oob_bytes[0] != 0xff)
| (oob.free[0].free_oob_bytes[1] != 0xff))
block_pages_bad++;
} else
/* count errors */
block_pages_err++;
/* we're done with this page */
block_page++;
block_page_dst += BYTES_PER_PAGE;
if (block_pages)
block_pages--;
}
/* a fully unreadable block is considered bad */
if (block_pages_good == 0)
block_pages_bad = block_pages_err;
/* errors are fatal only in good blocks */
if ((block_pages_err > 0) && (block_pages_bad == 0))
return -1;
/* we keep reads only of good blocks */
if (block_pages_bad == 0) {
dst += block_bytes_left;
bytes_left -= block_bytes_left;
pages_left -= block_pages_left;
blocks_left--;
}
/* good or bad, we're done with this block */
block++;
page += PAGES_PER_BLOCK;
}
/* report success */
return 0;
}
#endif /* CONFIG_SPL_BUILD */