blob: d953c376b8446d920675be6325c67883361df356 [file] [log] [blame]
/*
* Copyright (C) 2017 Intel Corporation <www.intel.com>
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <errno.h>
#include <fdtdec.h>
#include <malloc.h>
#include <wait_bit.h>
#include <watchdog.h>
#include <asm/io.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/misc.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/sdram.h>
#include <linux/kernel.h>
DECLARE_GLOBAL_DATA_PTR;
static void sdram_mmr_init(void);
static u64 sdram_size_calc(void);
/* FAWBANK - Number of Bank of a given device involved in the FAW period. */
#define ARRIA10_SDR_ACTIVATE_FAWBANK (0x1)
#define ARRIA_DDR_CONFIG(A, B, C, R) \
(((A) << 24) | ((B) << 16) | ((C) << 8) | (R))
#define DDR_CONFIG_ELEMENTS ARRAY_SIZE(ddr_config)
#define DDR_REG_SEQ2CORE 0xFFD0507C
#define DDR_REG_CORE2SEQ 0xFFD05078
#define DDR_READ_LATENCY_DELAY 40
#define DDR_SIZE_2GB_HEX 0x80000000
#define DDR_MAX_TRIES 0x00100000
#define IO48_MMR_DRAMSTS 0xFFCFA0EC
#define IO48_MMR_NIOS2_RESERVE0 0xFFCFA110
#define IO48_MMR_NIOS2_RESERVE1 0xFFCFA114
#define IO48_MMR_NIOS2_RESERVE2 0xFFCFA118
#define SEQ2CORE_MASK 0xF
#define CORE2SEQ_INT_REQ 0xF
#define SEQ2CORE_INT_RESP_BIT 3
static const struct socfpga_ecc_hmc *socfpga_ecc_hmc_base =
(void *)SOCFPGA_SDR_ADDRESS;
static const struct socfpga_noc_ddr_scheduler *socfpga_noc_ddr_scheduler_base =
(void *)SOCFPGA_SDR_SCHEDULER_ADDRESS;
static const struct socfpga_noc_fw_ddr_mpu_fpga2sdram
*socfpga_noc_fw_ddr_mpu_fpga2sdram_base =
(void *)SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS;
static const struct socfpga_noc_fw_ddr_l3 *socfpga_noc_fw_ddr_l3_base =
(void *)SOCFPGA_SDR_FIREWALL_L3_ADDRESS;
static const struct socfpga_io48_mmr *socfpga_io48_mmr_base =
(void *)SOCFPGA_HMC_MMR_IO48_ADDRESS;
/* The following are the supported configurations */
static u32 ddr_config[] = {
/* Chip - Row - Bank - Column Style */
/* All Types */
ARRIA_DDR_CONFIG(0, 3, 10, 12),
ARRIA_DDR_CONFIG(0, 3, 10, 13),
ARRIA_DDR_CONFIG(0, 3, 10, 14),
ARRIA_DDR_CONFIG(0, 3, 10, 15),
ARRIA_DDR_CONFIG(0, 3, 10, 16),
ARRIA_DDR_CONFIG(0, 3, 10, 17),
/* LPDDR x16 */
ARRIA_DDR_CONFIG(0, 3, 11, 14),
ARRIA_DDR_CONFIG(0, 3, 11, 15),
ARRIA_DDR_CONFIG(0, 3, 11, 16),
ARRIA_DDR_CONFIG(0, 3, 12, 15),
/* DDR4 Only */
ARRIA_DDR_CONFIG(0, 4, 10, 14),
ARRIA_DDR_CONFIG(0, 4, 10, 15),
ARRIA_DDR_CONFIG(0, 4, 10, 16),
ARRIA_DDR_CONFIG(0, 4, 10, 17), /* 14 */
/* Chip - Bank - Row - Column Style */
ARRIA_DDR_CONFIG(1, 3, 10, 12),
ARRIA_DDR_CONFIG(1, 3, 10, 13),
ARRIA_DDR_CONFIG(1, 3, 10, 14),
ARRIA_DDR_CONFIG(1, 3, 10, 15),
ARRIA_DDR_CONFIG(1, 3, 10, 16),
ARRIA_DDR_CONFIG(1, 3, 10, 17),
ARRIA_DDR_CONFIG(1, 3, 11, 14),
ARRIA_DDR_CONFIG(1, 3, 11, 15),
ARRIA_DDR_CONFIG(1, 3, 11, 16),
ARRIA_DDR_CONFIG(1, 3, 12, 15),
/* DDR4 Only */
ARRIA_DDR_CONFIG(1, 4, 10, 14),
ARRIA_DDR_CONFIG(1, 4, 10, 15),
ARRIA_DDR_CONFIG(1, 4, 10, 16),
ARRIA_DDR_CONFIG(1, 4, 10, 17),
};
static int match_ddr_conf(u32 ddr_conf)
{
int i;
for (i = 0; i < DDR_CONFIG_ELEMENTS; i++) {
if (ddr_conf == ddr_config[i])
return i;
}
return 0;
}
/* Check whether SDRAM is successfully Calibrated */
static int is_sdram_cal_success(void)
{
return readl(&socfpga_ecc_hmc_base->ddrcalstat);
}
static unsigned char ddr_get_bit(u32 ereg, unsigned char bit)
{
u32 reg = readl(ereg);
return (reg & BIT(bit)) ? 1 : 0;
}
static unsigned char ddr_wait_bit(u32 ereg, u32 bit,
u32 expected, u32 timeout_usec)
{
u32 tmr;
for (tmr = 0; tmr < timeout_usec; tmr += 100) {
udelay(100);
WATCHDOG_RESET();
if (ddr_get_bit(ereg, bit) == expected)
return 0;
}
return 1;
}
static int emif_clear(void)
{
u32 i = DDR_MAX_TRIES;
u8 ret = 0;
writel(0, DDR_REG_CORE2SEQ);
do {
ret = !wait_for_bit_le32((u32 *)DDR_REG_SEQ2CORE,
SEQ2CORE_MASK, 1, 50, 0);
} while (ret && (--i > 0));
return !i;
}
static int emif_reset(void)
{
u32 c2s, s2c;
c2s = readl(DDR_REG_CORE2SEQ);
s2c = readl(DDR_REG_SEQ2CORE);
debug("c2s=%08x s2c=%08x nr0=%08x nr1=%08x nr2=%08x dst=%08x\n",
c2s, s2c, readl(IO48_MMR_NIOS2_RESERVE0),
readl(IO48_MMR_NIOS2_RESERVE1),
readl(IO48_MMR_NIOS2_RESERVE2),
readl(IO48_MMR_DRAMSTS));
if ((s2c & SEQ2CORE_MASK) && emif_clear()) {
debug("failed emif_clear()\n");
return -EPERM;
}
writel(CORE2SEQ_INT_REQ, DDR_REG_CORE2SEQ);
if (ddr_wait_bit(DDR_REG_SEQ2CORE, SEQ2CORE_INT_RESP_BIT, 0, 1000000)) {
debug("emif_reset failed to see interrupt acknowledge\n");
return -EPERM;
} else {
debug("emif_reset interrupt acknowledged\n");
}
if (emif_clear()) {
debug("emif_clear() failed\n");
return -EPERM;
}
debug("emif_reset interrupt cleared\n");
debug("nr0=%08x nr1=%08x nr2=%08x\n",
readl(IO48_MMR_NIOS2_RESERVE0),
readl(IO48_MMR_NIOS2_RESERVE1),
readl(IO48_MMR_NIOS2_RESERVE2));
return 0;
}
static int ddr_setup(void)
{
int i, j, ddr_setup_complete = 0;
/* Try 3 times to do a calibration */
for (i = 0; (i < 3) && !ddr_setup_complete; i++) {
WATCHDOG_RESET();
/* A delay to wait for calibration bit to set */
for (j = 0; (j < 10) && !ddr_setup_complete; j++) {
mdelay(500);
ddr_setup_complete = is_sdram_cal_success();
}
if (!ddr_setup_complete)
if (emif_reset())
puts("Error: Failed to reset EMIF\n");
}
/* After 3 times trying calibration */
if (!ddr_setup_complete) {
puts("Error: Could Not Calibrate SDRAM\n");
return -EPERM;
}
return 0;
}
/* Function to startup the SDRAM*/
static int sdram_startup(void)
{
/* Release NOC ddr scheduler from reset */
socfpga_reset_deassert_noc_ddr_scheduler();
/* Bringup the DDR (calibration and configuration) */
return ddr_setup();
}
static u64 sdram_size_calc(void)
{
u32 dramaddrw = readl(&socfpga_io48_mmr_base->dramaddrw);
u64 size = BIT(((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_CS_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_CS_ADDR_WIDTH_SHIFT) +
((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_BANK_GROUP_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_BANK_GROUP_ADDR_WIDTH_SHIFT) +
((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_BANK_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_BANK_ADDR_WIDTH_SHIFT) +
((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_ROW_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_ROW_ADDR_WIDTH_SHIFT) +
(dramaddrw & IO48_MMR_DRAMADDRW_CFG_COL_ADDR_WIDTH_MASK));
size *= (2 << (readl(&socfpga_ecc_hmc_base->ddrioctrl) &
ALT_ECC_HMC_OCP_DDRIOCTRL_IO_SIZE_MSK));
debug("SDRAM size=%llu", size);
return size;
}
/* Function to initialize SDRAM MMR and NOC DDR scheduler*/
static void sdram_mmr_init(void)
{
u32 update_value, io48_value;
u32 ctrlcfg0 = readl(&socfpga_io48_mmr_base->ctrlcfg0);
u32 ctrlcfg1 = readl(&socfpga_io48_mmr_base->ctrlcfg1);
u32 dramaddrw = readl(&socfpga_io48_mmr_base->dramaddrw);
u32 caltim0 = readl(&socfpga_io48_mmr_base->caltiming0);
u32 caltim1 = readl(&socfpga_io48_mmr_base->caltiming1);
u32 caltim2 = readl(&socfpga_io48_mmr_base->caltiming2);
u32 caltim3 = readl(&socfpga_io48_mmr_base->caltiming3);
u32 caltim4 = readl(&socfpga_io48_mmr_base->caltiming4);
u32 caltim9 = readl(&socfpga_io48_mmr_base->caltiming9);
u32 ddrioctl;
/*
* Configure the DDR IO size [0xFFCFB008]
* niosreserve0: Used to indicate DDR width &
* bit[7:0] = Number of data bits (0x20 for 32bit)
* bit[8] = 1 if user-mode OCT is present
* bit[9] = 1 if warm reset compiled into EMIF Cal Code
* bit[10] = 1 if warm reset is on during generation in EMIF Cal
* niosreserve1: IP ADCDS version encoded as 16 bit value
* bit[2:0] = Variant (0=not special,1=FAE beta, 2=Customer beta,
* 3=EAP, 4-6 are reserved)
* bit[5:3] = Service Pack # (e.g. 1)
* bit[9:6] = Minor Release #
* bit[14:10] = Major Release #
*/
if ((socfpga_io48_mmr_base->niosreserve1 >> 6) & 0x1FF) {
update_value = readl(&socfpga_io48_mmr_base->niosreserve0);
writel(((update_value & 0xFF) >> 5),
&socfpga_ecc_hmc_base->ddrioctrl);
}
ddrioctl = readl(&socfpga_ecc_hmc_base->ddrioctrl);
/* Set the DDR Configuration [0xFFD12400] */
io48_value = ARRIA_DDR_CONFIG(
((ctrlcfg1 &
IO48_MMR_CTRLCFG1_ADDR_ORDER_MASK) >>
IO48_MMR_CTRLCFG1_ADDR_ORDER_SHIFT),
((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_BANK_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_BANK_ADDR_WIDTH_SHIFT) +
((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_BANK_GROUP_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_BANK_GROUP_ADDR_WIDTH_SHIFT),
(dramaddrw &
IO48_MMR_DRAMADDRW_CFG_COL_ADDR_WIDTH_MASK),
((dramaddrw &
IO48_MMR_DRAMADDRW_CFG_ROW_ADDR_WIDTH_MASK) >>
IO48_MMR_DRAMADDRW_CFG_ROW_ADDR_WIDTH_SHIFT));
update_value = match_ddr_conf(io48_value);
if (update_value)
writel(update_value,
&socfpga_noc_ddr_scheduler_base->ddr_t_main_scheduler_ddrconf);
/*
* Configure DDR timing [0xFFD1240C]
* RDTOMISS = tRTP + tRP + tRCD - BL/2
* WRTOMISS = WL + tWR + tRP + tRCD and
* WL = RL + BL/2 + 2 - rd-to-wr ; tWR = 15ns so...
* First part of equation is in memory clock units so divide by 2
* for HMC clock units. 1066MHz is close to 1ns so use 15 directly.
* WRTOMISS = ((RL + BL/2 + 2 + tWR) >> 1)- rd-to-wr + tRP + tRCD
*/
u32 ctrlcfg0_cfg_ctrl_burst_len =
(ctrlcfg0 & IO48_MMR_CTRLCFG0_CTRL_BURST_LENGTH_MASK) >>
IO48_MMR_CTRLCFG0_CTRL_BURST_LENGTH_SHIFT;
u32 caltim0_cfg_act_to_rdwr = caltim0 &
IO48_MMR_CALTIMING0_CFG_ACT_TO_RDWR_MASK;
u32 caltim0_cfg_act_to_act =
(caltim0 & IO48_MMR_CALTIMING0_CFG_ACT_TO_ACT_MASK) >>
IO48_MMR_CALTIMING0_CFG_ACT_TO_ACT_SHIFT;
u32 caltim0_cfg_act_to_act_db =
(caltim0 &
IO48_MMR_CALTIMING0_CFG_ACT_TO_ACT_DIFF_BANK_MASK) >>
IO48_MMR_CALTIMING0_CFG_ACT_TO_ACT_DIFF_BANK_SHIFT;
u32 caltim1_cfg_rd_to_wr =
(caltim1 & IO48_MMR_CALTIMING1_CFG_RD_TO_WR_MASK) >>
IO48_MMR_CALTIMING1_CFG_RD_TO_WR_SHIFT;
u32 caltim1_cfg_rd_to_rd_dc =
(caltim1 & IO48_MMR_CALTIMING1_CFG_RD_TO_RD_DC_MASK) >>
IO48_MMR_CALTIMING1_CFG_RD_TO_RD_DC_SHIFT;
u32 caltim1_cfg_rd_to_wr_dc =
(caltim1 & IO48_MMR_CALTIMING1_CFG_RD_TO_WR_DIFF_CHIP_MASK) >>
IO48_MMR_CALTIMING1_CFG_RD_TO_WR_DIFF_CHIP_SHIFT;
u32 caltim2_cfg_rd_to_pch =
(caltim2 & IO48_MMR_CALTIMING2_CFG_RD_TO_PCH_MASK) >>
IO48_MMR_CALTIMING2_CFG_RD_TO_PCH_SHIFT;
u32 caltim3_cfg_wr_to_rd =
(caltim3 & IO48_MMR_CALTIMING3_CFG_WR_TO_RD_MASK) >>
IO48_MMR_CALTIMING3_CFG_WR_TO_RD_SHIFT;
u32 caltim3_cfg_wr_to_rd_dc =
(caltim3 & IO48_MMR_CALTIMING3_CFG_WR_TO_RD_DIFF_CHIP_MASK) >>
IO48_MMR_CALTIMING3_CFG_WR_TO_RD_DIFF_CHIP_SHIFT;
u32 caltim4_cfg_pch_to_valid =
(caltim4 & IO48_MMR_CALTIMING4_CFG_PCH_TO_VALID_MASK) >>
IO48_MMR_CALTIMING4_CFG_PCH_TO_VALID_SHIFT;
u32 caltim9_cfg_4_act_to_act = caltim9 &
IO48_MMR_CALTIMING9_CFG_WR_4_ACT_TO_ACT_MASK;
update_value = (caltim2_cfg_rd_to_pch + caltim4_cfg_pch_to_valid +
caltim0_cfg_act_to_rdwr -
(ctrlcfg0_cfg_ctrl_burst_len >> 2));
io48_value = ((((socfpga_io48_mmr_base->dramtiming0 &
ALT_IO48_DRAMTIME_MEM_READ_LATENCY_MASK) + 2 + 15 +
(ctrlcfg0_cfg_ctrl_burst_len >> 1)) >> 1) -
/* Up to here was in memory cycles so divide by 2 */
caltim1_cfg_rd_to_wr + caltim0_cfg_act_to_rdwr +
caltim4_cfg_pch_to_valid);
writel(((caltim0_cfg_act_to_act <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_ACTTOACT_LSB) |
(update_value <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_RDTOMISS_LSB) |
(io48_value <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_WRTOMISS_LSB) |
((ctrlcfg0_cfg_ctrl_burst_len >> 2) <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_BURSTLEN_LSB) |
(caltim1_cfg_rd_to_wr <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_RDTOWR_LSB) |
(caltim3_cfg_wr_to_rd <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_WRTORD_LSB) |
(((ddrioctl == 1) ? 1 : 0) <<
ALT_NOC_MPU_DDR_T_SCHED_DDRTIMING_BWRATIO_LSB)),
&socfpga_noc_ddr_scheduler_base->
ddr_t_main_scheduler_ddrtiming);
/* Configure DDR mode [0xFFD12410] [precharge = 0] */
writel(((ddrioctl ? 0 : 1) <<
ALT_NOC_MPU_DDR_T_SCHED_DDRMOD_BWRATIOEXTENDED_LSB),
&socfpga_noc_ddr_scheduler_base->ddr_t_main_scheduler_ddrmode);
/* Configure the read latency [0xFFD12414] */
writel(((socfpga_io48_mmr_base->dramtiming0 &
ALT_IO48_DRAMTIME_MEM_READ_LATENCY_MASK) >> 1) +
DDR_READ_LATENCY_DELAY,
&socfpga_noc_ddr_scheduler_base->
ddr_t_main_scheduler_readlatency);
/*
* Configuring timing values concerning activate commands
* [0xFFD12438] [FAWBANK alway 1 because always 4 bank DDR]
*/
writel(((caltim0_cfg_act_to_act_db <<
ALT_NOC_MPU_DDR_T_SCHED_ACTIVATE_RRD_LSB) |
(caltim9_cfg_4_act_to_act <<
ALT_NOC_MPU_DDR_T_SCHED_ACTIVATE_FAW_LSB) |
(ARRIA10_SDR_ACTIVATE_FAWBANK <<
ALT_NOC_MPU_DDR_T_SCHED_ACTIVATE_FAWBANK_LSB)),
&socfpga_noc_ddr_scheduler_base->ddr_t_main_scheduler_activate);
/*
* Configuring timing values concerning device to device data bus
* ownership change [0xFFD1243C]
*/
writel(((caltim1_cfg_rd_to_rd_dc <<
ALT_NOC_MPU_DDR_T_SCHED_DEVTODEV_BUSRDTORD_LSB) |
(caltim1_cfg_rd_to_wr_dc <<
ALT_NOC_MPU_DDR_T_SCHED_DEVTODEV_BUSRDTOWR_LSB) |
(caltim3_cfg_wr_to_rd_dc <<
ALT_NOC_MPU_DDR_T_SCHED_DEVTODEV_BUSWRTORD_LSB)),
&socfpga_noc_ddr_scheduler_base->ddr_t_main_scheduler_devtodev);
/* Enable or disable the SDRAM ECC */
if (ctrlcfg1 & IO48_MMR_CTRLCFG1_CTRL_ENABLE_ECC) {
setbits_le32(&socfpga_ecc_hmc_base->eccctrl,
(ALT_ECC_HMC_OCP_ECCCTL_AWB_CNT_RST_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL_CNT_RST_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL_ECC_EN_SET_MSK));
clrbits_le32(&socfpga_ecc_hmc_base->eccctrl,
(ALT_ECC_HMC_OCP_ECCCTL_AWB_CNT_RST_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL_CNT_RST_SET_MSK));
setbits_le32(&socfpga_ecc_hmc_base->eccctrl2,
(ALT_ECC_HMC_OCP_ECCCTL2_RMW_EN_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL2_AWB_EN_SET_MSK));
} else {
clrbits_le32(&socfpga_ecc_hmc_base->eccctrl,
(ALT_ECC_HMC_OCP_ECCCTL_AWB_CNT_RST_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL_CNT_RST_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL_ECC_EN_SET_MSK));
clrbits_le32(&socfpga_ecc_hmc_base->eccctrl2,
(ALT_ECC_HMC_OCP_ECCCTL2_RMW_EN_SET_MSK |
ALT_ECC_HMC_OCP_ECCCTL2_AWB_EN_SET_MSK));
}
}
struct firewall_entry {
const char *prop_name;
const u32 cfg_addr;
const u32 en_addr;
const u32 en_bit;
};
#define FW_MPU_FPGA_ADDRESS \
((const struct socfpga_noc_fw_ddr_mpu_fpga2sdram *)\
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS)
#define SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(ADDR) \
(SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS + \
offsetof(struct socfpga_noc_fw_ddr_mpu_fpga2sdram, ADDR))
#define SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(ADDR) \
(SOCFPGA_SDR_FIREWALL_L3_ADDRESS + \
offsetof(struct socfpga_noc_fw_ddr_l3, ADDR))
const struct firewall_entry firewall_table[] = {
{
"mpu0",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(mpuregion0addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_MPUREG0EN_SET_MSK
},
{
"mpu1",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS +
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(mpuregion1addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_MPUREG1EN_SET_MSK
},
{
"mpu2",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(mpuregion2addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_MPUREG2EN_SET_MSK
},
{
"mpu3",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(mpuregion3addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_MPUREG3EN_SET_MSK
},
{
"l3-0",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion0addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG0EN_SET_MSK
},
{
"l3-1",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion1addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG1EN_SET_MSK
},
{
"l3-2",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion2addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG2EN_SET_MSK
},
{
"l3-3",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion3addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG3EN_SET_MSK
},
{
"l3-4",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion4addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG4EN_SET_MSK
},
{
"l3-5",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion5addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG5EN_SET_MSK
},
{
"l3-6",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion6addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG6EN_SET_MSK
},
{
"l3-7",
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(hpsregion7addr),
SOCFPGA_SDR_FIREWALL_L3_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_HPSREG7EN_SET_MSK
},
{
"fpga2sdram0-0",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram0region0addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR0REG0EN_SET_MSK
},
{
"fpga2sdram0-1",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram0region1addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR0REG1EN_SET_MSK
},
{
"fpga2sdram0-2",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram0region2addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR0REG2EN_SET_MSK
},
{
"fpga2sdram0-3",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram0region3addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR0REG3EN_SET_MSK
},
{
"fpga2sdram1-0",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram1region0addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR1REG0EN_SET_MSK
},
{
"fpga2sdram1-1",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram1region1addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR1REG1EN_SET_MSK
},
{
"fpga2sdram1-2",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram1region2addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR1REG2EN_SET_MSK
},
{
"fpga2sdram1-3",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram1region3addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR1REG3EN_SET_MSK
},
{
"fpga2sdram2-0",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram2region0addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR2REG0EN_SET_MSK
},
{
"fpga2sdram2-1",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram2region1addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR2REG1EN_SET_MSK
},
{
"fpga2sdram2-2",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram2region2addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR2REG2EN_SET_MSK
},
{
"fpga2sdram2-3",
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET
(fpga2sdram2region3addr),
SOCFPGA_SDR_FIREWALL_MPU_FPGA_ADDRESS_OFFSET(enable),
ALT_NOC_FW_DDR_SCR_EN_F2SDR2REG3EN_SET_MSK
},
};
static int of_sdram_firewall_setup(const void *blob)
{
int child, i, node, ret;
u32 start_end[2];
char name[32];
node = fdtdec_next_compatible(blob, 0, COMPAT_ALTERA_SOCFPGA_NOC);
if (node < 0)
return -ENXIO;
child = fdt_first_subnode(blob, node);
if (child < 0)
return -ENXIO;
/* set to default state */
writel(0, &socfpga_noc_fw_ddr_mpu_fpga2sdram_base->enable);
writel(0, &socfpga_noc_fw_ddr_l3_base->enable);
for (i = 0; i < ARRAY_SIZE(firewall_table); i++) {
sprintf(name, "%s", firewall_table[i].prop_name);
ret = fdtdec_get_int_array(blob, child, name,
start_end, 2);
if (ret) {
sprintf(name, "altr,%s", firewall_table[i].prop_name);
ret = fdtdec_get_int_array(blob, child, name,
start_end, 2);
if (ret)
continue;
}
writel((start_end[0] & ALT_NOC_FW_DDR_ADDR_MASK) |
(start_end[1] << ALT_NOC_FW_DDR_END_ADDR_LSB),
firewall_table[i].cfg_addr);
setbits_le32(firewall_table[i].en_addr,
firewall_table[i].en_bit);
}
return 0;
}
int ddr_calibration_sequence(void)
{
WATCHDOG_RESET();
/* Check to see if SDRAM cal was success */
if (sdram_startup()) {
puts("DDRCAL: Failed\n");
return -EPERM;
}
puts("DDRCAL: Success\n");
WATCHDOG_RESET();
/* initialize the MMR register */
sdram_mmr_init();
/* assigning the SDRAM size */
u64 size = sdram_size_calc();
/*
* If size is less than zero, this is invalid/weird value from
* calculation, use default Config size.
* Up to 2GB is supported, 2GB would be used if more than that.
*/
if (size <= 0)
gd->ram_size = PHYS_SDRAM_1_SIZE;
else if (DDR_SIZE_2GB_HEX <= size)
gd->ram_size = DDR_SIZE_2GB_HEX;
else
gd->ram_size = (u32)size;
/* setup the dram info within bd */
dram_init_banksize();
if (of_sdram_firewall_setup(gd->fdt_blob))
puts("FW: Error Configuring Firewall\n");
return 0;
}
void dram_bank_mmu_setup(int bank)
{
bd_t *bd = gd->bd;
int i;
debug("%s: bank: %d\n", __func__, bank);
for (i = bd->bi_dram[bank].start >> 20;
i < (bd->bi_dram[bank].start + bd->bi_dram[bank].size) >> 20;
i++) {
#if defined(CONFIG_SYS_ARM_CACHE_WRITETHROUGH)
set_section_dcache(i, DCACHE_WRITETHROUGH);
#else
set_section_dcache(i, DCACHE_WRITEBACK);
#endif
}
/* same as above but just that we would want cacheable for ocram too */
i = CONFIG_SYS_INIT_RAM_ADDR >> 20;
#if defined(CONFIG_SYS_ARM_CACHE_WRITETHROUGH)
set_section_dcache(i, DCACHE_WRITETHROUGH);
#else
set_section_dcache(i, DCACHE_WRITEBACK);
#endif
}