| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * |
| * ZFS filesystem ported to u-boot by |
| * Jorgen Lundman <lundman at lundman.net> |
| * |
| * GRUB -- GRand Unified Bootloader |
| * Copyright (C) 1999,2000,2001,2002,2003,2004 |
| * Free Software Foundation, Inc. |
| * Copyright 2004 Sun Microsystems, Inc. |
| */ |
| |
| #include <log.h> |
| #include <malloc.h> |
| #include <linux/stat.h> |
| #include <linux/time.h> |
| #include <linux/ctype.h> |
| #include <asm/byteorder.h> |
| #include "zfs_common.h" |
| #include "div64.h" |
| |
| struct blk_desc *zfs_dev_desc; |
| |
| /* |
| * The zfs plug-in routines for GRUB are: |
| * |
| * zfs_mount() - locates a valid uberblock of the root pool and reads |
| * in its MOS at the memory address MOS. |
| * |
| * zfs_open() - locates a plain file object by following the MOS |
| * and places its dnode at the memory address DNODE. |
| * |
| * zfs_read() - read in the data blocks pointed by the DNODE. |
| * |
| */ |
| |
| #include <zfs/zfs.h> |
| #include <zfs/zio.h> |
| #include <zfs/dnode.h> |
| #include <zfs/uberblock_impl.h> |
| #include <zfs/vdev_impl.h> |
| #include <zfs/zio_checksum.h> |
| #include <zfs/zap_impl.h> |
| #include <zfs/zap_leaf.h> |
| #include <zfs/zfs_znode.h> |
| #include <zfs/dmu.h> |
| #include <zfs/dmu_objset.h> |
| #include <zfs/sa_impl.h> |
| #include <zfs/dsl_dir.h> |
| #include <zfs/dsl_dataset.h> |
| |
| |
| #define ZPOOL_PROP_BOOTFS "bootfs" |
| |
| |
| /* |
| * For nvlist manipulation. (from nvpair.h) |
| */ |
| #define NV_ENCODE_NATIVE 0 |
| #define NV_ENCODE_XDR 1 |
| #define NV_BIG_ENDIAN 0 |
| #define NV_LITTLE_ENDIAN 1 |
| #define DATA_TYPE_UINT64 8 |
| #define DATA_TYPE_STRING 9 |
| #define DATA_TYPE_NVLIST 19 |
| #define DATA_TYPE_NVLIST_ARRAY 20 |
| |
| |
| /* |
| * Macros to get fields in a bp or DVA. |
| */ |
| #define P2PHASE(x, align) ((x) & ((align) - 1)) |
| #define DVA_OFFSET_TO_PHYS_SECTOR(offset) \ |
| ((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT) |
| |
| /* |
| * return x rounded down to an align boundary |
| * eg, P2ALIGN(1200, 1024) == 1024 (1*align) |
| * eg, P2ALIGN(1024, 1024) == 1024 (1*align) |
| * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) |
| * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) |
| */ |
| #define P2ALIGN(x, align) ((x) & -(align)) |
| |
| /* |
| * FAT ZAP data structures |
| */ |
| #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */ |
| #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n)))) |
| #define CHAIN_END 0xffff /* end of the chunk chain */ |
| |
| /* |
| * The amount of space within the chunk available for the array is: |
| * chunk size - space for type (1) - space for next pointer (2) |
| */ |
| #define ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3) |
| |
| #define ZAP_LEAF_HASH_SHIFT(bs) (bs - 5) |
| #define ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs)) |
| #define LEAF_HASH(bs, h) \ |
| ((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) & \ |
| ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len))) |
| |
| /* |
| * The amount of space available for chunks is: |
| * block size shift - hash entry size (2) * number of hash |
| * entries - header space (2*chunksize) |
| */ |
| #define ZAP_LEAF_NUMCHUNKS(bs) \ |
| (((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) / \ |
| ZAP_LEAF_CHUNKSIZE - 2) |
| |
| /* |
| * The chunks start immediately after the hash table. The end of the |
| * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a |
| * chunk_t. |
| */ |
| #define ZAP_LEAF_CHUNK(l, bs, idx) \ |
| ((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx] |
| #define ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry) |
| |
| |
| /* |
| * Decompression Entry - lzjb |
| */ |
| #ifndef NBBY |
| #define NBBY 8 |
| #endif |
| |
| |
| |
| typedef int zfs_decomp_func_t(void *s_start, void *d_start, |
| uint32_t s_len, uint32_t d_len); |
| typedef struct decomp_entry { |
| char *name; |
| zfs_decomp_func_t *decomp_func; |
| } decomp_entry_t; |
| |
| typedef struct dnode_end { |
| dnode_phys_t dn; |
| zfs_endian_t endian; |
| } dnode_end_t; |
| |
| struct zfs_data { |
| /* cache for a file block of the currently zfs_open()-ed file */ |
| char *file_buf; |
| uint64_t file_start; |
| uint64_t file_end; |
| |
| /* XXX: ashift is per vdev, not per pool. We currently only ever touch |
| * a single vdev, but when/if raid-z or stripes are supported, this |
| * may need revision. |
| */ |
| uint64_t vdev_ashift; |
| uint64_t label_txg; |
| uint64_t pool_guid; |
| |
| /* cache for a dnode block */ |
| dnode_phys_t *dnode_buf; |
| dnode_phys_t *dnode_mdn; |
| uint64_t dnode_start; |
| uint64_t dnode_end; |
| zfs_endian_t dnode_endian; |
| |
| uberblock_t current_uberblock; |
| |
| dnode_end_t mos; |
| dnode_end_t mdn; |
| dnode_end_t dnode; |
| |
| uint64_t vdev_phys_sector; |
| |
| int (*userhook)(const char *, const struct zfs_dirhook_info *); |
| struct zfs_dirhook_info *dirinfo; |
| |
| }; |
| |
| |
| |
| |
| static int |
| zlib_decompress(void *s, void *d, |
| uint32_t slen, uint32_t dlen) |
| { |
| if (zlib_decompress(s, d, slen, dlen) < 0) |
| return ZFS_ERR_BAD_FS; |
| return ZFS_ERR_NONE; |
| } |
| |
| static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = { |
| {"inherit", NULL}, /* ZIO_COMPRESS_INHERIT */ |
| {"on", lzjb_decompress}, /* ZIO_COMPRESS_ON */ |
| {"off", NULL}, /* ZIO_COMPRESS_OFF */ |
| {"lzjb", lzjb_decompress}, /* ZIO_COMPRESS_LZJB */ |
| {"empty", NULL}, /* ZIO_COMPRESS_EMPTY */ |
| {"gzip-1", zlib_decompress}, /* ZIO_COMPRESS_GZIP1 */ |
| {"gzip-2", zlib_decompress}, /* ZIO_COMPRESS_GZIP2 */ |
| {"gzip-3", zlib_decompress}, /* ZIO_COMPRESS_GZIP3 */ |
| {"gzip-4", zlib_decompress}, /* ZIO_COMPRESS_GZIP4 */ |
| {"gzip-5", zlib_decompress}, /* ZIO_COMPRESS_GZIP5 */ |
| {"gzip-6", zlib_decompress}, /* ZIO_COMPRESS_GZIP6 */ |
| {"gzip-7", zlib_decompress}, /* ZIO_COMPRESS_GZIP7 */ |
| {"gzip-8", zlib_decompress}, /* ZIO_COMPRESS_GZIP8 */ |
| {"gzip-9", zlib_decompress}, /* ZIO_COMPRESS_GZIP9 */ |
| }; |
| |
| |
| |
| static int zio_read_data(blkptr_t *bp, zfs_endian_t endian, |
| void *buf, struct zfs_data *data); |
| |
| static int |
| zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, |
| size_t *size, struct zfs_data *data); |
| |
| /* |
| * Our own version of log2(). Same thing as highbit()-1. |
| */ |
| static int |
| zfs_log2(uint64_t num) |
| { |
| int i = 0; |
| |
| while (num > 1) { |
| i++; |
| num = num >> 1; |
| } |
| |
| return i; |
| } |
| |
| |
| /* Checksum Functions */ |
| static void |
| zio_checksum_off(const void *buf __attribute__ ((unused)), |
| uint64_t size __attribute__ ((unused)), |
| zfs_endian_t endian __attribute__ ((unused)), |
| zio_cksum_t *zcp) |
| { |
| ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0); |
| } |
| |
| /* Checksum Table and Values */ |
| static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = { |
| {NULL, 0, 0, "inherit"}, |
| {NULL, 0, 0, "on"}, |
| {zio_checksum_off, 0, 0, "off"}, |
| {zio_checksum_SHA256, 1, 1, "label"}, |
| {zio_checksum_SHA256, 1, 1, "gang_header"}, |
| {NULL, 0, 0, "zilog"}, |
| {fletcher_2_endian, 0, 0, "fletcher2"}, |
| {fletcher_4_endian, 1, 0, "fletcher4"}, |
| {zio_checksum_SHA256, 1, 0, "SHA256"}, |
| {NULL, 0, 0, "zilog2"}, |
| }; |
| |
| /* |
| * zio_checksum_verify: Provides support for checksum verification. |
| * |
| * Fletcher2, Fletcher4, and SHA256 are supported. |
| * |
| */ |
| static int |
| zio_checksum_verify(zio_cksum_t zc, uint32_t checksum, |
| zfs_endian_t endian, char *buf, int size) |
| { |
| zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1; |
| zio_checksum_info_t *ci = &zio_checksum_table[checksum]; |
| zio_cksum_t actual_cksum, expected_cksum; |
| |
| if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) { |
| printf("zfs unknown checksum function %d\n", checksum); |
| return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| } |
| |
| if (ci->ci_eck) { |
| expected_cksum = zec->zec_cksum; |
| zec->zec_cksum = zc; |
| ci->ci_func(buf, size, endian, &actual_cksum); |
| zec->zec_cksum = expected_cksum; |
| zc = expected_cksum; |
| } else { |
| ci->ci_func(buf, size, endian, &actual_cksum); |
| } |
| |
| if ((actual_cksum.zc_word[0] != zc.zc_word[0]) |
| || (actual_cksum.zc_word[1] != zc.zc_word[1]) |
| || (actual_cksum.zc_word[2] != zc.zc_word[2]) |
| || (actual_cksum.zc_word[3] != zc.zc_word[3])) { |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * vdev_uberblock_compare takes two uberblock structures and returns an integer |
| * indicating the more recent of the two. |
| * Return Value = 1 if ub2 is more recent |
| * Return Value = -1 if ub1 is more recent |
| * The most recent uberblock is determined using its transaction number and |
| * timestamp. The uberblock with the highest transaction number is |
| * considered "newer". If the transaction numbers of the two blocks match, the |
| * timestamps are compared to determine the "newer" of the two. |
| */ |
| static int |
| vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) |
| { |
| zfs_endian_t ub1_endian, ub2_endian; |
| if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) |
| ub1_endian = LITTLE_ENDIAN; |
| else |
| ub1_endian = BIG_ENDIAN; |
| if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC) |
| ub2_endian = LITTLE_ENDIAN; |
| else |
| ub2_endian = BIG_ENDIAN; |
| |
| if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) |
| < zfs_to_cpu64(ub2->ub_txg, ub2_endian)) |
| return -1; |
| if (zfs_to_cpu64(ub1->ub_txg, ub1_endian) |
| > zfs_to_cpu64(ub2->ub_txg, ub2_endian)) |
| return 1; |
| |
| if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) |
| < zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) |
| return -1; |
| if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian) |
| > zfs_to_cpu64(ub2->ub_timestamp, ub2_endian)) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * Three pieces of information are needed to verify an uberblock: the magic |
| * number, the version number, and the checksum. |
| * |
| * Currently Implemented: version number, magic number, label txg |
| * Need to Implement: checksum |
| * |
| */ |
| static int |
| uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data) |
| { |
| int err; |
| zfs_endian_t endian = UNKNOWN_ENDIAN; |
| zio_cksum_t zc; |
| |
| if (uber->ub_txg < data->label_txg) { |
| debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n", |
| uber->ub_txg, data->label_txg); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC |
| && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0 |
| && zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION) |
| endian = LITTLE_ENDIAN; |
| |
| if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC |
| && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0 |
| && zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION) |
| endian = BIG_ENDIAN; |
| |
| if (endian == UNKNOWN_ENDIAN) { |
| printf("invalid uberblock magic\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| memset(&zc, 0, sizeof(zc)); |
| zc.zc_word[0] = cpu_to_zfs64(offset, endian); |
| err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian, |
| (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift)); |
| |
| if (!err) { |
| /* Check that the data pointed by the rootbp is usable. */ |
| void *osp = NULL; |
| size_t ospsize; |
| err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data); |
| free(osp); |
| |
| if (!err && ospsize < OBJSET_PHYS_SIZE_V14) { |
| printf("uberblock rootbp points to invalid data\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Find the best uberblock. |
| * Return: |
| * Success - Pointer to the best uberblock. |
| * Failure - NULL |
| */ |
| static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data) |
| { |
| const uint64_t sector = data->vdev_phys_sector; |
| uberblock_t *ubbest = NULL; |
| uberblock_t *ubnext; |
| unsigned int i, offset, pickedub = 0; |
| int err = ZFS_ERR_NONE; |
| |
| const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift); |
| const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift); |
| |
| for (i = 0; i < UBCOUNT; i++) { |
| ubnext = (uberblock_t *) (i * UBBYTES + ub_array); |
| offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES); |
| |
| err = uberblock_verify(ubnext, offset, data); |
| if (err) |
| continue; |
| |
| if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) { |
| ubbest = ubnext; |
| pickedub = i; |
| } |
| } |
| |
| if (ubbest) |
| debug("zfs Found best uberblock at idx %d, txg %llu\n", |
| pickedub, (unsigned long long) ubbest->ub_txg); |
| |
| return ubbest; |
| } |
| |
| static inline size_t |
| get_psize(blkptr_t *bp, zfs_endian_t endian) |
| { |
| return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1) |
| << SPA_MINBLOCKSHIFT; |
| } |
| |
| static uint64_t |
| dva_get_offset(dva_t *dva, zfs_endian_t endian) |
| { |
| return zfs_to_cpu64((dva)->dva_word[1], |
| endian) << SPA_MINBLOCKSHIFT; |
| } |
| |
| /* |
| * Read a block of data based on the gang block address dva, |
| * and put its data in buf. |
| * |
| */ |
| static int |
| zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf, |
| struct zfs_data *data) |
| { |
| zio_gbh_phys_t *zio_gb; |
| uint64_t offset, sector; |
| unsigned i; |
| int err; |
| zio_cksum_t zc; |
| |
| memset(&zc, 0, sizeof(zc)); |
| |
| zio_gb = malloc(SPA_GANGBLOCKSIZE); |
| if (!zio_gb) |
| return ZFS_ERR_OUT_OF_MEMORY; |
| |
| offset = dva_get_offset(dva, endian); |
| sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); |
| |
| /* read in the gang block header */ |
| err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb); |
| |
| if (err) { |
| free(zio_gb); |
| return err; |
| } |
| |
| /* XXX */ |
| /* self checksuming the gang block header */ |
| ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva), |
| dva_get_offset(dva, endian), bp->blk_birth, 0); |
| err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian, |
| (char *) zio_gb, SPA_GANGBLOCKSIZE); |
| if (err) { |
| free(zio_gb); |
| return err; |
| } |
| |
| endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| |
| for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { |
| if (zio_gb->zg_blkptr[i].blk_birth == 0) |
| continue; |
| |
| err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data); |
| if (err) { |
| free(zio_gb); |
| return err; |
| } |
| buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian); |
| } |
| free(zio_gb); |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * Read in a block of raw data to buf. |
| */ |
| static int |
| zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf, |
| struct zfs_data *data) |
| { |
| int i, psize; |
| int err = ZFS_ERR_NONE; |
| |
| psize = get_psize(bp, endian); |
| |
| /* pick a good dva from the block pointer */ |
| for (i = 0; i < SPA_DVAS_PER_BP; i++) { |
| uint64_t offset, sector; |
| |
| if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0) |
| continue; |
| |
| if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) { |
| err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data); |
| } else { |
| /* read in a data block */ |
| offset = dva_get_offset(&bp->blk_dva[i], endian); |
| sector = DVA_OFFSET_TO_PHYS_SECTOR(offset); |
| |
| err = zfs_devread(sector, 0, psize, buf); |
| } |
| |
| if (!err) { |
| /*Check the underlying checksum before we rule this DVA as "good"*/ |
| uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff; |
| |
| err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize); |
| if (!err) |
| return ZFS_ERR_NONE; |
| } |
| |
| /* If read failed or checksum bad, reset the error. Hopefully we've got some more DVA's to try.*/ |
| } |
| |
| if (!err) { |
| printf("couldn't find a valid DVA\n"); |
| err = ZFS_ERR_BAD_FS; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Read in a block of data, verify its checksum, decompress if needed, |
| * and put the uncompressed data in buf. |
| */ |
| static int |
| zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf, |
| size_t *size, struct zfs_data *data) |
| { |
| size_t lsize, psize; |
| unsigned int comp; |
| char *compbuf = NULL; |
| int err; |
| |
| *buf = NULL; |
| |
| comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff; |
| lsize = (BP_IS_HOLE(bp) ? 0 : |
| (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1) |
| << SPA_MINBLOCKSHIFT)); |
| psize = get_psize(bp, endian); |
| |
| if (size) |
| *size = lsize; |
| |
| if (comp >= ZIO_COMPRESS_FUNCTIONS) { |
| printf("compression algorithm %u not supported\n", (unsigned int) comp); |
| return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| } |
| |
| if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) { |
| printf("compression algorithm %s not supported\n", decomp_table[comp].name); |
| return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| } |
| |
| if (comp != ZIO_COMPRESS_OFF) { |
| compbuf = malloc(psize); |
| if (!compbuf) |
| return ZFS_ERR_OUT_OF_MEMORY; |
| } else { |
| compbuf = *buf = malloc(lsize); |
| } |
| |
| err = zio_read_data(bp, endian, compbuf, data); |
| if (err) { |
| free(compbuf); |
| *buf = NULL; |
| return err; |
| } |
| |
| if (comp != ZIO_COMPRESS_OFF) { |
| *buf = malloc(lsize); |
| if (!*buf) { |
| free(compbuf); |
| return ZFS_ERR_OUT_OF_MEMORY; |
| } |
| |
| err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize); |
| free(compbuf); |
| if (err) { |
| free(*buf); |
| *buf = NULL; |
| return err; |
| } |
| } |
| |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * Get the block from a block id. |
| * push the block onto the stack. |
| * |
| */ |
| static int |
| dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf, |
| zfs_endian_t *endian_out, struct zfs_data *data) |
| { |
| int idx, level; |
| blkptr_t *bp_array = dn->dn.dn_blkptr; |
| int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT; |
| blkptr_t *bp; |
| void *tmpbuf = 0; |
| zfs_endian_t endian; |
| int err = ZFS_ERR_NONE; |
| |
| bp = malloc(sizeof(blkptr_t)); |
| if (!bp) |
| return ZFS_ERR_OUT_OF_MEMORY; |
| |
| endian = dn->endian; |
| for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) { |
| idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1); |
| *bp = bp_array[idx]; |
| if (bp_array != dn->dn.dn_blkptr) { |
| free(bp_array); |
| bp_array = 0; |
| } |
| |
| if (BP_IS_HOLE(bp)) { |
| size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec, |
| dn->endian) |
| << SPA_MINBLOCKSHIFT; |
| *buf = malloc(size); |
| if (!*buf) { |
| err = ZFS_ERR_OUT_OF_MEMORY; |
| break; |
| } |
| memset(*buf, 0, size); |
| endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| break; |
| } |
| if (level == 0) { |
| err = zio_read(bp, endian, buf, 0, data); |
| endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| break; |
| } |
| err = zio_read(bp, endian, &tmpbuf, 0, data); |
| endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1; |
| if (err) |
| break; |
| bp_array = tmpbuf; |
| } |
| if (bp_array != dn->dn.dn_blkptr) |
| free(bp_array); |
| if (endian_out) |
| *endian_out = endian; |
| |
| free(bp); |
| return err; |
| } |
| |
| /* |
| * mzap_lookup: Looks up property described by "name" and returns the value |
| * in "value". |
| */ |
| static int |
| mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian, |
| int objsize, char *name, uint64_t * value) |
| { |
| int i, chunks; |
| mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; |
| |
| chunks = objsize / MZAP_ENT_LEN - 1; |
| for (i = 0; i < chunks; i++) { |
| if (strcmp(mzap_ent[i].mze_name, name) == 0) { |
| *value = zfs_to_cpu64(mzap_ent[i].mze_value, endian); |
| return ZFS_ERR_NONE; |
| } |
| } |
| |
| printf("couldn't find '%s'\n", name); |
| return ZFS_ERR_FILE_NOT_FOUND; |
| } |
| |
| static int |
| mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize, |
| int (*hook)(const char *name, |
| uint64_t val, |
| struct zfs_data *data), |
| struct zfs_data *data) |
| { |
| int i, chunks; |
| mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk; |
| |
| chunks = objsize / MZAP_ENT_LEN - 1; |
| for (i = 0; i < chunks; i++) { |
| if (hook(mzap_ent[i].mze_name, |
| zfs_to_cpu64(mzap_ent[i].mze_value, endian), |
| data)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static uint64_t |
| zap_hash(uint64_t salt, const char *name) |
| { |
| static uint64_t table[256]; |
| const uint8_t *cp; |
| uint8_t c; |
| uint64_t crc = salt; |
| |
| if (table[128] == 0) { |
| uint64_t *ct = NULL; |
| int i, j; |
| for (i = 0; i < 256; i++) { |
| for (ct = table + i, *ct = i, j = 8; j > 0; j--) |
| *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); |
| } |
| } |
| |
| for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++) |
| crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF]; |
| |
| /* |
| * Only use 28 bits, since we need 4 bits in the cookie for the |
| * collision differentiator. We MUST use the high bits, since |
| * those are the onces that we first pay attention to when |
| * chosing the bucket. |
| */ |
| crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); |
| |
| return crc; |
| } |
| |
| /* |
| * Only to be used on 8-bit arrays. |
| * array_len is actual len in bytes (not encoded le_value_length). |
| * buf is null-terminated. |
| */ |
| /* XXX */ |
| static int |
| zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian, |
| int blksft, int chunk, int array_len, const char *buf) |
| { |
| int bseen = 0; |
| |
| while (bseen < array_len) { |
| struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; |
| int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); |
| |
| if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) |
| return 0; |
| |
| if (memcmp(la->la_array, buf + bseen, toread) != 0) |
| break; |
| chunk = zfs_to_cpu16(la->la_next, endian); |
| bseen += toread; |
| } |
| return (bseen == array_len); |
| } |
| |
| /* XXX */ |
| static int |
| zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft, |
| int chunk, int array_len, char *buf) |
| { |
| int bseen = 0; |
| |
| while (bseen < array_len) { |
| struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array; |
| int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); |
| |
| if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) |
| /* Don't use errno because this error is to be ignored. */ |
| return ZFS_ERR_BAD_FS; |
| |
| memcpy(buf + bseen, la->la_array, toread); |
| chunk = zfs_to_cpu16(la->la_next, endian); |
| bseen += toread; |
| } |
| return ZFS_ERR_NONE; |
| } |
| |
| |
| /* |
| * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the |
| * value for the property "name". |
| * |
| */ |
| /* XXX */ |
| static int |
| zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian, |
| int blksft, uint64_t h, |
| const char *name, uint64_t *value) |
| { |
| uint16_t chunk; |
| struct zap_leaf_entry *le; |
| |
| /* Verify if this is a valid leaf block */ |
| if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { |
| printf("invalid leaf type\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { |
| printf("invalid leaf magic\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian); |
| chunk != CHAIN_END; chunk = le->le_next) { |
| |
| if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) { |
| printf("invalid chunk number\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| le = ZAP_LEAF_ENTRY(l, blksft, chunk); |
| |
| /* Verify the chunk entry */ |
| if (le->le_type != ZAP_CHUNK_ENTRY) { |
| printf("invalid chunk entry\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| if (zfs_to_cpu64(le->le_hash, endian) != h) |
| continue; |
| |
| if (zap_leaf_array_equal(l, endian, blksft, |
| zfs_to_cpu16(le->le_name_chunk, endian), |
| zfs_to_cpu16(le->le_name_length, endian), |
| name)) { |
| struct zap_leaf_array *la; |
| |
| if (le->le_int_size != 8 || le->le_value_length != 1) { |
| printf("invalid leaf chunk entry\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| /* get the uint64_t property value */ |
| la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; |
| |
| *value = be64_to_cpu(la->la_array64); |
| |
| return ZFS_ERR_NONE; |
| } |
| } |
| |
| printf("couldn't find '%s'\n", name); |
| return ZFS_ERR_FILE_NOT_FOUND; |
| } |
| |
| |
| /* Verify if this is a fat zap header block */ |
| static int |
| zap_verify(zap_phys_t *zap) |
| { |
| if (zap->zap_magic != (uint64_t) ZAP_MAGIC) { |
| printf("bad ZAP magic\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| if (zap->zap_flags != 0) { |
| printf("bad ZAP flags\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| if (zap->zap_salt == 0) { |
| printf("bad ZAP salt\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * Fat ZAP lookup |
| * |
| */ |
| /* XXX */ |
| static int |
| fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap, |
| char *name, uint64_t *value, struct zfs_data *data) |
| { |
| void *l; |
| uint64_t hash, idx, blkid; |
| int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, |
| zap_dnode->endian) << DNODE_SHIFT); |
| int err; |
| zfs_endian_t leafendian; |
| |
| err = zap_verify(zap); |
| if (err) |
| return err; |
| |
| hash = zap_hash(zap->zap_salt, name); |
| |
| /* get block id from index */ |
| if (zap->zap_ptrtbl.zt_numblks != 0) { |
| printf("external pointer tables not supported\n"); |
| return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| } |
| idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift); |
| blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; |
| |
| /* Get the leaf block */ |
| if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { |
| printf("ZAP leaf is too small\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| err = dmu_read(zap_dnode, blkid, &l, &leafendian, data); |
| if (err) |
| return err; |
| |
| err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value); |
| free(l); |
| return err; |
| } |
| |
| /* XXX */ |
| static int |
| fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap, |
| int (*hook)(const char *name, |
| uint64_t val, |
| struct zfs_data *data), |
| struct zfs_data *data) |
| { |
| zap_leaf_phys_t *l; |
| void *l_in; |
| uint64_t idx, blkid; |
| uint16_t chunk; |
| int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, |
| zap_dnode->endian) << DNODE_SHIFT); |
| int err; |
| zfs_endian_t endian; |
| |
| if (zap_verify(zap)) |
| return 0; |
| |
| /* get block id from index */ |
| if (zap->zap_ptrtbl.zt_numblks != 0) { |
| printf("external pointer tables not supported\n"); |
| return 0; |
| } |
| /* Get the leaf block */ |
| if ((1U << blksft) < sizeof(zap_leaf_phys_t)) { |
| printf("ZAP leaf is too small\n"); |
| return 0; |
| } |
| for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) { |
| blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))]; |
| |
| err = dmu_read(zap_dnode, blkid, &l_in, &endian, data); |
| l = l_in; |
| if (err) |
| continue; |
| |
| /* Verify if this is a valid leaf block */ |
| if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) { |
| free(l); |
| continue; |
| } |
| if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) { |
| free(l); |
| continue; |
| } |
| |
| for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) { |
| char *buf; |
| struct zap_leaf_array *la; |
| struct zap_leaf_entry *le; |
| uint64_t val; |
| le = ZAP_LEAF_ENTRY(l, blksft, chunk); |
| |
| /* Verify the chunk entry */ |
| if (le->le_type != ZAP_CHUNK_ENTRY) |
| continue; |
| |
| buf = malloc(zfs_to_cpu16(le->le_name_length, endian) |
| + 1); |
| if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk, |
| le->le_name_length, buf)) { |
| free(buf); |
| continue; |
| } |
| buf[le->le_name_length] = 0; |
| |
| if (le->le_int_size != 8 |
| || zfs_to_cpu16(le->le_value_length, endian) != 1) |
| continue; |
| |
| /* get the uint64_t property value */ |
| la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array; |
| val = be64_to_cpu(la->la_array64); |
| if (hook(buf, val, data)) |
| return 1; |
| free(buf); |
| } |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * Read in the data of a zap object and find the value for a matching |
| * property name. |
| * |
| */ |
| static int |
| zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val, |
| struct zfs_data *data) |
| { |
| uint64_t block_type; |
| int size; |
| void *zapbuf; |
| int err; |
| zfs_endian_t endian; |
| |
| /* Read in the first block of the zap object data. */ |
| size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, |
| zap_dnode->endian) << SPA_MINBLOCKSHIFT; |
| err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); |
| if (err) |
| return err; |
| block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); |
| |
| if (block_type == ZBT_MICRO) { |
| err = (mzap_lookup(zapbuf, endian, size, name, val)); |
| free(zapbuf); |
| return err; |
| } else if (block_type == ZBT_HEADER) { |
| /* this is a fat zap */ |
| err = (fzap_lookup(zap_dnode, zapbuf, name, val, data)); |
| free(zapbuf); |
| return err; |
| } |
| |
| printf("unknown ZAP type\n"); |
| free(zapbuf); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| static int |
| zap_iterate(dnode_end_t *zap_dnode, |
| int (*hook)(const char *name, uint64_t val, |
| struct zfs_data *data), |
| struct zfs_data *data) |
| { |
| uint64_t block_type; |
| int size; |
| void *zapbuf; |
| int err; |
| int ret; |
| zfs_endian_t endian; |
| |
| /* Read in the first block of the zap object data. */ |
| size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT; |
| err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data); |
| if (err) |
| return 0; |
| block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian); |
| |
| if (block_type == ZBT_MICRO) { |
| ret = mzap_iterate(zapbuf, endian, size, hook, data); |
| free(zapbuf); |
| return ret; |
| } else if (block_type == ZBT_HEADER) { |
| /* this is a fat zap */ |
| ret = fzap_iterate(zap_dnode, zapbuf, hook, data); |
| free(zapbuf); |
| return ret; |
| } |
| printf("unknown ZAP type\n"); |
| free(zapbuf); |
| return 0; |
| } |
| |
| |
| /* |
| * Get the dnode of an object number from the metadnode of an object set. |
| * |
| * Input |
| * mdn - metadnode to get the object dnode |
| * objnum - object number for the object dnode |
| * buf - data buffer that holds the returning dnode |
| */ |
| static int |
| dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type, |
| dnode_end_t *buf, struct zfs_data *data) |
| { |
| uint64_t blkid, blksz; /* the block id this object dnode is in */ |
| int epbs; /* shift of number of dnodes in a block */ |
| int idx; /* index within a block */ |
| void *dnbuf; |
| int err; |
| zfs_endian_t endian; |
| |
| blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec, |
| mdn->endian) << SPA_MINBLOCKSHIFT; |
| |
| epbs = zfs_log2(blksz) - DNODE_SHIFT; |
| blkid = objnum >> epbs; |
| idx = objnum & ((1 << epbs) - 1); |
| |
| if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn, |
| sizeof(*mdn)) == 0 |
| && objnum >= data->dnode_start && objnum < data->dnode_end) { |
| memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE); |
| buf->endian = data->dnode_endian; |
| if (type && buf->dn.dn_type != type) { |
| printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type); |
| return ZFS_ERR_BAD_FS; |
| } |
| return ZFS_ERR_NONE; |
| } |
| |
| err = dmu_read(mdn, blkid, &dnbuf, &endian, data); |
| if (err) |
| return err; |
| |
| free(data->dnode_buf); |
| free(data->dnode_mdn); |
| data->dnode_mdn = malloc(sizeof(*mdn)); |
| if (!data->dnode_mdn) { |
| data->dnode_buf = 0; |
| } else { |
| memcpy(data->dnode_mdn, mdn, sizeof(*mdn)); |
| data->dnode_buf = dnbuf; |
| data->dnode_start = blkid << epbs; |
| data->dnode_end = (blkid + 1) << epbs; |
| data->dnode_endian = endian; |
| } |
| |
| memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE); |
| buf->endian = endian; |
| if (type && buf->dn.dn_type != type) { |
| printf("incorrect dnode type\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * Get the file dnode for a given file name where mdn is the meta dnode |
| * for this ZFS object set. When found, place the file dnode in dn. |
| * The 'path' argument will be mangled. |
| * |
| */ |
| static int |
| dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn, |
| struct zfs_data *data) |
| { |
| uint64_t objnum, version; |
| char *cname, ch; |
| int err = ZFS_ERR_NONE; |
| char *path, *path_buf; |
| struct dnode_chain { |
| struct dnode_chain *next; |
| dnode_end_t dn; |
| }; |
| struct dnode_chain *dnode_path = 0, *dn_new, *root; |
| |
| dn_new = malloc(sizeof(*dn_new)); |
| if (!dn_new) |
| return ZFS_ERR_OUT_OF_MEMORY; |
| dn_new->next = 0; |
| dnode_path = root = dn_new; |
| |
| err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, |
| &(dnode_path->dn), data); |
| if (err) { |
| free(dn_new); |
| return err; |
| } |
| |
| err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data); |
| if (err) { |
| free(dn_new); |
| return err; |
| } |
| if (version > ZPL_VERSION) { |
| free(dn_new); |
| printf("too new ZPL version\n"); |
| return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| } |
| |
| err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data); |
| if (err) { |
| free(dn_new); |
| return err; |
| } |
| |
| err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); |
| if (err) { |
| free(dn_new); |
| return err; |
| } |
| |
| path = path_buf = strdup(path_in); |
| if (!path_buf) { |
| free(dn_new); |
| return ZFS_ERR_OUT_OF_MEMORY; |
| } |
| |
| while (1) { |
| /* skip leading slashes */ |
| while (*path == '/') |
| path++; |
| if (!*path) |
| break; |
| /* get the next component name */ |
| cname = path; |
| while (*path && *path != '/') |
| path++; |
| /* Skip dot. */ |
| if (cname + 1 == path && cname[0] == '.') |
| continue; |
| /* Handle double dot. */ |
| if (cname + 2 == path && cname[0] == '.' && cname[1] == '.') { |
| if (dn_new->next) { |
| dn_new = dnode_path; |
| dnode_path = dn_new->next; |
| free(dn_new); |
| } else { |
| printf("can't resolve ..\n"); |
| err = ZFS_ERR_FILE_NOT_FOUND; |
| break; |
| } |
| continue; |
| } |
| |
| ch = *path; |
| *path = 0; /* ensure null termination */ |
| |
| if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { |
| free(path_buf); |
| printf("not a directory\n"); |
| return ZFS_ERR_BAD_FILE_TYPE; |
| } |
| err = zap_lookup(&(dnode_path->dn), cname, &objnum, data); |
| if (err) |
| break; |
| |
| dn_new = malloc(sizeof(*dn_new)); |
| if (!dn_new) { |
| err = ZFS_ERR_OUT_OF_MEMORY; |
| break; |
| } |
| dn_new->next = dnode_path; |
| dnode_path = dn_new; |
| |
| objnum = ZFS_DIRENT_OBJ(objnum); |
| err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data); |
| if (err) |
| break; |
| |
| *path = ch; |
| } |
| |
| if (!err) |
| memcpy(dn, &(dnode_path->dn), sizeof(*dn)); |
| |
| while (dnode_path) { |
| dn_new = dnode_path->next; |
| free(dnode_path); |
| dnode_path = dn_new; |
| } |
| free(path_buf); |
| return err; |
| } |
| |
| |
| /* |
| * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname), |
| * e.g. pool/rootfs, or a given object number (obj), e.g. the object number |
| * of pool/rootfs. |
| * |
| * If no fsname and no obj are given, return the DSL_DIR metadnode. |
| * If fsname is given, return its metadnode and its matching object number. |
| * If only obj is given, return the metadnode for this object number. |
| * |
| */ |
| static int |
| get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname, |
| dnode_end_t *mdn, struct zfs_data *data) |
| { |
| uint64_t objnum; |
| int err; |
| |
| err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT, |
| DMU_OT_OBJECT_DIRECTORY, mdn, data); |
| if (err) |
| return err; |
| |
| err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data); |
| if (err) |
| return err; |
| |
| err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); |
| if (err) |
| return err; |
| |
| while (*fsname) { |
| uint64_t childobj; |
| char *cname, ch; |
| |
| while (*fsname == '/') |
| fsname++; |
| |
| if (!*fsname || *fsname == '@') |
| break; |
| |
| cname = fsname; |
| while (*fsname && !isspace(*fsname) && *fsname != '/') |
| fsname++; |
| ch = *fsname; |
| *fsname = 0; |
| |
| childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian); |
| err = dnode_get(mosmdn, childobj, |
| DMU_OT_DSL_DIR_CHILD_MAP, mdn, data); |
| if (err) |
| return err; |
| |
| err = zap_lookup(mdn, cname, &objnum, data); |
| if (err) |
| return err; |
| |
| err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data); |
| if (err) |
| return err; |
| |
| *fsname = ch; |
| } |
| return ZFS_ERR_NONE; |
| } |
| |
| static int |
| make_mdn(dnode_end_t *mdn, struct zfs_data *data) |
| { |
| void *osp; |
| blkptr_t *bp; |
| size_t ospsize; |
| int err; |
| |
| bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp); |
| err = zio_read(bp, mdn->endian, &osp, &ospsize, data); |
| if (err) |
| return err; |
| if (ospsize < OBJSET_PHYS_SIZE_V14) { |
| free(osp); |
| printf("too small osp\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1; |
| memmove((char *) &(mdn->dn), |
| (char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); |
| free(osp); |
| return ZFS_ERR_NONE; |
| } |
| |
| static int |
| dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn, |
| uint64_t *mdnobj, dnode_end_t *dn, int *isfs, |
| struct zfs_data *data) |
| { |
| char *fsname, *snapname; |
| const char *ptr_at, *filename; |
| uint64_t headobj; |
| int err; |
| |
| ptr_at = strchr(fullpath, '@'); |
| if (!ptr_at) { |
| *isfs = 1; |
| filename = 0; |
| snapname = 0; |
| fsname = strdup(fullpath); |
| } else { |
| const char *ptr_slash = strchr(ptr_at, '/'); |
| |
| *isfs = 0; |
| fsname = malloc(ptr_at - fullpath + 1); |
| if (!fsname) |
| return ZFS_ERR_OUT_OF_MEMORY; |
| memcpy(fsname, fullpath, ptr_at - fullpath); |
| fsname[ptr_at - fullpath] = 0; |
| if (ptr_at[1] && ptr_at[1] != '/') { |
| snapname = malloc(ptr_slash - ptr_at); |
| if (!snapname) { |
| free(fsname); |
| return ZFS_ERR_OUT_OF_MEMORY; |
| } |
| memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1); |
| snapname[ptr_slash - ptr_at - 1] = 0; |
| } else { |
| snapname = 0; |
| } |
| if (ptr_slash) |
| filename = ptr_slash; |
| else |
| filename = "/"; |
| printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n", |
| fsname, snapname, filename); |
| } |
| |
| |
| err = get_filesystem_dnode(&(data->mos), fsname, dn, data); |
| |
| if (err) { |
| free(fsname); |
| free(snapname); |
| return err; |
| } |
| |
| headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian); |
| |
| err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); |
| if (err) { |
| free(fsname); |
| free(snapname); |
| return err; |
| } |
| |
| if (snapname) { |
| uint64_t snapobj; |
| |
| snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian); |
| |
| err = dnode_get(&(data->mos), snapobj, |
| DMU_OT_DSL_DS_SNAP_MAP, mdn, data); |
| if (!err) |
| err = zap_lookup(mdn, snapname, &headobj, data); |
| if (!err) |
| err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data); |
| if (err) { |
| free(fsname); |
| free(snapname); |
| return err; |
| } |
| } |
| |
| if (mdnobj) |
| *mdnobj = headobj; |
| |
| make_mdn(mdn, data); |
| |
| if (*isfs) { |
| free(fsname); |
| free(snapname); |
| return ZFS_ERR_NONE; |
| } |
| err = dnode_get_path(mdn, filename, dn, data); |
| free(fsname); |
| free(snapname); |
| return err; |
| } |
| |
| /* |
| * For a given XDR packed nvlist, verify the first 4 bytes and move on. |
| * |
| * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) : |
| * |
| * encoding method/host endian (4 bytes) |
| * nvl_version (4 bytes) |
| * nvl_nvflag (4 bytes) |
| * encoded nvpairs: |
| * encoded size of the nvpair (4 bytes) |
| * decoded size of the nvpair (4 bytes) |
| * name string size (4 bytes) |
| * name string data (sizeof(NV_ALIGN4(string)) |
| * data type (4 bytes) |
| * # of elements in the nvpair (4 bytes) |
| * data |
| * 2 zero's for the last nvpair |
| * (end of the entire list) (8 bytes) |
| * |
| */ |
| |
| static int |
| nvlist_find_value(char *nvlist, char *name, int valtype, char **val, |
| size_t *size_out, size_t *nelm_out) |
| { |
| int name_len, type, encode_size; |
| char *nvpair, *nvp_name; |
| |
| /* Verify if the 1st and 2nd byte in the nvlist are valid. */ |
| /* NOTE: independently of what endianness header announces all |
| subsequent values are big-endian. */ |
| if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN |
| && nvlist[1] != NV_BIG_ENDIAN)) { |
| printf("zfs incorrect nvlist header\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| /* skip the header, nvl_version, and nvl_nvflag */ |
| nvlist = nvlist + 4 * 3; |
| /* |
| * Loop thru the nvpair list |
| * The XDR representation of an integer is in big-endian byte order. |
| */ |
| while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) { |
| int nelm; |
| |
| nvpair = nvlist + 4 * 2; /* skip the encode/decode size */ |
| |
| name_len = be32_to_cpu(*(uint32_t *) nvpair); |
| nvpair += 4; |
| |
| nvp_name = nvpair; |
| nvpair = nvpair + ((name_len + 3) & ~3); /* align */ |
| |
| type = be32_to_cpu(*(uint32_t *) nvpair); |
| nvpair += 4; |
| |
| nelm = be32_to_cpu(*(uint32_t *) nvpair); |
| if (nelm < 1) { |
| printf("empty nvpair\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| nvpair += 4; |
| |
| if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) { |
| *val = nvpair; |
| *size_out = encode_size; |
| if (nelm_out) |
| *nelm_out = nelm; |
| return 1; |
| } |
| |
| nvlist += encode_size; /* goto the next nvpair */ |
| } |
| return 0; |
| } |
| |
| int is_word_aligned_ptr(void *ptr) { |
| return ((uintptr_t)ptr & (sizeof(void *) - 1)) == 0; |
| } |
| |
| int |
| zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out) |
| { |
| char *nvpair; |
| size_t size; |
| int found; |
| |
| found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0); |
| if (!found) |
| return 0; |
| if (size < sizeof(uint64_t)) { |
| printf("invalid uint64\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| /* On arm64, calling be64_to_cpu() on a value stored at a memory address |
| * that's not 8-byte aligned causes the CPU to reset. Avoid that by copying the |
| * value somewhere else if needed. |
| */ |
| if (!is_word_aligned_ptr((void *)nvpair)) { |
| uint64_t *alignedptr = malloc(sizeof(uint64_t)); |
| if (!alignedptr) |
| return 0; |
| memcpy(alignedptr, nvpair, sizeof(uint64_t)); |
| *out = be64_to_cpu(*alignedptr); |
| free(alignedptr); |
| return 1; |
| } |
| |
| *out = be64_to_cpu(*(uint64_t *) nvpair); |
| return 1; |
| } |
| |
| char * |
| zfs_nvlist_lookup_string(char *nvlist, char *name) |
| { |
| char *nvpair; |
| char *ret; |
| size_t slen; |
| size_t size; |
| int found; |
| |
| found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0); |
| if (!found) |
| return 0; |
| if (size < 4) { |
| printf("invalid string\n"); |
| return 0; |
| } |
| slen = be32_to_cpu(*(uint32_t *) nvpair); |
| if (slen > size - 4) |
| slen = size - 4; |
| ret = malloc(slen + 1); |
| if (!ret) |
| return 0; |
| memcpy(ret, nvpair + 4, slen); |
| ret[slen] = 0; |
| return ret; |
| } |
| |
| char * |
| zfs_nvlist_lookup_nvlist(char *nvlist, char *name) |
| { |
| char *nvpair; |
| char *ret; |
| size_t size; |
| int found; |
| |
| found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, |
| &size, 0); |
| if (!found) |
| return 0; |
| |
| /* Allocate 12 bytes in addition to the nvlist size: One uint32 before the |
| * nvlist to hold the encoding method, and two zero uint32's after the |
| * nvlist as the NULL terminator. |
| */ |
| ret = calloc(1, size + 3 * sizeof(uint32_t)); |
| if (!ret) |
| return 0; |
| memcpy(ret, nvlist, sizeof(uint32_t)); |
| |
| memcpy(ret + sizeof(uint32_t), nvpair, size); |
| return ret; |
| } |
| |
| int |
| zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name) |
| { |
| char *nvpair; |
| size_t nelm, size; |
| int found; |
| |
| found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, |
| &size, &nelm); |
| if (!found) |
| return -1; |
| return nelm; |
| } |
| |
| char * |
| zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name, |
| size_t index) |
| { |
| char *nvpair, *nvpairptr; |
| int found; |
| char *ret; |
| size_t size; |
| unsigned i; |
| size_t nelm; |
| |
| found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair, |
| &size, &nelm); |
| if (!found) |
| return 0; |
| if (index >= nelm) { |
| printf("trying to lookup past nvlist array\n"); |
| return 0; |
| } |
| |
| nvpairptr = nvpair; |
| |
| for (i = 0; i < index; i++) { |
| uint32_t encode_size; |
| |
| /* skip the header, nvl_version, and nvl_nvflag */ |
| nvpairptr = nvpairptr + 4 * 2; |
| |
| while (nvpairptr < nvpair + size |
| && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr))) |
| nvlist += encode_size; /* goto the next nvpair */ |
| |
| nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */ |
| } |
| |
| if (nvpairptr >= nvpair + size |
| || nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) |
| >= nvpair + size) { |
| printf("incorrect nvlist array\n"); |
| return 0; |
| } |
| |
| ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2)) |
| + 3 * sizeof(uint32_t)); |
| if (!ret) |
| return 0; |
| memcpy(ret, nvlist, sizeof(uint32_t)); |
| |
| memcpy(ret + sizeof(uint32_t), nvpairptr, size); |
| return ret; |
| } |
| |
| static int |
| int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist) |
| { |
| int err; |
| |
| *nvlist = malloc(VDEV_PHYS_SIZE); |
| /* Read in the vdev name-value pair list (112K). */ |
| err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist); |
| if (err) { |
| free(*nvlist); |
| *nvlist = 0; |
| return err; |
| } |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * Check the disk label information and retrieve needed vdev name-value pairs. |
| * |
| */ |
| static int |
| check_pool_label(struct zfs_data *data) |
| { |
| uint64_t pool_state; |
| char *nvlist; /* for the pool */ |
| char *vdevnvlist; /* for the vdev */ |
| uint64_t diskguid; |
| uint64_t version; |
| int found; |
| int err; |
| |
| err = int_zfs_fetch_nvlist(data, &nvlist); |
| if (err) |
| return err; |
| |
| found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE, |
| &pool_state); |
| if (!found) { |
| free(nvlist); |
| printf("zfs pool state not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| if (pool_state == POOL_STATE_DESTROYED) { |
| free(nvlist); |
| printf("zpool is marked as destroyed\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| data->label_txg = 0; |
| found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG, |
| &data->label_txg); |
| if (!found) { |
| free(nvlist); |
| printf("zfs pool txg not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| /* not an active device */ |
| if (data->label_txg == 0) { |
| free(nvlist); |
| printf("zpool is not active\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION, |
| &version); |
| if (!found) { |
| free(nvlist); |
| printf("zpool config version not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| if (version > SPA_VERSION) { |
| free(nvlist); |
| printf("SPA version too new %llu > %llu\n", |
| (unsigned long long) version, |
| (unsigned long long) SPA_VERSION); |
| return ZFS_ERR_NOT_IMPLEMENTED_YET; |
| } |
| |
| vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE); |
| if (!vdevnvlist) { |
| free(nvlist); |
| printf("ZFS config vdev tree not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT, |
| &data->vdev_ashift); |
| free(vdevnvlist); |
| if (!found) { |
| free(nvlist); |
| printf("ZPOOL config ashift not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid); |
| if (!found) { |
| free(nvlist); |
| printf("ZPOOL config guid not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid); |
| if (!found) { |
| free(nvlist); |
| printf("ZPOOL config pool guid not found\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| free(nvlist); |
| |
| printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n", |
| (unsigned long long) data->pool_guid, |
| (unsigned long long) data->pool_guid, |
| (unsigned long long) diskguid, |
| (unsigned long long) diskguid, |
| (unsigned long long) data->label_txg, |
| (unsigned long long) version, |
| (unsigned long long) data->vdev_ashift); |
| |
| return ZFS_ERR_NONE; |
| } |
| |
| /* |
| * vdev_label_start returns the physical disk offset (in bytes) of |
| * label "l". |
| */ |
| static uint64_t vdev_label_start(uint64_t psize, int l) |
| { |
| return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ? |
| 0 : psize - |
| VDEV_LABELS * sizeof(vdev_label_t))); |
| } |
| |
| void |
| zfs_unmount(struct zfs_data *data) |
| { |
| free(data->dnode_buf); |
| free(data->dnode_mdn); |
| free(data->file_buf); |
| free(data); |
| } |
| |
| /* |
| * zfs_mount() locates a valid uberblock of the root pool and read in its MOS |
| * to the memory address MOS. |
| * |
| */ |
| struct zfs_data * |
| zfs_mount(device_t dev) |
| { |
| struct zfs_data *data = 0; |
| int label = 0, bestlabel = -1; |
| char *ub_array; |
| uberblock_t *ubbest; |
| uberblock_t *ubcur = NULL; |
| void *osp = 0; |
| size_t ospsize; |
| int err; |
| |
| data = malloc(sizeof(*data)); |
| if (!data) |
| return 0; |
| memset(data, 0, sizeof(*data)); |
| |
| ub_array = malloc(VDEV_UBERBLOCK_RING); |
| if (!ub_array) { |
| zfs_unmount(data); |
| return 0; |
| } |
| |
| ubbest = malloc(sizeof(*ubbest)); |
| if (!ubbest) { |
| free(ub_array); |
| zfs_unmount(data); |
| return 0; |
| } |
| memset(ubbest, 0, sizeof(*ubbest)); |
| |
| /* |
| * some eltorito stacks don't give us a size and |
| * we end up setting the size to MAXUINT, further |
| * some of these devices stop working once a single |
| * read past the end has been issued. Checking |
| * for a maximum part_length and skipping the backup |
| * labels at the end of the slice/partition/device |
| * avoids breaking down on such devices. |
| */ |
| const int vdevnum = |
| dev->part_length == 0 ? |
| VDEV_LABELS / 2 : VDEV_LABELS; |
| |
| /* Size in bytes of the device (disk or partition) aligned to label size*/ |
| uint64_t device_size = |
| dev->part_length << SECTOR_BITS; |
| |
| const uint64_t alignedbytes = |
| P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t)); |
| |
| for (label = 0; label < vdevnum; label++) { |
| uint64_t labelstartbytes = vdev_label_start(alignedbytes, label); |
| uint64_t labelstart = labelstartbytes >> SECTOR_BITS; |
| |
| debug("zfs reading label %d at sector %llu (byte %llu)\n", |
| label, (unsigned long long) labelstart, |
| (unsigned long long) labelstartbytes); |
| |
| data->vdev_phys_sector = labelstart + |
| ((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS); |
| |
| err = check_pool_label(data); |
| if (err) { |
| printf("zfs error checking label %d\n", label); |
| continue; |
| } |
| |
| /* Read in the uberblock ring (128K). */ |
| err = zfs_devread(data->vdev_phys_sector + |
| (VDEV_PHYS_SIZE >> SECTOR_BITS), |
| 0, VDEV_UBERBLOCK_RING, ub_array); |
| if (err) { |
| printf("zfs error reading uberblock ring for label %d\n", label); |
| continue; |
| } |
| |
| ubcur = find_bestub(ub_array, data); |
| if (!ubcur) { |
| printf("zfs No good uberblocks found in label %d\n", label); |
| continue; |
| } |
| |
| if (vdev_uberblock_compare(ubcur, ubbest) > 0) { |
| /* Looks like the block is good, so use it.*/ |
| memcpy(ubbest, ubcur, sizeof(*ubbest)); |
| bestlabel = label; |
| debug("zfs Current best uberblock found in label %d\n", label); |
| } |
| } |
| free(ub_array); |
| |
| /* We zero'd the structure to begin with. If we never assigned to it, |
| magic will still be zero. */ |
| if (!ubbest->ub_magic) { |
| printf("couldn't find a valid ZFS label\n"); |
| zfs_unmount(data); |
| free(ubbest); |
| return 0; |
| } |
| |
| debug("zfs ubbest %p in label %d\n", ubbest, bestlabel); |
| |
| zfs_endian_t ub_endian = |
| zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC |
| ? LITTLE_ENDIAN : BIG_ENDIAN; |
| |
| debug("zfs endian set to %s\n", !ub_endian ? "big" : "little"); |
| |
| err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data); |
| |
| if (err) { |
| printf("couldn't zio_read object directory\n"); |
| zfs_unmount(data); |
| free(osp); |
| free(ubbest); |
| return 0; |
| } |
| |
| if (ospsize < OBJSET_PHYS_SIZE_V14) { |
| printf("osp too small\n"); |
| zfs_unmount(data); |
| free(osp); |
| free(ubbest); |
| return 0; |
| } |
| |
| /* Got the MOS. Save it at the memory addr MOS. */ |
| memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE); |
| data->mos.endian = |
| (zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1; |
| memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t)); |
| |
| free(osp); |
| free(ubbest); |
| |
| return data; |
| } |
| |
| int |
| zfs_fetch_nvlist(device_t dev, char **nvlist) |
| { |
| struct zfs_data *zfs; |
| int err; |
| |
| zfs = zfs_mount(dev); |
| if (!zfs) |
| return ZFS_ERR_BAD_FS; |
| err = int_zfs_fetch_nvlist(zfs, nvlist); |
| zfs_unmount(zfs); |
| return err; |
| } |
| |
| /* |
| * zfs_open() locates a file in the rootpool by following the |
| * MOS and places the dnode of the file in the memory address DNODE. |
| */ |
| int |
| zfs_open(struct zfs_file *file, const char *fsfilename) |
| { |
| struct zfs_data *data; |
| int err; |
| int isfs; |
| |
| data = zfs_mount(file->device); |
| if (!data) |
| return ZFS_ERR_BAD_FS; |
| |
| err = dnode_get_fullpath(fsfilename, &(data->mdn), 0, |
| &(data->dnode), &isfs, data); |
| if (err) { |
| zfs_unmount(data); |
| return err; |
| } |
| |
| if (isfs) { |
| zfs_unmount(data); |
| printf("Missing @ or / separator\n"); |
| return ZFS_ERR_FILE_NOT_FOUND; |
| } |
| |
| /* We found the dnode for this file. Verify if it is a plain file. */ |
| if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) { |
| zfs_unmount(data); |
| printf("not a file\n"); |
| return ZFS_ERR_BAD_FILE_TYPE; |
| } |
| |
| /* get the file size and set the file position to 0 */ |
| |
| /* |
| * For DMU_OT_SA we will need to locate the SIZE attribute |
| * attribute, which could be either in the bonus buffer |
| * or the "spill" block. |
| */ |
| if (data->dnode.dn.dn_bonustype == DMU_OT_SA) { |
| void *sahdrp; |
| int hdrsize; |
| |
| if (data->dnode.dn.dn_bonuslen != 0) { |
| sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn); |
| } else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) { |
| blkptr_t *bp = &data->dnode.dn.dn_spill; |
| |
| err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data); |
| if (err) |
| return err; |
| } else { |
| printf("filesystem is corrupt :(\n"); |
| return ZFS_ERR_BAD_FS; |
| } |
| |
| hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp)); |
| file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET); |
| if ((data->dnode.dn.dn_bonuslen == 0) && |
| (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR)) |
| free(sahdrp); |
| } else { |
| file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian); |
| } |
| |
| file->data = data; |
| file->offset = 0; |
| |
| return ZFS_ERR_NONE; |
| } |
| |
| uint64_t |
| zfs_read(zfs_file_t file, char *buf, uint64_t len) |
| { |
| struct zfs_data *data = (struct zfs_data *) file->data; |
| int blksz, movesize; |
| uint64_t length; |
| int64_t red; |
| int err; |
| |
| if (data->file_buf == NULL) { |
| data->file_buf = malloc(SPA_MAXBLOCKSIZE); |
| if (!data->file_buf) |
| return -1; |
| data->file_start = data->file_end = 0; |
| } |
| |
| /* |
| * If offset is in memory, move it into the buffer provided and return. |
| */ |
| if (file->offset >= data->file_start |
| && file->offset + len <= data->file_end) { |
| memmove(buf, data->file_buf + file->offset - data->file_start, |
| len); |
| return len; |
| } |
| |
| blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec, |
| data->dnode.endian) << SPA_MINBLOCKSHIFT; |
| |
| /* |
| * Entire Dnode is too big to fit into the space available. We |
| * will need to read it in chunks. This could be optimized to |
| * read in as large a chunk as there is space available, but for |
| * now, this only reads in one data block at a time. |
| */ |
| length = len; |
| red = 0; |
| while (length) { |
| void *t; |
| /* |
| * Find requested blkid and the offset within that block. |
| */ |
| uint64_t blkid = file->offset + red; |
| uint64_t blkoff = do_div(blkid, blksz); |
| free(data->file_buf); |
| data->file_buf = 0; |
| |
| err = dmu_read(&(data->dnode), blkid, &t, |
| 0, data); |
| data->file_buf = t; |
| if (err) |
| return -1; |
| |
| data->file_start = blkid * blksz; |
| data->file_end = data->file_start + blksz; |
| |
| movesize = min(length, data->file_end - (int)file->offset - red); |
| |
| memmove(buf, data->file_buf + blkoff, movesize); |
| buf += movesize; |
| length -= movesize; |
| red += movesize; |
| } |
| |
| return len; |
| } |
| |
| int |
| zfs_close(zfs_file_t file) |
| { |
| zfs_unmount((struct zfs_data *) file->data); |
| return ZFS_ERR_NONE; |
| } |
| |
| int |
| zfs_getmdnobj(device_t dev, const char *fsfilename, |
| uint64_t *mdnobj) |
| { |
| struct zfs_data *data; |
| int err; |
| int isfs; |
| |
| data = zfs_mount(dev); |
| if (!data) |
| return ZFS_ERR_BAD_FS; |
| |
| err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj, |
| &(data->dnode), &isfs, data); |
| zfs_unmount(data); |
| return err; |
| } |
| |
| static void |
| fill_fs_info(struct zfs_dirhook_info *info, |
| dnode_end_t mdn, struct zfs_data *data) |
| { |
| int err; |
| dnode_end_t dn; |
| uint64_t objnum; |
| uint64_t headobj; |
| |
| memset(info, 0, sizeof(*info)); |
| |
| info->dir = 1; |
| |
| if (mdn.dn.dn_type == DMU_OT_DSL_DIR) { |
| headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian); |
| |
| err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data); |
| if (err) { |
| printf("zfs failed here 1\n"); |
| return; |
| } |
| } |
| make_mdn(&mdn, data); |
| err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE, |
| &dn, data); |
| if (err) { |
| printf("zfs failed here 2\n"); |
| return; |
| } |
| |
| err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data); |
| if (err) { |
| printf("zfs failed here 3\n"); |
| return; |
| } |
| |
| err = dnode_get(&mdn, objnum, 0, &dn, data); |
| if (err) { |
| printf("zfs failed here 4\n"); |
| return; |
| } |
| |
| info->mtimeset = 1; |
| info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); |
| |
| return; |
| } |
| |
| static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data) |
| { |
| struct zfs_dirhook_info info; |
| dnode_end_t dn; |
| |
| memset(&info, 0, sizeof(info)); |
| |
| dnode_get(&(data->mdn), val, 0, &dn, data); |
| info.mtimeset = 1; |
| info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian); |
| info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS); |
| debug("zfs type=%d, name=%s\n", |
| (int)dn.dn.dn_type, (char *)name); |
| if (!data->userhook) |
| return 0; |
| return data->userhook(name, &info); |
| } |
| |
| static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data) |
| { |
| struct zfs_dirhook_info info; |
| dnode_end_t mdn; |
| int err; |
| err = dnode_get(&(data->mos), val, 0, &mdn, data); |
| if (err) |
| return 0; |
| if (mdn.dn.dn_type != DMU_OT_DSL_DIR) |
| return 0; |
| |
| fill_fs_info(&info, mdn, data); |
| |
| if (!data->userhook) |
| return 0; |
| return data->userhook(name, &info); |
| } |
| |
| static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data) |
| { |
| struct zfs_dirhook_info info; |
| char *name2; |
| int ret = 0; |
| dnode_end_t mdn; |
| int err; |
| |
| err = dnode_get(&(data->mos), val, 0, &mdn, data); |
| if (err) |
| return 0; |
| |
| if (mdn.dn.dn_type != DMU_OT_DSL_DATASET) |
| return 0; |
| |
| fill_fs_info(&info, mdn, data); |
| |
| name2 = malloc(strlen(name) + 2); |
| name2[0] = '@'; |
| memcpy(name2 + 1, name, strlen(name) + 1); |
| if (data->userhook) |
| ret = data->userhook(name2, &info); |
| free(name2); |
| return ret; |
| } |
| |
| int |
| zfs_ls(device_t device, const char *path, |
| int (*hook)(const char *, const struct zfs_dirhook_info *)) |
| { |
| struct zfs_data *data; |
| int err; |
| int isfs; |
| |
| data = zfs_mount(device); |
| if (!data) |
| return ZFS_ERR_BAD_FS; |
| |
| data->userhook = hook; |
| |
| err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data); |
| if (err) { |
| zfs_unmount(data); |
| return err; |
| } |
| if (isfs) { |
| uint64_t childobj, headobj; |
| uint64_t snapobj; |
| dnode_end_t dn; |
| struct zfs_dirhook_info info; |
| |
| fill_fs_info(&info, data->dnode, data); |
| hook("@", &info); |
| |
| childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian); |
| headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian); |
| err = dnode_get(&(data->mos), childobj, |
| DMU_OT_DSL_DIR_CHILD_MAP, &dn, data); |
| if (err) { |
| zfs_unmount(data); |
| return err; |
| } |
| |
| |
| zap_iterate(&dn, iterate_zap_fs, data); |
| |
| err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data); |
| if (err) { |
| zfs_unmount(data); |
| return err; |
| } |
| |
| snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian); |
| |
| err = dnode_get(&(data->mos), snapobj, |
| DMU_OT_DSL_DS_SNAP_MAP, &dn, data); |
| if (err) { |
| zfs_unmount(data); |
| return err; |
| } |
| |
| zap_iterate(&dn, iterate_zap_snap, data); |
| } else { |
| if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) { |
| zfs_unmount(data); |
| printf("not a directory\n"); |
| return ZFS_ERR_BAD_FILE_TYPE; |
| } |
| zap_iterate(&(data->dnode), iterate_zap, data); |
| } |
| zfs_unmount(data); |
| return ZFS_ERR_NONE; |
| } |