blob: 7a82798c36de8b968ec844cb6ab1fe0790fadc77 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2011 The Chromium OS Authors.
*/
#include <common.h>
#include <bootstage.h>
#include <cpu_func.h>
#include <errno.h>
#include <log.h>
#include <asm/global_data.h>
#include <linux/delay.h>
#include <linux/libfdt.h>
#include <os.h>
#include <asm/io.h>
#include <asm/malloc.h>
#include <asm/setjmp.h>
#include <asm/state.h>
DECLARE_GLOBAL_DATA_PTR;
/* Enable access to PCI memory with map_sysmem() */
static bool enable_pci_map;
#ifdef CONFIG_PCI
/* Last device that was mapped into memory, and length of mapping */
static struct udevice *map_dev;
unsigned long map_len;
#endif
void sandbox_exit(void)
{
/* Do this here while it still has an effect */
os_fd_restore();
if (state_uninit())
os_exit(2);
/* This is considered normal termination for now */
os_exit(0);
}
/* delay x useconds */
void __udelay(unsigned long usec)
{
struct sandbox_state *state = state_get_current();
if (!state->skip_delays)
os_usleep(usec);
}
int cleanup_before_linux(void)
{
return 0;
}
int cleanup_before_linux_select(int flags)
{
return 0;
}
/**
* is_in_sandbox_mem() - Checks if a pointer is within sandbox's emulated DRAM
*
* This provides a way to check if a pointer is owned by sandbox (and is within
* its RAM) or not. Sometimes pointers come from a test which conceptually runs
* output sandbox, potentially with direct access to the C-library malloc()
* function, or the sandbox stack (which is not actually within the emulated
* DRAM.
*
* Such pointers obviously cannot be mapped into sandbox's DRAM, so we must
* detect them an process them separately, by recording a mapping to a tag,
* which we can use to map back to the pointer later.
*
* @ptr: Pointer to check
* Return: true if this is within sandbox emulated DRAM, false if not
*/
static bool is_in_sandbox_mem(const void *ptr)
{
return (const uint8_t *)ptr >= gd->arch.ram_buf &&
(const uint8_t *)ptr < gd->arch.ram_buf + gd->ram_size;
}
/**
* phys_to_virt() - Converts a sandbox RAM address to a pointer
*
* Sandbox uses U-Boot addresses from 0 to the size of DRAM. These index into
* the emulated DRAM buffer used by sandbox. This function converts such an
* address to a pointer into this buffer, which can be used to access the
* memory.
*
* If the address is outside this range, it is assumed to be a tag
*/
void *phys_to_virt(phys_addr_t paddr)
{
struct sandbox_mapmem_entry *mentry;
struct sandbox_state *state;
/* If the address is within emulated DRAM, calculate the value */
if (paddr < gd->ram_size)
return (void *)(gd->arch.ram_buf + paddr);
/*
* Otherwise search out list of tags for the correct pointer previously
* created by map_to_sysmem()
*/
state = state_get_current();
list_for_each_entry(mentry, &state->mapmem_head, sibling_node) {
if (mentry->tag == paddr) {
debug("%s: Used map from %lx to %p\n", __func__,
(ulong)paddr, mentry->ptr);
return mentry->ptr;
}
}
printf("%s: Cannot map sandbox address %lx (SDRAM from 0 to %lx)\n",
__func__, (ulong)paddr, (ulong)gd->ram_size);
os_abort();
/* Not reached */
return NULL;
}
struct sandbox_mapmem_entry *find_tag(const void *ptr)
{
struct sandbox_mapmem_entry *mentry;
struct sandbox_state *state = state_get_current();
list_for_each_entry(mentry, &state->mapmem_head, sibling_node) {
if (mentry->ptr == ptr) {
debug("%s: Used map from %p to %lx\n", __func__, ptr,
mentry->tag);
return mentry;
}
}
return NULL;
}
phys_addr_t virt_to_phys(void *ptr)
{
struct sandbox_mapmem_entry *mentry;
/*
* If it is in emulated RAM, don't bother looking for a tag. Just
* calculate the pointer using the provides offset into the RAM buffer.
*/
if (is_in_sandbox_mem(ptr))
return (phys_addr_t)((uint8_t *)ptr - gd->arch.ram_buf);
mentry = find_tag(ptr);
if (!mentry) {
/* Abort so that gdb can be used here */
printf("%s: Cannot map sandbox address %p (SDRAM from 0 to %lx)\n",
__func__, ptr, (ulong)gd->ram_size);
os_abort();
}
debug("%s: Used map from %p to %lx\n", __func__, ptr, mentry->tag);
return mentry->tag;
}
void *map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags)
{
#if defined(CONFIG_PCI) && !defined(CONFIG_SPL_BUILD)
unsigned long plen = len;
void *ptr;
map_dev = NULL;
if (enable_pci_map && !pci_map_physmem(paddr, &len, &map_dev, &ptr)) {
if (plen != len) {
printf("%s: Warning: partial map at %x, wanted %lx, got %lx\n",
__func__, (uint)paddr, len, plen);
}
map_len = len;
return ptr;
}
#endif
return phys_to_virt(paddr);
}
void unmap_physmem(const void *ptr, unsigned long flags)
{
#ifdef CONFIG_PCI
if (map_dev) {
pci_unmap_physmem(ptr, map_len, map_dev);
map_dev = NULL;
}
#endif
}
phys_addr_t map_to_sysmem(const void *ptr)
{
struct sandbox_mapmem_entry *mentry;
/*
* If it is in emulated RAM, don't bother creating a tag. Just return
* the offset into the RAM buffer.
*/
if (is_in_sandbox_mem(ptr))
return (u8 *)ptr - gd->arch.ram_buf;
/*
* See if there is an existing tag with this pointer. If not, set up a
* new one.
*/
mentry = find_tag(ptr);
if (!mentry) {
struct sandbox_state *state = state_get_current();
mentry = malloc(sizeof(*mentry));
if (!mentry) {
printf("%s: Error: Out of memory\n", __func__);
os_exit(ENOMEM);
}
mentry->tag = state->next_tag++;
mentry->ptr = (void *)ptr;
list_add_tail(&mentry->sibling_node, &state->mapmem_head);
debug("%s: Added map from %p to %lx\n", __func__, ptr,
(ulong)mentry->tag);
}
/*
* Return the tag as the address to use. A later call to map_sysmem()
* will return ptr
*/
return mentry->tag;
}
unsigned int sandbox_read(const void *addr, enum sandboxio_size_t size)
{
struct sandbox_state *state = state_get_current();
if (!state->allow_memio)
return 0;
switch (size) {
case SB_SIZE_8:
return *(u8 *)addr;
case SB_SIZE_16:
return *(u16 *)addr;
case SB_SIZE_32:
return *(u32 *)addr;
case SB_SIZE_64:
return *(u64 *)addr;
}
return 0;
}
void sandbox_write(void *addr, unsigned int val, enum sandboxio_size_t size)
{
struct sandbox_state *state = state_get_current();
if (!state->allow_memio)
return;
switch (size) {
case SB_SIZE_8:
*(u8 *)addr = val;
break;
case SB_SIZE_16:
*(u16 *)addr = val;
break;
case SB_SIZE_32:
*(u32 *)addr = val;
break;
case SB_SIZE_64:
*(u64 *)addr = val;
break;
}
}
void sandbox_set_enable_memio(bool enable)
{
struct sandbox_state *state = state_get_current();
state->allow_memio = enable;
}
void sandbox_set_enable_pci_map(int enable)
{
enable_pci_map = enable;
}
void flush_dcache_range(unsigned long start, unsigned long stop)
{
}
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
}
/**
* setup_auto_tree() - Set up a basic device tree to allow sandbox to work
*
* This is used when no device tree is provided. It creates a simple tree with
* just a /binman node.
*
* @blob: Place to put the created device tree
* Returns: 0 on success, -ve FDT error code on failure
*/
static int setup_auto_tree(void *blob)
{
int err;
err = fdt_create_empty_tree(blob, 256);
if (err)
return err;
/* Create a /binman node in case CONFIG_BINMAN is enabled */
err = fdt_add_subnode(blob, 0, "binman");
if (err < 0)
return err;
return 0;
}
void *board_fdt_blob_setup(int *ret)
{
struct sandbox_state *state = state_get_current();
const char *fname = state->fdt_fname;
void *blob = NULL;
loff_t size;
int err;
int fd;
blob = map_sysmem(CONFIG_SYS_FDT_LOAD_ADDR, 0);
*ret = 0;
if (!state->fdt_fname) {
err = setup_auto_tree(blob);
if (!err)
goto done;
printf("Unable to create empty FDT: %s\n", fdt_strerror(err));
*ret = -EINVAL;
goto fail;
}
err = os_get_filesize(fname, &size);
if (err < 0) {
printf("Failed to find FDT file '%s'\n", fname);
*ret = err;
goto fail;
}
fd = os_open(fname, OS_O_RDONLY);
if (fd < 0) {
printf("Failed to open FDT file '%s'\n", fname);
*ret = -EACCES;
goto fail;
}
if (os_read(fd, blob, size) != size) {
os_close(fd);
printf("Failed to read FDT file '%s'\n", fname);
*ret = -EIO;
goto fail;
}
os_close(fd);
done:
return blob;
fail:
return NULL;
}
ulong timer_get_boot_us(void)
{
static uint64_t base_count;
uint64_t count = os_get_nsec();
if (!base_count)
base_count = count;
return (count - base_count) / 1000;
}