blob: b36b6afcd978232ceedebc1479aa811d6d206fce [file] [log] [blame]
/*
* (C) Copyright 2015 Google, Inc
* Copyright 2014 Rockchip Inc.
*
* SPDX-License-Identifier: GPL-2.0
*
* Adapted from coreboot.
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <dt-structs.h>
#include <errno.h>
#include <ram.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cru_rk3288.h>
#include <asm/arch/ddr_rk3288.h>
#include <asm/arch/grf_rk3288.h>
#include <asm/arch/pmu_rk3288.h>
#include <asm/arch/sdram.h>
#include <linux/err.h>
#include <power/regulator.h>
#include <power/rk808_pmic.h>
DECLARE_GLOBAL_DATA_PTR;
struct chan_info {
struct rk3288_ddr_pctl *pctl;
struct rk3288_ddr_publ *publ;
struct rk3288_msch *msch;
};
struct dram_info {
struct chan_info chan[2];
struct ram_info info;
struct clk ddr_clk;
struct rk3288_cru *cru;
struct rk3288_grf *grf;
struct rk3288_sgrf *sgrf;
struct rk3288_pmu *pmu;
bool is_veyron;
};
struct rk3288_sdram_params {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct dtd_rockchip_rk3288_dmc of_plat;
#endif
struct rk3288_sdram_channel ch[2];
struct rk3288_sdram_pctl_timing pctl_timing;
struct rk3288_sdram_phy_timing phy_timing;
struct rk3288_base_params base;
int num_channels;
struct regmap *map;
};
#ifdef CONFIG_SPL_BUILD
static void copy_to_reg(u32 *dest, const u32 *src, u32 n)
{
int i;
for (i = 0; i < n / sizeof(u32); i++) {
writel(*src, dest);
src++;
dest++;
}
}
static void ddr_reset(struct rk3288_cru *cru, u32 ch, u32 ctl, u32 phy)
{
u32 phy_ctl_srstn_shift = 4 + 5 * ch;
u32 ctl_psrstn_shift = 3 + 5 * ch;
u32 ctl_srstn_shift = 2 + 5 * ch;
u32 phy_psrstn_shift = 1 + 5 * ch;
u32 phy_srstn_shift = 5 * ch;
rk_clrsetreg(&cru->cru_softrst_con[10],
1 << phy_ctl_srstn_shift | 1 << ctl_psrstn_shift |
1 << ctl_srstn_shift | 1 << phy_psrstn_shift |
1 << phy_srstn_shift,
phy << phy_ctl_srstn_shift | ctl << ctl_psrstn_shift |
ctl << ctl_srstn_shift | phy << phy_psrstn_shift |
phy << phy_srstn_shift);
}
static void ddr_phy_ctl_reset(struct rk3288_cru *cru, u32 ch, u32 n)
{
u32 phy_ctl_srstn_shift = 4 + 5 * ch;
rk_clrsetreg(&cru->cru_softrst_con[10],
1 << phy_ctl_srstn_shift, n << phy_ctl_srstn_shift);
}
static void phy_pctrl_reset(struct rk3288_cru *cru,
struct rk3288_ddr_publ *publ,
u32 channel)
{
int i;
ddr_reset(cru, channel, 1, 1);
udelay(1);
clrbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST);
for (i = 0; i < 4; i++)
clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
setbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST);
for (i = 0; i < 4; i++)
setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
ddr_reset(cru, channel, 1, 0);
udelay(10);
ddr_reset(cru, channel, 0, 0);
udelay(10);
}
static void phy_dll_bypass_set(struct rk3288_ddr_publ *publ,
u32 freq)
{
int i;
if (freq <= 250000000) {
if (freq <= 150000000)
clrbits_le32(&publ->dllgcr, SBIAS_BYPASS);
else
setbits_le32(&publ->dllgcr, SBIAS_BYPASS);
setbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS);
for (i = 0; i < 4; i++)
setbits_le32(&publ->datx8[i].dxdllcr,
DXDLLCR_DLLDIS);
setbits_le32(&publ->pir, PIR_DLLBYP);
} else {
clrbits_le32(&publ->dllgcr, SBIAS_BYPASS);
clrbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS);
for (i = 0; i < 4; i++) {
clrbits_le32(&publ->datx8[i].dxdllcr,
DXDLLCR_DLLDIS);
}
clrbits_le32(&publ->pir, PIR_DLLBYP);
}
}
static void dfi_cfg(struct rk3288_ddr_pctl *pctl, u32 dramtype)
{
writel(DFI_INIT_START, &pctl->dfistcfg0);
writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN,
&pctl->dfistcfg1);
writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2);
writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN,
&pctl->dfilpcfg0);
writel(2 << TCTRL_DELAY_TIME_SHIFT, &pctl->dfitctrldelay);
writel(1 << TPHY_WRDATA_TIME_SHIFT, &pctl->dfitphywrdata);
writel(0xf << TPHY_RDLAT_TIME_SHIFT, &pctl->dfitphyrdlat);
writel(2 << TDRAM_CLK_DIS_TIME_SHIFT, &pctl->dfitdramclkdis);
writel(2 << TDRAM_CLK_EN_TIME_SHIFT, &pctl->dfitdramclken);
writel(1, &pctl->dfitphyupdtype0);
/* cs0 and cs1 write odt enable */
writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL),
&pctl->dfiodtcfg);
/* odt write length */
writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1);
/* phyupd and ctrlupd disabled */
writel(0, &pctl->dfiupdcfg);
}
static void ddr_set_enable(struct rk3288_grf *grf, uint channel, bool enable)
{
uint val = 0;
if (enable) {
val = 1 << (channel ? DDR1_16BIT_EN_SHIFT :
DDR0_16BIT_EN_SHIFT);
}
rk_clrsetreg(&grf->soc_con0,
1 << (channel ? DDR1_16BIT_EN_SHIFT : DDR0_16BIT_EN_SHIFT),
val);
}
static void ddr_set_ddr3_mode(struct rk3288_grf *grf, uint channel,
bool ddr3_mode)
{
uint mask, val;
mask = 1 << (channel ? MSCH1_MAINDDR3_SHIFT : MSCH0_MAINDDR3_SHIFT);
val = ddr3_mode << (channel ? MSCH1_MAINDDR3_SHIFT :
MSCH0_MAINDDR3_SHIFT);
rk_clrsetreg(&grf->soc_con0, mask, val);
}
static void ddr_set_en_bst_odt(struct rk3288_grf *grf, uint channel,
bool enable, bool enable_bst, bool enable_odt)
{
uint mask;
bool disable_bst = !enable_bst;
mask = channel ?
(1 << LPDDR3_EN1_SHIFT | 1 << UPCTL1_BST_DIABLE_SHIFT |
1 << UPCTL1_LPDDR3_ODT_EN_SHIFT) :
(1 << LPDDR3_EN0_SHIFT | 1 << UPCTL0_BST_DIABLE_SHIFT |
1 << UPCTL0_LPDDR3_ODT_EN_SHIFT);
rk_clrsetreg(&grf->soc_con2, mask,
enable << (channel ? LPDDR3_EN1_SHIFT : LPDDR3_EN0_SHIFT) |
disable_bst << (channel ? UPCTL1_BST_DIABLE_SHIFT :
UPCTL0_BST_DIABLE_SHIFT) |
enable_odt << (channel ? UPCTL1_LPDDR3_ODT_EN_SHIFT :
UPCTL0_LPDDR3_ODT_EN_SHIFT));
}
static void pctl_cfg(u32 channel, struct rk3288_ddr_pctl *pctl,
const struct rk3288_sdram_params *sdram_params,
struct rk3288_grf *grf)
{
unsigned int burstlen;
burstlen = (sdram_params->base.noc_timing >> 18) & 0x7;
copy_to_reg(&pctl->togcnt1u, &sdram_params->pctl_timing.togcnt1u,
sizeof(sdram_params->pctl_timing));
switch (sdram_params->base.dramtype) {
case LPDDR3:
writel(sdram_params->pctl_timing.tcl - 1,
&pctl->dfitrddataen);
writel(sdram_params->pctl_timing.tcwl,
&pctl->dfitphywrlat);
burstlen >>= 1;
writel(LPDDR2_S4 | 0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT |
LPDDR2_EN | burstlen << BURSTLENGTH_SHIFT |
(6 - 4) << TFAW_SHIFT | PD_EXIT_FAST |
1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT,
&pctl->mcfg);
ddr_set_ddr3_mode(grf, channel, false);
ddr_set_enable(grf, channel, true);
ddr_set_en_bst_odt(grf, channel, true, false,
sdram_params->base.odt);
break;
case DDR3:
if (sdram_params->phy_timing.mr[1] & DDR3_DLL_DISABLE) {
writel(sdram_params->pctl_timing.tcl - 3,
&pctl->dfitrddataen);
} else {
writel(sdram_params->pctl_timing.tcl - 2,
&pctl->dfitrddataen);
}
writel(sdram_params->pctl_timing.tcwl - 1,
&pctl->dfitphywrlat);
writel(0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | DDR3_EN |
DDR2_DDR3_BL_8 | (6 - 4) << TFAW_SHIFT | PD_EXIT_SLOW |
1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT,
&pctl->mcfg);
ddr_set_ddr3_mode(grf, channel, true);
ddr_set_enable(grf, channel, true);
ddr_set_en_bst_odt(grf, channel, false, true, false);
break;
}
setbits_le32(&pctl->scfg, 1);
}
static void phy_cfg(const struct chan_info *chan, u32 channel,
const struct rk3288_sdram_params *sdram_params)
{
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3288_msch *msch = chan->msch;
uint ddr_freq_mhz = sdram_params->base.ddr_freq / 1000000;
u32 dinit2, tmp;
int i;
dinit2 = DIV_ROUND_UP(ddr_freq_mhz * 200000, 1000);
/* DDR PHY Timing */
copy_to_reg(&publ->dtpr[0], &sdram_params->phy_timing.dtpr0,
sizeof(sdram_params->phy_timing));
writel(sdram_params->base.noc_timing, &msch->ddrtiming);
writel(0x3f, &msch->readlatency);
writel(sdram_params->base.noc_activate, &msch->activate);
writel(2 << BUSWRTORD_SHIFT | 2 << BUSRDTOWR_SHIFT |
1 << BUSRDTORD_SHIFT, &msch->devtodev);
writel(DIV_ROUND_UP(ddr_freq_mhz * 5120, 1000) << PRT_DLLLOCK_SHIFT |
DIV_ROUND_UP(ddr_freq_mhz * 50, 1000) << PRT_DLLSRST_SHIFT |
8 << PRT_ITMSRST_SHIFT, &publ->ptr[0]);
writel(DIV_ROUND_UP(ddr_freq_mhz * 500000, 1000) << PRT_DINIT0_SHIFT |
DIV_ROUND_UP(ddr_freq_mhz * 400, 1000) << PRT_DINIT1_SHIFT,
&publ->ptr[1]);
writel(min(dinit2, 0x1ffffU) << PRT_DINIT2_SHIFT |
DIV_ROUND_UP(ddr_freq_mhz * 1000, 1000) << PRT_DINIT3_SHIFT,
&publ->ptr[2]);
switch (sdram_params->base.dramtype) {
case LPDDR3:
clrsetbits_le32(&publ->pgcr, 0x1F,
0 << PGCR_DFTLMT_SHIFT |
0 << PGCR_DFTCMP_SHIFT |
1 << PGCR_DQSCFG_SHIFT |
0 << PGCR_ITMDMD_SHIFT);
/* DDRMODE select LPDDR3 */
clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT,
DDRMD_LPDDR2_LPDDR3 << DDRMD_SHIFT);
clrsetbits_le32(&publ->dxccr,
DQSNRES_MASK << DQSNRES_SHIFT |
DQSRES_MASK << DQSRES_SHIFT,
4 << DQSRES_SHIFT | 0xc << DQSNRES_SHIFT);
tmp = readl(&publ->dtpr[1]);
tmp = ((tmp >> TDQSCKMAX_SHIFT) & TDQSCKMAX_MASK) -
((tmp >> TDQSCK_SHIFT) & TDQSCK_MASK);
clrsetbits_le32(&publ->dsgcr,
DQSGE_MASK << DQSGE_SHIFT |
DQSGX_MASK << DQSGX_SHIFT,
tmp << DQSGE_SHIFT | tmp << DQSGX_SHIFT);
break;
case DDR3:
clrbits_le32(&publ->pgcr, 0x1f);
clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT,
DDRMD_DDR3 << DDRMD_SHIFT);
break;
}
if (sdram_params->base.odt) {
/*dynamic RTT enable */
for (i = 0; i < 4; i++)
setbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT);
} else {
/*dynamic RTT disable */
for (i = 0; i < 4; i++)
clrbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT);
}
}
static void phy_init(struct rk3288_ddr_publ *publ)
{
setbits_le32(&publ->pir, PIR_INIT | PIR_DLLSRST
| PIR_DLLLOCK | PIR_ZCAL | PIR_ITMSRST | PIR_CLRSR);
udelay(1);
while ((readl(&publ->pgsr) &
(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) !=
(PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE))
;
}
static void send_command(struct rk3288_ddr_pctl *pctl, u32 rank,
u32 cmd, u32 arg)
{
writel((START_CMD | (rank << 20) | arg | cmd), &pctl->mcmd);
udelay(1);
while (readl(&pctl->mcmd) & START_CMD)
;
}
static inline void send_command_op(struct rk3288_ddr_pctl *pctl,
u32 rank, u32 cmd, u32 ma, u32 op)
{
send_command(pctl, rank, cmd, (ma & LPDDR2_MA_MASK) << LPDDR2_MA_SHIFT |
(op & LPDDR2_OP_MASK) << LPDDR2_OP_SHIFT);
}
static void memory_init(struct rk3288_ddr_publ *publ,
u32 dramtype)
{
setbits_le32(&publ->pir,
(PIR_INIT | PIR_DRAMINIT | PIR_LOCKBYP
| PIR_ZCALBYP | PIR_CLRSR | PIR_ICPC
| (dramtype == DDR3 ? PIR_DRAMRST : 0)));
udelay(1);
while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE))
!= (PGSR_IDONE | PGSR_DLDONE))
;
}
static void move_to_config_state(struct rk3288_ddr_publ *publ,
struct rk3288_ddr_pctl *pctl)
{
unsigned int state;
while (1) {
state = readl(&pctl->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
writel(WAKEUP_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK)
!= ACCESS)
;
/* wait DLL lock */
while ((readl(&publ->pgsr) & PGSR_DLDONE)
!= PGSR_DLDONE)
;
/* if at low power state,need wakeup first,
* and then enter the config
* so here no break.
*/
case ACCESS:
/* no break */
case INIT_MEM:
writel(CFG_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
;
break;
case CONFIG:
return;
default:
break;
}
}
}
static void set_bandwidth_ratio(const struct chan_info *chan, u32 channel,
u32 n, struct rk3288_grf *grf)
{
struct rk3288_ddr_pctl *pctl = chan->pctl;
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3288_msch *msch = chan->msch;
if (n == 1) {
setbits_le32(&pctl->ppcfg, 1);
rk_setreg(&grf->soc_con0, 1 << (8 + channel));
setbits_le32(&msch->ddrtiming, 1 << 31);
/* Data Byte disable*/
clrbits_le32(&publ->datx8[2].dxgcr, 1);
clrbits_le32(&publ->datx8[3].dxgcr, 1);
/* disable DLL */
setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS);
setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS);
} else {
clrbits_le32(&pctl->ppcfg, 1);
rk_clrreg(&grf->soc_con0, 1 << (8 + channel));
clrbits_le32(&msch->ddrtiming, 1 << 31);
/* Data Byte enable*/
setbits_le32(&publ->datx8[2].dxgcr, 1);
setbits_le32(&publ->datx8[3].dxgcr, 1);
/* enable DLL */
clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS);
clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS);
/* reset DLL */
clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST);
clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST);
udelay(10);
setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST);
setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST);
}
setbits_le32(&pctl->dfistcfg0, 1 << 2);
}
static int data_training(const struct chan_info *chan, u32 channel,
const struct rk3288_sdram_params *sdram_params)
{
unsigned int j;
int ret = 0;
u32 rank;
int i;
u32 step[2] = { PIR_QSTRN, PIR_RVTRN };
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3288_ddr_pctl *pctl = chan->pctl;
/* disable auto refresh */
writel(0, &pctl->trefi);
if (sdram_params->base.dramtype != LPDDR3)
setbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT);
rank = sdram_params->ch[channel].rank | 1;
for (j = 0; j < ARRAY_SIZE(step); j++) {
/*
* trigger QSTRN and RVTRN
* clear DTDONE status
*/
setbits_le32(&publ->pir, PIR_CLRSR);
/* trigger DTT */
setbits_le32(&publ->pir,
PIR_INIT | step[j] | PIR_LOCKBYP | PIR_ZCALBYP |
PIR_CLRSR);
udelay(1);
/* wait echo byte DTDONE */
while ((readl(&publ->datx8[0].dxgsr[0]) & rank)
!= rank)
;
while ((readl(&publ->datx8[1].dxgsr[0]) & rank)
!= rank)
;
if (!(readl(&pctl->ppcfg) & 1)) {
while ((readl(&publ->datx8[2].dxgsr[0])
& rank) != rank)
;
while ((readl(&publ->datx8[3].dxgsr[0])
& rank) != rank)
;
}
if (readl(&publ->pgsr) &
(PGSR_DTERR | PGSR_RVERR | PGSR_RVEIRR)) {
ret = -1;
break;
}
}
/* send some auto refresh to complement the lost while DTT */
for (i = 0; i < (rank > 1 ? 8 : 4); i++)
send_command(pctl, rank, REF_CMD, 0);
if (sdram_params->base.dramtype != LPDDR3)
clrbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT);
/* resume auto refresh */
writel(sdram_params->pctl_timing.trefi, &pctl->trefi);
return ret;
}
static void move_to_access_state(const struct chan_info *chan)
{
struct rk3288_ddr_publ *publ = chan->publ;
struct rk3288_ddr_pctl *pctl = chan->pctl;
unsigned int state;
while (1) {
state = readl(&pctl->stat) & PCTL_STAT_MSK;
switch (state) {
case LOW_POWER:
if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) &
LP_TRIG_MASK) == 1)
return;
writel(WAKEUP_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS)
;
/* wait DLL lock */
while ((readl(&publ->pgsr) & PGSR_DLDONE)
!= PGSR_DLDONE)
;
break;
case INIT_MEM:
writel(CFG_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG)
;
case CONFIG:
writel(GO_STATE, &pctl->sctl);
while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG)
;
break;
case ACCESS:
return;
default:
break;
}
}
}
static void dram_cfg_rbc(const struct chan_info *chan, u32 chnum,
const struct rk3288_sdram_params *sdram_params)
{
struct rk3288_ddr_publ *publ = chan->publ;
if (sdram_params->ch[chnum].bk == 3)
clrsetbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT,
1 << PDQ_SHIFT);
else
clrbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT);
writel(sdram_params->base.ddrconfig, &chan->msch->ddrconf);
}
static void dram_all_config(const struct dram_info *dram,
const struct rk3288_sdram_params *sdram_params)
{
unsigned int chan;
u32 sys_reg = 0;
sys_reg |= sdram_params->base.dramtype << SYS_REG_DDRTYPE_SHIFT;
sys_reg |= (sdram_params->num_channels - 1) << SYS_REG_NUM_CH_SHIFT;
for (chan = 0; chan < sdram_params->num_channels; chan++) {
const struct rk3288_sdram_channel *info =
&sdram_params->ch[chan];
sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan);
sys_reg |= chan << SYS_REG_CHINFO_SHIFT(chan);
sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan);
sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan);
sys_reg |= info->bk == 3 ? 1 << SYS_REG_BK_SHIFT(chan) : 0;
sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan);
sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan);
sys_reg |= info->bw << SYS_REG_BW_SHIFT(chan);
sys_reg |= info->dbw << SYS_REG_DBW_SHIFT(chan);
dram_cfg_rbc(&dram->chan[chan], chan, sdram_params);
}
writel(sys_reg, &dram->pmu->sys_reg[2]);
rk_clrsetreg(&dram->sgrf->soc_con2, 0x1f, sdram_params->base.stride);
}
static int sdram_init(struct dram_info *dram,
const struct rk3288_sdram_params *sdram_params)
{
int channel;
int zqcr;
int ret;
debug("%s start\n", __func__);
if ((sdram_params->base.dramtype == DDR3 &&
sdram_params->base.ddr_freq > 800000000) ||
(sdram_params->base.dramtype == LPDDR3 &&
sdram_params->base.ddr_freq > 533000000)) {
debug("SDRAM frequency is too high!");
return -E2BIG;
}
debug("ddr clk dpll\n");
ret = clk_set_rate(&dram->ddr_clk, sdram_params->base.ddr_freq);
debug("ret=%d\n", ret);
if (ret) {
debug("Could not set DDR clock\n");
return ret;
}
for (channel = 0; channel < 2; channel++) {
const struct chan_info *chan = &dram->chan[channel];
struct rk3288_ddr_pctl *pctl = chan->pctl;
struct rk3288_ddr_publ *publ = chan->publ;
phy_pctrl_reset(dram->cru, publ, channel);
phy_dll_bypass_set(publ, sdram_params->base.ddr_freq);
if (channel >= sdram_params->num_channels)
continue;
dfi_cfg(pctl, sdram_params->base.dramtype);
pctl_cfg(channel, pctl, sdram_params, dram->grf);
phy_cfg(chan, channel, sdram_params);
phy_init(publ);
writel(POWER_UP_START, &pctl->powctl);
while (!(readl(&pctl->powstat) & POWER_UP_DONE))
;
memory_init(publ, sdram_params->base.dramtype);
move_to_config_state(publ, pctl);
if (sdram_params->base.dramtype == LPDDR3) {
send_command(pctl, 3, DESELECT_CMD, 0);
udelay(1);
send_command(pctl, 3, PREA_CMD, 0);
udelay(1);
send_command_op(pctl, 3, MRS_CMD, 63, 0xfc);
udelay(1);
send_command_op(pctl, 3, MRS_CMD, 1,
sdram_params->phy_timing.mr[1]);
udelay(1);
send_command_op(pctl, 3, MRS_CMD, 2,
sdram_params->phy_timing.mr[2]);
udelay(1);
send_command_op(pctl, 3, MRS_CMD, 3,
sdram_params->phy_timing.mr[3]);
udelay(1);
}
set_bandwidth_ratio(chan, channel,
sdram_params->ch[channel].bw, dram->grf);
/*
* set cs
* CS0, n=1
* CS1, n=2
* CS0 & CS1, n = 3
*/
clrsetbits_le32(&publ->pgcr, 0xF << 18,
(sdram_params->ch[channel].rank | 1) << 18);
/* DS=40ohm,ODT=155ohm */
zqcr = 1 << ZDEN_SHIFT | 2 << PU_ONDIE_SHIFT |
2 << PD_ONDIE_SHIFT | 0x19 << PU_OUTPUT_SHIFT |
0x19 << PD_OUTPUT_SHIFT;
writel(zqcr, &publ->zq1cr[0]);
writel(zqcr, &publ->zq0cr[0]);
if (sdram_params->base.dramtype == LPDDR3) {
/* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */
udelay(10);
send_command_op(pctl,
sdram_params->ch[channel].rank | 1,
MRS_CMD, 11,
sdram_params->base.odt ? 3 : 0);
if (channel == 0) {
writel(0, &pctl->mrrcfg0);
send_command_op(pctl, 1, MRR_CMD, 8, 0);
/* S8 */
if ((readl(&pctl->mrrstat0) & 0x3) != 3) {
debug("failed!");
return -EREMOTEIO;
}
}
}
if (-1 == data_training(chan, channel, sdram_params)) {
if (sdram_params->base.dramtype == LPDDR3) {
ddr_phy_ctl_reset(dram->cru, channel, 1);
udelay(10);
ddr_phy_ctl_reset(dram->cru, channel, 0);
udelay(10);
}
debug("failed!");
return -EIO;
}
if (sdram_params->base.dramtype == LPDDR3) {
u32 i;
writel(0, &pctl->mrrcfg0);
for (i = 0; i < 17; i++)
send_command_op(pctl, 1, MRR_CMD, i, 0);
}
move_to_access_state(chan);
}
dram_all_config(dram, sdram_params);
debug("%s done\n", __func__);
return 0;
}
#endif /* CONFIG_SPL_BUILD */
size_t sdram_size_mb(struct rk3288_pmu *pmu)
{
u32 rank, col, bk, cs0_row, cs1_row, bw, row_3_4;
size_t chipsize_mb = 0;
size_t size_mb = 0;
u32 ch;
u32 sys_reg = readl(&pmu->sys_reg[2]);
u32 chans;
chans = 1 + ((sys_reg >> SYS_REG_NUM_CH_SHIFT) & SYS_REG_NUM_CH_MASK);
for (ch = 0; ch < chans; ch++) {
rank = 1 + (sys_reg >> SYS_REG_RANK_SHIFT(ch) &
SYS_REG_RANK_MASK);
col = 9 + (sys_reg >> SYS_REG_COL_SHIFT(ch) & SYS_REG_COL_MASK);
bk = sys_reg & (1 << SYS_REG_BK_SHIFT(ch)) ? 3 : 0;
cs0_row = 13 + (sys_reg >> SYS_REG_CS0_ROW_SHIFT(ch) &
SYS_REG_CS0_ROW_MASK);
cs1_row = 13 + (sys_reg >> SYS_REG_CS1_ROW_SHIFT(ch) &
SYS_REG_CS1_ROW_MASK);
bw = (sys_reg >> SYS_REG_BW_SHIFT(ch)) &
SYS_REG_BW_MASK;
row_3_4 = sys_reg >> SYS_REG_ROW_3_4_SHIFT(ch) &
SYS_REG_ROW_3_4_MASK;
chipsize_mb = (1 << (cs0_row + col + bk + bw - 20));
if (rank > 1)
chipsize_mb += chipsize_mb >>
(cs0_row - cs1_row);
if (row_3_4)
chipsize_mb = chipsize_mb * 3 / 4;
size_mb += chipsize_mb;
}
/*
* we use the 0x00000000~0xfeffffff space since 0xff000000~0xffffffff
* is SoC register space (i.e. reserved)
*/
size_mb = min(size_mb, 0xff000000 >> 20);
return size_mb;
}
#ifdef CONFIG_SPL_BUILD
# ifdef CONFIG_ROCKCHIP_FAST_SPL
static int veyron_init(struct dram_info *priv)
{
struct udevice *pmic;
int ret;
ret = uclass_first_device_err(UCLASS_PMIC, &pmic);
if (ret)
return ret;
/* Slowly raise to max CPU voltage to prevent overshoot */
ret = rk808_spl_configure_buck(pmic, 1, 1200000);
if (ret)
return ret;
udelay(175);/* Must wait for voltage to stabilize, 2mV/us */
ret = rk808_spl_configure_buck(pmic, 1, 1400000);
if (ret)
return ret;
udelay(100);/* Must wait for voltage to stabilize, 2mV/us */
rkclk_configure_cpu(priv->cru, priv->grf);
return 0;
}
# endif
static int setup_sdram(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
struct rk3288_sdram_params *params = dev_get_platdata(dev);
# ifdef CONFIG_ROCKCHIP_FAST_SPL
if (priv->is_veyron) {
int ret;
ret = veyron_init(priv);
if (ret)
return ret;
}
# endif
return sdram_init(priv, params);
}
static int rk3288_dmc_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3288_sdram_params *params = dev_get_platdata(dev);
const void *blob = gd->fdt_blob;
int node = dev->of_offset;
int i, ret;
params->num_channels = fdtdec_get_int(blob, node,
"rockchip,num-channels", 1);
for (i = 0; i < params->num_channels; i++) {
ret = fdtdec_get_byte_array(blob, node,
"rockchip,sdram-channel",
(u8 *)&params->ch[i],
sizeof(params->ch[i]));
if (ret) {
debug("%s: Cannot read rockchip,sdram-channel\n",
__func__);
return -EINVAL;
}
}
ret = fdtdec_get_int_array(blob, node, "rockchip,pctl-timing",
(u32 *)&params->pctl_timing,
sizeof(params->pctl_timing) / sizeof(u32));
if (ret) {
debug("%s: Cannot read rockchip,pctl-timing\n", __func__);
return -EINVAL;
}
ret = fdtdec_get_int_array(blob, node, "rockchip,phy-timing",
(u32 *)&params->phy_timing,
sizeof(params->phy_timing) / sizeof(u32));
if (ret) {
debug("%s: Cannot read rockchip,phy-timing\n", __func__);
return -EINVAL;
}
ret = fdtdec_get_int_array(blob, node, "rockchip,sdram-params",
(u32 *)&params->base,
sizeof(params->base) / sizeof(u32));
if (ret) {
debug("%s: Cannot read rockchip,sdram-params\n", __func__);
return -EINVAL;
}
#ifdef CONFIG_ROCKCHIP_FAST_SPL
struct dram_info *priv = dev_get_priv(dev);
priv->is_veyron = !fdt_node_check_compatible(blob, 0, "google,veyron");
#endif
ret = regmap_init_mem(dev, &params->map);
if (ret)
return ret;
#endif
return 0;
}
#endif /* CONFIG_SPL_BUILD */
#if CONFIG_IS_ENABLED(OF_PLATDATA)
static int conv_of_platdata(struct udevice *dev)
{
struct rk3288_sdram_params *plat = dev_get_platdata(dev);
struct dtd_rockchip_rk3288_dmc *of_plat = &plat->of_plat;
int i, ret;
for (i = 0; i < 2; i++) {
memcpy(&plat->ch[i], of_plat->rockchip_sdram_channel,
sizeof(plat->ch[i]));
}
memcpy(&plat->pctl_timing, of_plat->rockchip_pctl_timing,
sizeof(plat->pctl_timing));
memcpy(&plat->phy_timing, of_plat->rockchip_phy_timing,
sizeof(plat->phy_timing));
memcpy(&plat->base, of_plat->rockchip_sdram_params, sizeof(plat->base));
plat->num_channels = of_plat->rockchip_num_channels;
ret = regmap_init_mem_platdata(dev, of_plat->reg,
ARRAY_SIZE(of_plat->reg) / 2,
&plat->map);
if (ret)
return ret;
return 0;
}
#endif
static int rk3288_dmc_probe(struct udevice *dev)
{
#ifdef CONFIG_SPL_BUILD
struct rk3288_sdram_params *plat = dev_get_platdata(dev);
#endif
struct dram_info *priv = dev_get_priv(dev);
struct regmap *map;
int ret;
struct udevice *dev_clk;
#if CONFIG_IS_ENABLED(OF_PLATDATA)
ret = conv_of_platdata(dev);
if (ret)
return ret;
#endif
map = syscon_get_regmap_by_driver_data(ROCKCHIP_SYSCON_NOC);
if (IS_ERR(map))
return PTR_ERR(map);
priv->chan[0].msch = regmap_get_range(map, 0);
priv->chan[1].msch = (struct rk3288_msch *)
(regmap_get_range(map, 0) + 0x80);
priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF);
priv->sgrf = syscon_get_first_range(ROCKCHIP_SYSCON_SGRF);
priv->pmu = syscon_get_first_range(ROCKCHIP_SYSCON_PMU);
#ifdef CONFIG_SPL_BUILD
priv->chan[0].pctl = regmap_get_range(plat->map, 0);
priv->chan[0].publ = regmap_get_range(plat->map, 1);
priv->chan[1].pctl = regmap_get_range(plat->map, 2);
priv->chan[1].publ = regmap_get_range(plat->map, 3);
#endif
ret = uclass_get_device(UCLASS_CLK, 0, &dev_clk);
if (ret)
return ret;
priv->ddr_clk.id = CLK_DDR;
ret = clk_request(dev_clk, &priv->ddr_clk);
if (ret)
return ret;
priv->cru = rockchip_get_cru();
if (IS_ERR(priv->cru))
return PTR_ERR(priv->cru);
#ifdef CONFIG_SPL_BUILD
ret = setup_sdram(dev);
if (ret)
return ret;
#endif
priv->info.base = 0;
priv->info.size = sdram_size_mb(priv->pmu) << 20;
return 0;
}
static int rk3288_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops rk3288_dmc_ops = {
.get_info = rk3288_dmc_get_info,
};
static const struct udevice_id rk3288_dmc_ids[] = {
{ .compatible = "rockchip,rk3288-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_rk3288) = {
.name = "rockchip_rk3288_dmc",
.id = UCLASS_RAM,
.of_match = rk3288_dmc_ids,
.ops = &rk3288_dmc_ops,
#ifdef CONFIG_SPL_BUILD
.ofdata_to_platdata = rk3288_dmc_ofdata_to_platdata,
#endif
.probe = rk3288_dmc_probe,
.priv_auto_alloc_size = sizeof(struct dram_info),
#ifdef CONFIG_SPL_BUILD
.platdata_auto_alloc_size = sizeof(struct rk3288_sdram_params),
#endif
};