blob: b70bcc383fa7d57a4b5151e5201e416c99278b62 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018-2019 NXP
*/
#include <common.h>
#include <errno.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
void ddr_cfg_umctl2(struct dram_cfg_param *ddrc_cfg, int num)
{
int i = 0;
for (i = 0; i < num; i++) {
reg32_write(ddrc_cfg->reg, ddrc_cfg->val);
ddrc_cfg++;
}
}
#ifdef CONFIG_IMX8M_DRAM_INLINE_ECC
void ddrc_inline_ecc_scrub(unsigned int start_address,
unsigned int range_address)
{
unsigned int tmp;
/* Step1: Enable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Step2: Set ECCCFG1.ecc_parity_region_lock to 1 */
reg32setbit(DDRC_ECCCFG1(0), 0x4);
/* Step3: Block the AXI ports from taking the transaction */
reg32_write(DDRC_PCTRL_0(0), 0x0);
/* Step4: Set scrub start address */
reg32_write(DDRC_SBRSTART0(0), start_address);
/* Step5: Set scrub range address */
reg32_write(DDRC_SBRRANGE0(0), range_address);
/* Step6: Set scrub_mode to write */
reg32_write(DDRC_SBRCTL(0), 0x00000014);
/* Step7: Set the desired pattern through SBRWDATA0 registers */
reg32_write(DDRC_SBRWDATA0(0), 0x55aa55aa);
/* Step8: Enable the SBR by programming SBRCTL.scrub_en=1 */
reg32setbit(DDRC_SBRCTL(0), 0x0);
/* Step9: Poll SBRSTAT.scrub_done=1 */
tmp = reg32_read(DDRC_SBRSTAT(0));
while (tmp != 0x00000002)
tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x2;
/* Step10: Poll SBRSTAT.scrub_busy=0 */
tmp = reg32_read(DDRC_SBRSTAT(0));
while (tmp != 0x0)
tmp = reg32_read(DDRC_SBRSTAT(0)) & 0x1;
/* Step11: Disable SBR by programming SBRCTL.scrub_en=0 */
clrbits_le32(DDRC_SBRCTL(0), 0x1);
/* Step12: Prepare for normal scrub operation(Read) and set scrub_interval*/
reg32_write(DDRC_SBRCTL(0), 0x100);
/* Step13: Enable the SBR by programming SBRCTL.scrub_en=1 */
reg32_write(DDRC_SBRCTL(0), 0x101);
/* Step14: Enable AXI ports by programming */
reg32_write(DDRC_PCTRL_0(0), 0x1);
/* Step15: Disable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000001);
}
void ddrc_inline_ecc_scrub_end(unsigned int start_address,
unsigned int range_address)
{
/* Step1: Enable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Step2: Block the AXI ports from taking the transaction */
reg32_write(DDRC_PCTRL_0(0), 0x0);
/* Step3: Set scrub start address */
reg32_write(DDRC_SBRSTART0(0), start_address);
/* Step4: Set scrub range address */
reg32_write(DDRC_SBRRANGE0(0), range_address);
/* Step5: Disable SBR by programming SBRCTL.scrub_en=0 */
clrbits_le32(DDRC_SBRCTL(0), 0x1);
/* Step6: Prepare for normal scrub operation(Read) and set scrub_interval */
reg32_write(DDRC_SBRCTL(0), 0x100);
/* Step7: Enable the SBR by programming SBRCTL.scrub_en=1 */
reg32_write(DDRC_SBRCTL(0), 0x101);
/* Step8: Enable AXI ports by programming */
reg32_write(DDRC_PCTRL_0(0), 0x1);
/* Step9: Disable quasi-dynamic programming */
reg32_write(DDRC_SWCTL(0), 0x00000001);
}
#endif
void __weak board_dram_ecc_scrub(void)
{
}
int ddr_init(struct dram_timing_info *dram_timing)
{
unsigned int tmp, initial_drate, target_freq;
int ret;
debug("DDRINFO: start DRAM init\n");
/* Step1: Follow the power up procedure */
if (is_imx8mq()) {
reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F00000F);
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F);
reg32_write(SRC_DDRC_RCR_ADDR + 0x04, 0x8F000000);
} else {
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00001F);
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F00000F);
}
debug("DDRINFO: cfg clk\n");
/* change the clock source of dram_apb_clk_root: source 4 800MHz /4 = 200MHz */
clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(4) |
CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV4));
/* disable iso */
reg32_write(0x303A00EC, 0x0000ffff); /* PGC_CPU_MAPPING */
reg32setbit(0x303A00F8, 5); /* PU_PGC_SW_PUP_REQ */
initial_drate = dram_timing->fsp_msg[0].drate;
/* default to the frequency point 0 clock */
ddrphy_init_set_dfi_clk(initial_drate);
/* D-aasert the presetn */
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000006);
/* Step2: Program the dwc_ddr_umctl2 registers */
debug("DDRINFO: ddrc config start\n");
ddr_cfg_umctl2(dram_timing->ddrc_cfg, dram_timing->ddrc_cfg_num);
debug("DDRINFO: ddrc config done\n");
/* Step3: De-assert reset signal(core_ddrc_rstn & aresetn_n) */
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000004);
reg32_write(SRC_DDRC_RCR_ADDR, 0x8F000000);
/*
* Step4: Disable auto-refreshes, self-refresh, powerdown, and
* assertion of dfi_dram_clk_disable by setting RFSHCTL3.dis_auto_refresh = 1,
* PWRCTL.powerdown_en = 0, and PWRCTL.selfref_en = 0, PWRCTL.en_dfi_dram_clk_disable = 0
*/
reg32_write(DDRC_DBG1(0), 0x00000000);
reg32_write(DDRC_RFSHCTL3(0), 0x0000001);
reg32_write(DDRC_PWRCTL(0), 0xa0);
/* if ddr type is LPDDR4, do it */
tmp = reg32_read(DDRC_MSTR(0));
if (tmp & (0x1 << 5) && !is_imx8mn())
reg32_write(DDRC_DDR_SS_GPR0, 0x01); /* LPDDR4 mode */
/* determine the initial boot frequency */
target_freq = reg32_read(DDRC_MSTR2(0)) & 0x3;
target_freq = (tmp & (0x1 << 29)) ? target_freq : 0x0;
/* Step5: Set SWCT.sw_done to 0 */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Set the default boot frequency point */
clrsetbits_le32(DDRC_DFIMISC(0), (0x1f << 8), target_freq << 8);
/* Step6: Set DFIMISC.dfi_init_complete_en to 0 */
clrbits_le32(DDRC_DFIMISC(0), 0x1);
/* Step7: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
reg32_write(DDRC_SWCTL(0), 0x00000001);
do {
tmp = reg32_read(DDRC_SWSTAT(0));
} while ((tmp & 0x1) == 0x0);
/*
* Step8 ~ Step13: Start PHY initialization and training by
* accessing relevant PUB registers
*/
debug("DDRINFO:ddrphy config start\n");
ret = ddr_cfg_phy(dram_timing);
if (ret)
return ret;
debug("DDRINFO: ddrphy config done\n");
/*
* step14 CalBusy.0 =1, indicates the calibrator is actively
* calibrating. Wait Calibrating done.
*/
do {
tmp = reg32_read(DDRPHY_CalBusy(0));
} while ((tmp & 0x1));
debug("DDRINFO:ddrphy calibration done\n");
/* Step15: Set SWCTL.sw_done to 0 */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Apply rank-to-rank workaround */
update_umctl2_rank_space_setting(dram_timing->fsp_msg_num - 1);
/* Step16: Set DFIMISC.dfi_init_start to 1 */
setbits_le32(DDRC_DFIMISC(0), (0x1 << 5));
/* Step17: Set SWCTL.sw_done to 1; need to polling SWSTAT.sw_done_ack */
reg32_write(DDRC_SWCTL(0), 0x00000001);
do {
tmp = reg32_read(DDRC_SWSTAT(0));
} while ((tmp & 0x1) == 0x0);
/* Step18: Polling DFISTAT.dfi_init_complete = 1 */
do {
tmp = reg32_read(DDRC_DFISTAT(0));
} while ((tmp & 0x1) == 0x0);
/* Step19: Set SWCTL.sw_done to 0 */
reg32_write(DDRC_SWCTL(0), 0x00000000);
/* Step20: Set DFIMISC.dfi_init_start to 0 */
clrbits_le32(DDRC_DFIMISC(0), (0x1 << 5));
/* Step21: optional */
/* Step22: Set DFIMISC.dfi_init_complete_en to 1 */
setbits_le32(DDRC_DFIMISC(0), 0x1);
/* Step23: Set PWRCTL.selfref_sw to 0 */
clrbits_le32(DDRC_PWRCTL(0), (0x1 << 5));
/* Step24: Set SWCTL.sw_done to 1; need polling SWSTAT.sw_done_ack */
reg32_write(DDRC_SWCTL(0), 0x00000001);
do {
tmp = reg32_read(DDRC_SWSTAT(0));
} while ((tmp & 0x1) == 0x0);
/* Step25: Wait for dwc_ddr_umctl2 to move to normal operating mode by monitoring
* STAT.operating_mode signal */
do {
tmp = reg32_read(DDRC_STAT(0));
} while ((tmp & 0x3) != 0x1);
/* Step26: Set back register in Step4 to the original values if desired */
reg32_write(DDRC_RFSHCTL3(0), 0x0000000);
/* enable port 0 */
reg32_write(DDRC_PCTRL_0(0), 0x00000001);
debug("DDRINFO: ddrmix config done\n");
board_dram_ecc_scrub();
/* enable selfref_en by default */
setbits_le32(DDRC_PWRCTL(0), 0x1);
/* save the dram timing config into memory */
dram_config_save(dram_timing, CONFIG_SAVED_DRAM_TIMING_BASE);
return 0;
}