blob: cef425669c9c1a7fafcae51ef9942ca7a3dc65cb [file] [log] [blame]
/*
* From Coreboot file of same name
*
* Copyright (C) 2007-2009 coresystems GmbH
* Copyright (C) 2011 The Chromium Authors
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <common.h>
#include <cpu.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <asm/acpi.h>
#include <asm/cpu.h>
#include <asm/cpu_x86.h>
#include <asm/lapic.h>
#include <asm/msr.h>
#include <asm/msr-index.h>
#include <asm/mtrr.h>
#include <asm/processor.h>
#include <asm/speedstep.h>
#include <asm/turbo.h>
#include <asm/arch/bd82x6x.h>
#include <asm/arch/model_206ax.h>
static void enable_vmx(void)
{
struct cpuid_result regs;
#ifdef CONFIG_ENABLE_VMX
int enable = true;
#else
int enable = false;
#endif
msr_t msr;
regs = cpuid(1);
/* Check that the VMX is supported before reading or writing the MSR. */
if (!((regs.ecx & CPUID_VMX) || (regs.ecx & CPUID_SMX)))
return;
msr = msr_read(MSR_IA32_FEATURE_CONTROL);
if (msr.lo & (1 << 0)) {
debug("VMX is locked, so %s will do nothing\n", __func__);
/* VMX locked. If we set it again we get an illegal
* instruction
*/
return;
}
/* The IA32_FEATURE_CONTROL MSR may initialize with random values.
* It must be cleared regardless of VMX config setting.
*/
msr.hi = 0;
msr.lo = 0;
debug("%s VMX\n", enable ? "Enabling" : "Disabling");
/*
* Even though the Intel manual says you must set the lock bit in
* addition to the VMX bit in order for VMX to work, it is incorrect.
* Thus we leave it unlocked for the OS to manage things itself.
* This is good for a few reasons:
* - No need to reflash the bios just to toggle the lock bit.
* - The VMX bits really really should match each other across cores,
* so hard locking it on one while another has the opposite setting
* can easily lead to crashes as code using VMX migrates between
* them.
* - Vendors that want to "upsell" from a bios that disables+locks to
* one that doesn't is sleazy.
* By leaving this to the OS (e.g. Linux), people can do exactly what
* they want on the fly, and do it correctly (e.g. across multiple
* cores).
*/
if (enable) {
msr.lo |= (1 << 2);
if (regs.ecx & CPUID_SMX)
msr.lo |= (1 << 1);
}
msr_write(MSR_IA32_FEATURE_CONTROL, msr);
}
/* Convert time in seconds to POWER_LIMIT_1_TIME MSR value */
static const u8 power_limit_time_sec_to_msr[] = {
[0] = 0x00,
[1] = 0x0a,
[2] = 0x0b,
[3] = 0x4b,
[4] = 0x0c,
[5] = 0x2c,
[6] = 0x4c,
[7] = 0x6c,
[8] = 0x0d,
[10] = 0x2d,
[12] = 0x4d,
[14] = 0x6d,
[16] = 0x0e,
[20] = 0x2e,
[24] = 0x4e,
[28] = 0x6e,
[32] = 0x0f,
[40] = 0x2f,
[48] = 0x4f,
[56] = 0x6f,
[64] = 0x10,
[80] = 0x30,
[96] = 0x50,
[112] = 0x70,
[128] = 0x11,
};
/* Convert POWER_LIMIT_1_TIME MSR value to seconds */
static const u8 power_limit_time_msr_to_sec[] = {
[0x00] = 0,
[0x0a] = 1,
[0x0b] = 2,
[0x4b] = 3,
[0x0c] = 4,
[0x2c] = 5,
[0x4c] = 6,
[0x6c] = 7,
[0x0d] = 8,
[0x2d] = 10,
[0x4d] = 12,
[0x6d] = 14,
[0x0e] = 16,
[0x2e] = 20,
[0x4e] = 24,
[0x6e] = 28,
[0x0f] = 32,
[0x2f] = 40,
[0x4f] = 48,
[0x6f] = 56,
[0x10] = 64,
[0x30] = 80,
[0x50] = 96,
[0x70] = 112,
[0x11] = 128,
};
int cpu_config_tdp_levels(void)
{
struct cpuid_result result;
msr_t platform_info;
/* Minimum CPU revision */
result = cpuid(1);
if (result.eax < IVB_CONFIG_TDP_MIN_CPUID)
return 0;
/* Bits 34:33 indicate how many levels supported */
platform_info = msr_read(MSR_PLATFORM_INFO);
return (platform_info.hi >> 1) & 3;
}
/*
* Configure processor power limits if possible
* This must be done AFTER set of BIOS_RESET_CPL
*/
void set_power_limits(u8 power_limit_1_time)
{
msr_t msr = msr_read(MSR_PLATFORM_INFO);
msr_t limit;
unsigned power_unit;
unsigned tdp, min_power, max_power, max_time;
u8 power_limit_1_val;
if (power_limit_1_time > ARRAY_SIZE(power_limit_time_sec_to_msr))
return;
if (!(msr.lo & PLATFORM_INFO_SET_TDP))
return;
/* Get units */
msr = msr_read(MSR_PKG_POWER_SKU_UNIT);
power_unit = 2 << ((msr.lo & 0xf) - 1);
/* Get power defaults for this SKU */
msr = msr_read(MSR_PKG_POWER_SKU);
tdp = msr.lo & 0x7fff;
min_power = (msr.lo >> 16) & 0x7fff;
max_power = msr.hi & 0x7fff;
max_time = (msr.hi >> 16) & 0x7f;
debug("CPU TDP: %u Watts\n", tdp / power_unit);
if (power_limit_time_msr_to_sec[max_time] > power_limit_1_time)
power_limit_1_time = power_limit_time_msr_to_sec[max_time];
if (min_power > 0 && tdp < min_power)
tdp = min_power;
if (max_power > 0 && tdp > max_power)
tdp = max_power;
power_limit_1_val = power_limit_time_sec_to_msr[power_limit_1_time];
/* Set long term power limit to TDP */
limit.lo = 0;
limit.lo |= tdp & PKG_POWER_LIMIT_MASK;
limit.lo |= PKG_POWER_LIMIT_EN;
limit.lo |= (power_limit_1_val & PKG_POWER_LIMIT_TIME_MASK) <<
PKG_POWER_LIMIT_TIME_SHIFT;
/* Set short term power limit to 1.25 * TDP */
limit.hi = 0;
limit.hi |= ((tdp * 125) / 100) & PKG_POWER_LIMIT_MASK;
limit.hi |= PKG_POWER_LIMIT_EN;
/* Power limit 2 time is only programmable on SNB EP/EX */
msr_write(MSR_PKG_POWER_LIMIT, limit);
/* Use nominal TDP values for CPUs with configurable TDP */
if (cpu_config_tdp_levels()) {
msr = msr_read(MSR_CONFIG_TDP_NOMINAL);
limit.hi = 0;
limit.lo = msr.lo & 0xff;
msr_write(MSR_TURBO_ACTIVATION_RATIO, limit);
}
}
static void configure_c_states(void)
{
struct cpuid_result result;
msr_t msr;
msr = msr_read(MSR_PMG_CST_CONFIG_CTL);
msr.lo |= (1 << 28); /* C1 Auto Undemotion Enable */
msr.lo |= (1 << 27); /* C3 Auto Undemotion Enable */
msr.lo |= (1 << 26); /* C1 Auto Demotion Enable */
msr.lo |= (1 << 25); /* C3 Auto Demotion Enable */
msr.lo &= ~(1 << 10); /* Disable IO MWAIT redirection */
msr.lo |= 7; /* No package C-state limit */
msr_write(MSR_PMG_CST_CONFIG_CTL, msr);
msr = msr_read(MSR_PMG_IO_CAPTURE_ADR);
msr.lo &= ~0x7ffff;
msr.lo |= (PMB0_BASE + 4); /* LVL_2 base address */
msr.lo |= (2 << 16); /* CST Range: C7 is max C-state */
msr_write(MSR_PMG_IO_CAPTURE_ADR, msr);
msr = msr_read(MSR_MISC_PWR_MGMT);
msr.lo &= ~(1 << 0); /* Enable P-state HW_ALL coordination */
msr_write(MSR_MISC_PWR_MGMT, msr);
msr = msr_read(MSR_POWER_CTL);
msr.lo |= (1 << 18); /* Enable Energy Perf Bias MSR 0x1b0 */
msr.lo |= (1 << 1); /* C1E Enable */
msr.lo |= (1 << 0); /* Bi-directional PROCHOT# */
msr_write(MSR_POWER_CTL, msr);
/* C3 Interrupt Response Time Limit */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | 0x50;
msr_write(MSR_PKGC3_IRTL, msr);
/* C6 Interrupt Response Time Limit */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | 0x68;
msr_write(MSR_PKGC6_IRTL, msr);
/* C7 Interrupt Response Time Limit */
msr.hi = 0;
msr.lo = IRTL_VALID | IRTL_1024_NS | 0x6D;
msr_write(MSR_PKGC7_IRTL, msr);
/* Primary Plane Current Limit */
msr = msr_read(MSR_PP0_CURRENT_CONFIG);
msr.lo &= ~0x1fff;
msr.lo |= PP0_CURRENT_LIMIT;
msr_write(MSR_PP0_CURRENT_CONFIG, msr);
/* Secondary Plane Current Limit */
msr = msr_read(MSR_PP1_CURRENT_CONFIG);
msr.lo &= ~0x1fff;
result = cpuid(1);
if (result.eax >= 0x30600)
msr.lo |= PP1_CURRENT_LIMIT_IVB;
else
msr.lo |= PP1_CURRENT_LIMIT_SNB;
msr_write(MSR_PP1_CURRENT_CONFIG, msr);
}
static int configure_thermal_target(struct udevice *dev)
{
int tcc_offset;
msr_t msr;
tcc_offset = fdtdec_get_int(gd->fdt_blob, dev->of_offset, "tcc-offset",
0);
/* Set TCC activaiton offset if supported */
msr = msr_read(MSR_PLATFORM_INFO);
if ((msr.lo & (1 << 30)) && tcc_offset) {
msr = msr_read(MSR_TEMPERATURE_TARGET);
msr.lo &= ~(0xf << 24); /* Bits 27:24 */
msr.lo |= (tcc_offset & 0xf) << 24;
msr_write(MSR_TEMPERATURE_TARGET, msr);
}
return 0;
}
static void configure_misc(void)
{
msr_t msr;
msr = msr_read(IA32_MISC_ENABLE);
msr.lo |= (1 << 0); /* Fast String enable */
msr.lo |= (1 << 3); /* TM1/TM2/EMTTM enable */
msr.lo |= (1 << 16); /* Enhanced SpeedStep Enable */
msr_write(IA32_MISC_ENABLE, msr);
/* Disable Thermal interrupts */
msr.lo = 0;
msr.hi = 0;
msr_write(IA32_THERM_INTERRUPT, msr);
/* Enable package critical interrupt only */
msr.lo = 1 << 4;
msr.hi = 0;
msr_write(IA32_PACKAGE_THERM_INTERRUPT, msr);
}
static void enable_lapic_tpr(void)
{
msr_t msr;
msr = msr_read(MSR_PIC_MSG_CONTROL);
msr.lo &= ~(1 << 10); /* Enable APIC TPR updates */
msr_write(MSR_PIC_MSG_CONTROL, msr);
}
static void configure_dca_cap(void)
{
struct cpuid_result cpuid_regs;
msr_t msr;
/* Check feature flag in CPUID.(EAX=1):ECX[18]==1 */
cpuid_regs = cpuid(1);
if (cpuid_regs.ecx & (1 << 18)) {
msr = msr_read(IA32_PLATFORM_DCA_CAP);
msr.lo |= 1;
msr_write(IA32_PLATFORM_DCA_CAP, msr);
}
}
static void set_max_ratio(void)
{
msr_t msr, perf_ctl;
perf_ctl.hi = 0;
/* Check for configurable TDP option */
if (cpu_config_tdp_levels()) {
/* Set to nominal TDP ratio */
msr = msr_read(MSR_CONFIG_TDP_NOMINAL);
perf_ctl.lo = (msr.lo & 0xff) << 8;
} else {
/* Platform Info bits 15:8 give max ratio */
msr = msr_read(MSR_PLATFORM_INFO);
perf_ctl.lo = msr.lo & 0xff00;
}
msr_write(MSR_IA32_PERF_CTL, perf_ctl);
debug("model_x06ax: frequency set to %d\n",
((perf_ctl.lo >> 8) & 0xff) * SANDYBRIDGE_BCLK);
}
static void set_energy_perf_bias(u8 policy)
{
msr_t msr;
/* Energy Policy is bits 3:0 */
msr = msr_read(IA32_ENERGY_PERFORMANCE_BIAS);
msr.lo &= ~0xf;
msr.lo |= policy & 0xf;
msr_write(IA32_ENERGY_PERFORMANCE_BIAS, msr);
debug("model_x06ax: energy policy set to %u\n", policy);
}
static void configure_mca(void)
{
msr_t msr;
int i;
msr.lo = 0;
msr.hi = 0;
/* This should only be done on a cold boot */
for (i = 0; i < 7; i++)
msr_write(IA32_MC0_STATUS + (i * 4), msr);
}
#if CONFIG_USBDEBUG
static unsigned ehci_debug_addr;
#endif
static int model_206ax_init(struct udevice *dev)
{
int ret;
/* Clear out pending MCEs */
configure_mca();
#if CONFIG_USBDEBUG
/* Is this caution really needed? */
if (!ehci_debug_addr)
ehci_debug_addr = get_ehci_debug();
set_ehci_debug(0);
#endif
#if CONFIG_USBDEBUG
set_ehci_debug(ehci_debug_addr);
#endif
/* Enable the local cpu apics */
enable_lapic_tpr();
lapic_setup();
/* Enable virtualization if enabled in CMOS */
enable_vmx();
/* Configure C States */
configure_c_states();
/* Configure Enhanced SpeedStep and Thermal Sensors */
configure_misc();
/* Thermal throttle activation offset */
ret = configure_thermal_target(dev);
if (ret) {
debug("Cannot set thermal target\n");
return ret;
}
/* Enable Direct Cache Access */
configure_dca_cap();
/* Set energy policy */
set_energy_perf_bias(ENERGY_POLICY_NORMAL);
/* Set Max Ratio */
set_max_ratio();
/* Enable Turbo */
turbo_enable();
return 0;
}
static int model_206ax_get_info(struct udevice *dev, struct cpu_info *info)
{
msr_t msr;
msr = msr_read(MSR_IA32_PERF_CTL);
info->cpu_freq = ((msr.lo >> 8) & 0xff) * SANDYBRIDGE_BCLK * 1000000;
info->features = 1 << CPU_FEAT_L1_CACHE | 1 << CPU_FEAT_MMU |
1 << CPU_FEAT_UCODE;
return 0;
}
static int model_206ax_get_count(struct udevice *dev)
{
return 4;
}
static int cpu_x86_model_206ax_probe(struct udevice *dev)
{
if (dev->seq == 0)
model_206ax_init(dev);
return 0;
}
static const struct cpu_ops cpu_x86_model_206ax_ops = {
.get_desc = cpu_x86_get_desc,
.get_info = model_206ax_get_info,
.get_count = model_206ax_get_count,
};
static const struct udevice_id cpu_x86_model_206ax_ids[] = {
{ .compatible = "intel,core-gen3" },
{ }
};
U_BOOT_DRIVER(cpu_x86_model_206ax_drv) = {
.name = "cpu_x86_model_206ax",
.id = UCLASS_CPU,
.of_match = cpu_x86_model_206ax_ids,
.bind = cpu_x86_bind,
.probe = cpu_x86_model_206ax_probe,
.ops = &cpu_x86_model_206ax_ops,
};