blob: a554eda504deefea5f84535e1b5a642eb66cb617 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Patrice Chotard, <patrice.chotard@foss.st.com> for STMicroelectronics.
*/
#define LOG_CATEGORY UCLASS_CLK
#include <clk-uclass.h>
#include <dm.h>
#include <log.h>
#include <regmap.h>
#include <syscon.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <dm/root.h>
#include <linux/bitops.h>
#include <dt-bindings/clock/stm32h7-clks.h>
/* RCC CR specific definitions */
#define RCC_CR_HSION BIT(0)
#define RCC_CR_HSIRDY BIT(2)
#define RCC_CR_HSEON BIT(16)
#define RCC_CR_HSERDY BIT(17)
#define RCC_CR_HSEBYP BIT(18)
#define RCC_CR_PLL1ON BIT(24)
#define RCC_CR_PLL1RDY BIT(25)
#define RCC_CR_HSIDIV_MASK GENMASK(4, 3)
#define RCC_CR_HSIDIV_SHIFT 3
#define RCC_CFGR_SW_MASK GENMASK(2, 0)
#define RCC_CFGR_SW_HSI 0
#define RCC_CFGR_SW_CSI 1
#define RCC_CFGR_SW_HSE 2
#define RCC_CFGR_SW_PLL1 3
#define RCC_CFGR_TIMPRE BIT(15)
#define RCC_PLLCKSELR_PLLSRC_HSI 0
#define RCC_PLLCKSELR_PLLSRC_CSI 1
#define RCC_PLLCKSELR_PLLSRC_HSE 2
#define RCC_PLLCKSELR_PLLSRC_NO_CLK 3
#define RCC_PLLCKSELR_PLLSRC_MASK GENMASK(1, 0)
#define RCC_PLLCKSELR_DIVM1_SHIFT 4
#define RCC_PLLCKSELR_DIVM1_MASK GENMASK(9, 4)
#define RCC_PLL1DIVR_DIVN1_MASK GENMASK(8, 0)
#define RCC_PLL1DIVR_DIVP1_SHIFT 9
#define RCC_PLL1DIVR_DIVP1_MASK GENMASK(15, 9)
#define RCC_PLL1DIVR_DIVQ1_SHIFT 16
#define RCC_PLL1DIVR_DIVQ1_MASK GENMASK(22, 16)
#define RCC_PLL1DIVR_DIVR1_SHIFT 24
#define RCC_PLL1DIVR_DIVR1_MASK GENMASK(30, 24)
#define RCC_PLL1FRACR_FRACN1_SHIFT 3
#define RCC_PLL1FRACR_FRACN1_MASK GENMASK(15, 3)
#define RCC_PLLCFGR_PLL1RGE_SHIFT 2
#define PLL1RGE_1_2_MHZ 0
#define PLL1RGE_2_4_MHZ 1
#define PLL1RGE_4_8_MHZ 2
#define PLL1RGE_8_16_MHZ 3
#define RCC_PLLCFGR_DIVP1EN BIT(16)
#define RCC_PLLCFGR_DIVQ1EN BIT(17)
#define RCC_PLLCFGR_DIVR1EN BIT(18)
#define RCC_D1CFGR_HPRE_MASK GENMASK(3, 0)
#define RCC_D1CFGR_HPRE_DIVIDED BIT(3)
#define RCC_D1CFGR_HPRE_DIVIDER GENMASK(2, 0)
#define RCC_D1CFGR_HPRE_DIV2 8
#define RCC_D1CFGR_D1PPRE_SHIFT 4
#define RCC_D1CFGR_D1PPRE_DIVIDED BIT(6)
#define RCC_D1CFGR_D1PPRE_DIVIDER GENMASK(5, 4)
#define RCC_D1CFGR_D1CPRE_SHIFT 8
#define RCC_D1CFGR_D1CPRE_DIVIDER GENMASK(10, 8)
#define RCC_D1CFGR_D1CPRE_DIVIDED BIT(11)
#define RCC_D2CFGR_D2PPRE1_SHIFT 4
#define RCC_D2CFGR_D2PPRE1_DIVIDED BIT(6)
#define RCC_D2CFGR_D2PPRE1_DIVIDER GENMASK(5, 4)
#define RCC_D2CFGR_D2PPRE2_SHIFT 8
#define RCC_D2CFGR_D2PPRE2_DIVIDED BIT(10)
#define RCC_D2CFGR_D2PPRE2_DIVIDER GENMASK(9, 8)
#define RCC_D3CFGR_D3PPRE_SHIFT 4
#define RCC_D3CFGR_D3PPRE_DIVIDED BIT(6)
#define RCC_D3CFGR_D3PPRE_DIVIDER GENMASK(5, 4)
#define RCC_D1CCIPR_FMCSRC_MASK GENMASK(1, 0)
#define FMCSRC_HCLKD1 0
#define FMCSRC_PLL1_Q_CK 1
#define FMCSRC_PLL2_R_CK 2
#define FMCSRC_PER_CK 3
#define RCC_D1CCIPR_QSPISRC_MASK GENMASK(5, 4)
#define RCC_D1CCIPR_QSPISRC_SHIFT 4
#define QSPISRC_HCLKD1 0
#define QSPISRC_PLL1_Q_CK 1
#define QSPISRC_PLL2_R_CK 2
#define QSPISRC_PER_CK 3
#define PWR_CR3 0x0c
#define PWR_CR3_SCUEN BIT(2)
#define PWR_D3CR 0x18
#define PWR_D3CR_VOS_MASK GENMASK(15, 14)
#define PWR_D3CR_VOS_SHIFT 14
#define VOS_SCALE_3 1
#define VOS_SCALE_2 2
#define VOS_SCALE_1 3
#define PWR_D3CR_VOSREADY BIT(13)
struct stm32_rcc_regs {
u32 cr; /* 0x00 Source Control Register */
u32 icscr; /* 0x04 Internal Clock Source Calibration Register */
u32 crrcr; /* 0x08 Clock Recovery RC Register */
u32 reserved1; /* 0x0c reserved */
u32 cfgr; /* 0x10 Clock Configuration Register */
u32 reserved2; /* 0x14 reserved */
u32 d1cfgr; /* 0x18 Domain 1 Clock Configuration Register */
u32 d2cfgr; /* 0x1c Domain 2 Clock Configuration Register */
u32 d3cfgr; /* 0x20 Domain 3 Clock Configuration Register */
u32 reserved3; /* 0x24 reserved */
u32 pllckselr; /* 0x28 PLLs Clock Source Selection Register */
u32 pllcfgr; /* 0x2c PLLs Configuration Register */
u32 pll1divr; /* 0x30 PLL1 Dividers Configuration Register */
u32 pll1fracr; /* 0x34 PLL1 Fractional Divider Register */
u32 pll2divr; /* 0x38 PLL2 Dividers Configuration Register */
u32 pll2fracr; /* 0x3c PLL2 Fractional Divider Register */
u32 pll3divr; /* 0x40 PLL3 Dividers Configuration Register */
u32 pll3fracr; /* 0x44 PLL3 Fractional Divider Register */
u32 reserved4; /* 0x48 reserved */
u32 d1ccipr; /* 0x4c Domain 1 Kernel Clock Configuration Register */
u32 d2ccip1r; /* 0x50 Domain 2 Kernel Clock Configuration Register */
u32 d2ccip2r; /* 0x54 Domain 2 Kernel Clock Configuration Register */
u32 d3ccipr; /* 0x58 Domain 3 Kernel Clock Configuration Register */
u32 reserved5; /* 0x5c reserved */
u32 cier; /* 0x60 Clock Source Interrupt Enable Register */
u32 cifr; /* 0x64 Clock Source Interrupt Flag Register */
u32 cicr; /* 0x68 Clock Source Interrupt Clear Register */
u32 reserved6; /* 0x6c reserved */
u32 bdcr; /* 0x70 Backup Domain Control Register */
u32 csr; /* 0x74 Clock Control and Status Register */
u32 reserved7; /* 0x78 reserved */
u32 ahb3rstr; /* 0x7c AHB3 Peripheral Reset Register */
u32 ahb1rstr; /* 0x80 AHB1 Peripheral Reset Register */
u32 ahb2rstr; /* 0x84 AHB2 Peripheral Reset Register */
u32 ahb4rstr; /* 0x88 AHB4 Peripheral Reset Register */
u32 apb3rstr; /* 0x8c APB3 Peripheral Reset Register */
u32 apb1lrstr; /* 0x90 APB1 low Peripheral Reset Register */
u32 apb1hrstr; /* 0x94 APB1 high Peripheral Reset Register */
u32 apb2rstr; /* 0x98 APB2 Clock Register */
u32 apb4rstr; /* 0x9c APB4 Clock Register */
u32 gcr; /* 0xa0 Global Control Register */
u32 reserved8; /* 0xa4 reserved */
u32 d3amr; /* 0xa8 D3 Autonomous mode Register */
u32 reserved9[9];/* 0xac to 0xcc reserved */
u32 rsr; /* 0xd0 Reset Status Register */
u32 ahb3enr; /* 0xd4 AHB3 Clock Register */
u32 ahb1enr; /* 0xd8 AHB1 Clock Register */
u32 ahb2enr; /* 0xdc AHB2 Clock Register */
u32 ahb4enr; /* 0xe0 AHB4 Clock Register */
u32 apb3enr; /* 0xe4 APB3 Clock Register */
u32 apb1lenr; /* 0xe8 APB1 low Clock Register */
u32 apb1henr; /* 0xec APB1 high Clock Register */
u32 apb2enr; /* 0xf0 APB2 Clock Register */
u32 apb4enr; /* 0xf4 APB4 Clock Register */
};
#define RCC_AHB3ENR offsetof(struct stm32_rcc_regs, ahb3enr)
#define RCC_AHB1ENR offsetof(struct stm32_rcc_regs, ahb1enr)
#define RCC_AHB2ENR offsetof(struct stm32_rcc_regs, ahb2enr)
#define RCC_AHB4ENR offsetof(struct stm32_rcc_regs, ahb4enr)
#define RCC_APB3ENR offsetof(struct stm32_rcc_regs, apb3enr)
#define RCC_APB1LENR offsetof(struct stm32_rcc_regs, apb1lenr)
#define RCC_APB1HENR offsetof(struct stm32_rcc_regs, apb1henr)
#define RCC_APB2ENR offsetof(struct stm32_rcc_regs, apb2enr)
#define RCC_APB4ENR offsetof(struct stm32_rcc_regs, apb4enr)
struct clk_cfg {
u32 gate_offset;
u8 gate_bit_idx;
const char *name;
};
/*
* the way all these entries are sorted in this array could seem
* unlogical, but we are dependant of kernel DT_bindings,
* where clocks are separate in 2 banks, peripheral clocks and
* kernel clocks.
*/
static const struct clk_cfg clk_map[] = {
{RCC_AHB3ENR, 31, "d1sram1"}, /* peripheral clocks */
{RCC_AHB3ENR, 30, "itcm"},
{RCC_AHB3ENR, 29, "dtcm2"},
{RCC_AHB3ENR, 28, "dtcm1"},
{RCC_AHB3ENR, 8, "flitf"},
{RCC_AHB3ENR, 5, "jpgdec"},
{RCC_AHB3ENR, 4, "dma2d"},
{RCC_AHB3ENR, 0, "mdma"},
{RCC_AHB1ENR, 28, "usb2ulpi"},
{RCC_AHB1ENR, 17, "eth1rx"},
{RCC_AHB1ENR, 16, "eth1tx"},
{RCC_AHB1ENR, 15, "eth1mac"},
{RCC_AHB1ENR, 14, "art"},
{RCC_AHB1ENR, 26, "usb1ulpi"},
{RCC_AHB1ENR, 1, "dma2"},
{RCC_AHB1ENR, 0, "dma1"},
{RCC_AHB2ENR, 31, "d2sram3"},
{RCC_AHB2ENR, 30, "d2sram2"},
{RCC_AHB2ENR, 29, "d2sram1"},
{RCC_AHB2ENR, 5, "hash"},
{RCC_AHB2ENR, 4, "crypt"},
{RCC_AHB2ENR, 0, "camitf"},
{RCC_AHB4ENR, 28, "bkpram"},
{RCC_AHB4ENR, 25, "hsem"},
{RCC_AHB4ENR, 21, "bdma"},
{RCC_AHB4ENR, 19, "crc"},
{RCC_AHB4ENR, 10, "gpiok"},
{RCC_AHB4ENR, 9, "gpioj"},
{RCC_AHB4ENR, 8, "gpioi"},
{RCC_AHB4ENR, 7, "gpioh"},
{RCC_AHB4ENR, 6, "gpiog"},
{RCC_AHB4ENR, 5, "gpiof"},
{RCC_AHB4ENR, 4, "gpioe"},
{RCC_AHB4ENR, 3, "gpiod"},
{RCC_AHB4ENR, 2, "gpioc"},
{RCC_AHB4ENR, 1, "gpiob"},
{RCC_AHB4ENR, 0, "gpioa"},
{RCC_APB3ENR, 6, "wwdg1"},
{RCC_APB1LENR, 29, "dac12"},
{RCC_APB1LENR, 11, "wwdg2"},
{RCC_APB1LENR, 8, "tim14"},
{RCC_APB1LENR, 7, "tim13"},
{RCC_APB1LENR, 6, "tim12"},
{RCC_APB1LENR, 5, "tim7"},
{RCC_APB1LENR, 4, "tim6"},
{RCC_APB1LENR, 3, "tim5"},
{RCC_APB1LENR, 2, "tim4"},
{RCC_APB1LENR, 1, "tim3"},
{RCC_APB1LENR, 0, "tim2"},
{RCC_APB1HENR, 5, "mdios"},
{RCC_APB1HENR, 4, "opamp"},
{RCC_APB1HENR, 1, "crs"},
{RCC_APB2ENR, 18, "tim17"},
{RCC_APB2ENR, 17, "tim16"},
{RCC_APB2ENR, 16, "tim15"},
{RCC_APB2ENR, 1, "tim8"},
{RCC_APB2ENR, 0, "tim1"},
{RCC_APB4ENR, 26, "tmpsens"},
{RCC_APB4ENR, 16, "rtcapb"},
{RCC_APB4ENR, 15, "vref"},
{RCC_APB4ENR, 14, "comp12"},
{RCC_APB4ENR, 1, "syscfg"},
{RCC_AHB3ENR, 16, "sdmmc1"}, /* kernel clocks */
{RCC_AHB3ENR, 14, "quadspi"},
{RCC_AHB3ENR, 12, "fmc"},
{RCC_AHB1ENR, 27, "usb2otg"},
{RCC_AHB1ENR, 25, "usb1otg"},
{RCC_AHB1ENR, 5, "adc12"},
{RCC_AHB2ENR, 9, "sdmmc2"},
{RCC_AHB2ENR, 6, "rng"},
{RCC_AHB4ENR, 24, "adc3"},
{RCC_APB3ENR, 4, "dsi"},
{RCC_APB3ENR, 3, "ltdc"},
{RCC_APB1LENR, 31, "usart8"},
{RCC_APB1LENR, 30, "usart7"},
{RCC_APB1LENR, 27, "hdmicec"},
{RCC_APB1LENR, 23, "i2c3"},
{RCC_APB1LENR, 22, "i2c2"},
{RCC_APB1LENR, 21, "i2c1"},
{RCC_APB1LENR, 20, "uart5"},
{RCC_APB1LENR, 19, "uart4"},
{RCC_APB1LENR, 18, "usart3"},
{RCC_APB1LENR, 17, "usart2"},
{RCC_APB1LENR, 16, "spdifrx"},
{RCC_APB1LENR, 15, "spi3"},
{RCC_APB1LENR, 14, "spi2"},
{RCC_APB1LENR, 9, "lptim1"},
{RCC_APB1HENR, 8, "fdcan"},
{RCC_APB1HENR, 2, "swp"},
{RCC_APB2ENR, 29, "hrtim"},
{RCC_APB2ENR, 28, "dfsdm1"},
{RCC_APB2ENR, 24, "sai3"},
{RCC_APB2ENR, 23, "sai2"},
{RCC_APB2ENR, 22, "sai1"},
{RCC_APB2ENR, 20, "spi5"},
{RCC_APB2ENR, 13, "spi4"},
{RCC_APB2ENR, 12, "spi1"},
{RCC_APB2ENR, 5, "usart6"},
{RCC_APB2ENR, 4, "usart1"},
{RCC_APB4ENR, 21, "sai4a"},
{RCC_APB4ENR, 21, "sai4b"},
{RCC_APB4ENR, 12, "lptim5"},
{RCC_APB4ENR, 11, "lptim4"},
{RCC_APB4ENR, 10, "lptim3"},
{RCC_APB4ENR, 9, "lptim2"},
{RCC_APB4ENR, 7, "i2c4"},
{RCC_APB4ENR, 5, "spi6"},
{RCC_APB4ENR, 3, "lpuart1"},
};
struct stm32_clk {
struct stm32_rcc_regs *rcc_base;
struct regmap *pwr_regmap;
};
struct pll_psc {
u8 divm;
u16 divn;
u8 divp;
u8 divq;
u8 divr;
};
/*
* OSC_HSE = 25 MHz
* VCO = 500MHz
* pll1_p = 250MHz / pll1_q = 250MHz pll1_r = 250Mhz
*/
struct pll_psc sys_pll_psc = {
.divm = 4,
.divn = 80,
.divp = 2,
.divq = 2,
.divr = 2,
};
enum apb {
APB1,
APB2,
};
int configure_clocks(struct udevice *dev)
{
struct stm32_clk *priv = dev_get_priv(dev);
struct stm32_rcc_regs *regs = priv->rcc_base;
uint8_t *pwr_base = (uint8_t *)regmap_get_range(priv->pwr_regmap, 0);
uint32_t pllckselr = 0;
uint32_t pll1divr = 0;
uint32_t pllcfgr = 0;
/* Switch on HSI */
setbits_le32(&regs->cr, RCC_CR_HSION);
while (!(readl(&regs->cr) & RCC_CR_HSIRDY))
;
/* Reset CFGR, now HSI is the default system clock */
writel(0, &regs->cfgr);
/* Set all kernel domain clock registers to reset value*/
writel(0x0, &regs->d1ccipr);
writel(0x0, &regs->d2ccip1r);
writel(0x0, &regs->d2ccip2r);
/* Set voltage scaling at scale 1 (1,15 - 1,26 Volts) */
clrsetbits_le32(pwr_base + PWR_D3CR, PWR_D3CR_VOS_MASK,
VOS_SCALE_1 << PWR_D3CR_VOS_SHIFT);
/* Lock supply configuration update */
clrbits_le32(pwr_base + PWR_CR3, PWR_CR3_SCUEN);
while (!(readl(pwr_base + PWR_D3CR) & PWR_D3CR_VOSREADY))
;
/* disable HSE to configure it */
clrbits_le32(&regs->cr, RCC_CR_HSEON);
while ((readl(&regs->cr) & RCC_CR_HSERDY))
;
/* clear HSE bypass and set it ON */
clrbits_le32(&regs->cr, RCC_CR_HSEBYP);
/* Switch on HSE */
setbits_le32(&regs->cr, RCC_CR_HSEON);
while (!(readl(&regs->cr) & RCC_CR_HSERDY))
;
/* pll setup, disable it */
clrbits_le32(&regs->cr, RCC_CR_PLL1ON);
while ((readl(&regs->cr) & RCC_CR_PLL1RDY))
;
/* Select HSE as PLL clock source */
pllckselr |= RCC_PLLCKSELR_PLLSRC_HSE;
pllckselr |= sys_pll_psc.divm << RCC_PLLCKSELR_DIVM1_SHIFT;
writel(pllckselr, &regs->pllckselr);
pll1divr |= (sys_pll_psc.divr - 1) << RCC_PLL1DIVR_DIVR1_SHIFT;
pll1divr |= (sys_pll_psc.divq - 1) << RCC_PLL1DIVR_DIVQ1_SHIFT;
pll1divr |= (sys_pll_psc.divp - 1) << RCC_PLL1DIVR_DIVP1_SHIFT;
pll1divr |= (sys_pll_psc.divn - 1);
writel(pll1divr, &regs->pll1divr);
pllcfgr |= PLL1RGE_4_8_MHZ << RCC_PLLCFGR_PLL1RGE_SHIFT;
pllcfgr |= RCC_PLLCFGR_DIVP1EN;
pllcfgr |= RCC_PLLCFGR_DIVQ1EN;
pllcfgr |= RCC_PLLCFGR_DIVR1EN;
writel(pllcfgr, &regs->pllcfgr);
/* pll setup, enable it */
setbits_le32(&regs->cr, RCC_CR_PLL1ON);
/* set HPRE (/2) DI clk --> 125MHz */
clrsetbits_le32(&regs->d1cfgr, RCC_D1CFGR_HPRE_MASK,
RCC_D1CFGR_HPRE_DIV2);
/* select PLL1 as system clock source (sys_ck)*/
clrsetbits_le32(&regs->cfgr, RCC_CFGR_SW_MASK, RCC_CFGR_SW_PLL1);
while ((readl(&regs->cfgr) & RCC_CFGR_SW_MASK) != RCC_CFGR_SW_PLL1)
;
/* sdram: use pll1_q as fmc_k clk */
clrsetbits_le32(&regs->d1ccipr, RCC_D1CCIPR_FMCSRC_MASK,
FMCSRC_PLL1_Q_CK);
return 0;
}
static u32 stm32_get_HSI_divider(struct stm32_rcc_regs *regs)
{
u32 divider;
/* get HSI divider value */
divider = readl(&regs->cr) & RCC_CR_HSIDIV_MASK;
divider = divider >> RCC_CR_HSIDIV_SHIFT;
return divider;
};
enum pllsrc {
HSE,
LSE,
HSI,
CSI,
I2S,
TIMER,
PLLSRC_NB,
};
static const char * const pllsrc_name[PLLSRC_NB] = {
[HSE] = "clk-hse",
[LSE] = "clk-lse",
[HSI] = "clk-hsi",
[CSI] = "clk-csi",
[I2S] = "clk-i2s",
[TIMER] = "timer-clk"
};
static ulong stm32_get_rate(struct stm32_rcc_regs *regs, enum pllsrc pllsrc)
{
struct clk clk;
struct udevice *fixed_clock_dev = NULL;
u32 divider;
int ret;
const char *name = pllsrc_name[pllsrc];
log_debug("pllsrc name %s\n", name);
clk.id = 0;
ret = uclass_get_device_by_name(UCLASS_CLK, name, &fixed_clock_dev);
if (ret) {
log_err("Can't find clk %s (%d)", name, ret);
return 0;
}
ret = clk_request(fixed_clock_dev, &clk);
if (ret) {
log_err("Can't request %s clk (%d)", name, ret);
return 0;
}
divider = 0;
if (pllsrc == HSI)
divider = stm32_get_HSI_divider(regs);
log_debug("divider %d rate %ld\n", divider, clk_get_rate(&clk));
return clk_get_rate(&clk) >> divider;
};
enum pll1_output {
PLL1_P_CK,
PLL1_Q_CK,
PLL1_R_CK,
};
static u32 stm32_get_PLL1_rate(struct stm32_rcc_regs *regs,
enum pll1_output output)
{
ulong pllsrc = 0;
u32 divm1, divn1, divp1, divq1, divr1, fracn1;
ulong vco, rate;
/* get the PLLSRC */
switch (readl(&regs->pllckselr) & RCC_PLLCKSELR_PLLSRC_MASK) {
case RCC_PLLCKSELR_PLLSRC_HSI:
pllsrc = stm32_get_rate(regs, HSI);
break;
case RCC_PLLCKSELR_PLLSRC_CSI:
pllsrc = stm32_get_rate(regs, CSI);
break;
case RCC_PLLCKSELR_PLLSRC_HSE:
pllsrc = stm32_get_rate(regs, HSE);
break;
case RCC_PLLCKSELR_PLLSRC_NO_CLK:
/* shouldn't happen */
log_err("wrong value for RCC_PLLCKSELR register\n");
pllsrc = 0;
break;
}
/* pllsrc = 0 ? no need to go ahead */
if (!pllsrc)
return pllsrc;
/* get divm1, divp1, divn1 and divr1 */
divm1 = readl(&regs->pllckselr) & RCC_PLLCKSELR_DIVM1_MASK;
divm1 = divm1 >> RCC_PLLCKSELR_DIVM1_SHIFT;
divn1 = (readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVN1_MASK) + 1;
divp1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVP1_MASK;
divp1 = (divp1 >> RCC_PLL1DIVR_DIVP1_SHIFT) + 1;
divq1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVQ1_MASK;
divq1 = (divq1 >> RCC_PLL1DIVR_DIVQ1_SHIFT) + 1;
divr1 = readl(&regs->pll1divr) & RCC_PLL1DIVR_DIVR1_MASK;
divr1 = (divr1 >> RCC_PLL1DIVR_DIVR1_SHIFT) + 1;
fracn1 = readl(&regs->pll1fracr) & RCC_PLL1DIVR_DIVR1_MASK;
fracn1 = fracn1 & RCC_PLL1DIVR_DIVR1_SHIFT;
vco = (pllsrc / divm1) * divn1;
rate = (pllsrc * fracn1) / (divm1 * 8192);
log_debug("divm1 = %d divn1 = %d divp1 = %d divq1 = %d divr1 = %d\n",
divm1, divn1, divp1, divq1, divr1);
log_debug("fracn1 = %d vco = %ld rate = %ld\n",
fracn1, vco, rate);
switch (output) {
case PLL1_P_CK:
return (vco + rate) / divp1;
break;
case PLL1_Q_CK:
return (vco + rate) / divq1;
break;
case PLL1_R_CK:
return (vco + rate) / divr1;
break;
}
return -EINVAL;
}
static u32 stm32_get_apb_psc(struct stm32_rcc_regs *regs, enum apb apb)
{
u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
u32 d2cfgr = readl(&regs->d2cfgr);
if (apb == APB1) {
if (d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDED)
/* get D2 domain APB1 prescaler */
return prescaler_table[
((d2cfgr & RCC_D2CFGR_D2PPRE1_DIVIDER)
>> RCC_D2CFGR_D2PPRE1_SHIFT)];
} else { /* APB2 */
if (d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDED)
/* get D2 domain APB2 prescaler */
return prescaler_table[
((d2cfgr & RCC_D2CFGR_D2PPRE2_DIVIDER)
>> RCC_D2CFGR_D2PPRE2_SHIFT)];
}
return 1;
};
static u32 stm32_get_timer_rate(struct stm32_clk *priv, u32 sysclk,
enum apb apb)
{
struct stm32_rcc_regs *regs = priv->rcc_base;
u32 psc = stm32_get_apb_psc(regs, apb);
if (readl(&regs->cfgr) & RCC_CFGR_TIMPRE)
/*
* if APB prescaler is configured to a
* division factor of 1, 2 or 4
*/
switch (psc) {
case 1:
case 2:
case 4:
return sysclk;
case 8:
return sysclk / 2;
case 16:
return sysclk / 4;
default:
log_err("unexpected prescaler value (%d)\n", psc);
return 0;
}
else
switch (psc) {
case 1:
return sysclk;
case 2:
case 4:
case 8:
case 16:
return sysclk / psc;
default:
log_err("unexpected prescaler value (%d)\n", psc);
return 0;
}
};
static ulong stm32_clk_get_rate(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->rcc_base;
ulong sysclk = 0;
u32 gate_offset;
u32 d1cfgr, d3cfgr;
/* prescaler table lookups for clock computation */
u16 prescaler_table[8] = {2, 4, 8, 16, 64, 128, 256, 512};
u8 source, idx;
/*
* get system clock (sys_ck) source
* can be HSI_CK, CSI_CK, HSE_CK or pll1_p_ck
*/
source = readl(&regs->cfgr) & RCC_CFGR_SW_MASK;
switch (source) {
case RCC_CFGR_SW_PLL1:
sysclk = stm32_get_PLL1_rate(regs, PLL1_P_CK);
break;
case RCC_CFGR_SW_HSE:
sysclk = stm32_get_rate(regs, HSE);
break;
case RCC_CFGR_SW_CSI:
sysclk = stm32_get_rate(regs, CSI);
break;
case RCC_CFGR_SW_HSI:
sysclk = stm32_get_rate(regs, HSI);
break;
}
/* sysclk = 0 ? no need to go ahead */
if (!sysclk)
return sysclk;
dev_dbg(clk->dev, "system clock: source = %d freq = %ld\n",
source, sysclk);
d1cfgr = readl(&regs->d1cfgr);
if (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDED) {
/* get D1 domain Core prescaler */
idx = (d1cfgr & RCC_D1CFGR_D1CPRE_DIVIDER) >>
RCC_D1CFGR_D1CPRE_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
if (d1cfgr & RCC_D1CFGR_HPRE_DIVIDED) {
/* get D1 domain AHB prescaler */
idx = d1cfgr & RCC_D1CFGR_HPRE_DIVIDER;
sysclk = sysclk / prescaler_table[idx];
}
gate_offset = clk_map[clk->id].gate_offset;
dev_dbg(clk->dev, "clk->id=%ld gate_offset=0x%x sysclk=%ld\n",
clk->id, gate_offset, sysclk);
switch (gate_offset) {
case RCC_AHB3ENR:
case RCC_AHB1ENR:
case RCC_AHB2ENR:
case RCC_AHB4ENR:
return sysclk;
break;
case RCC_APB3ENR:
if (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDED) {
/* get D1 domain APB3 prescaler */
idx = (d1cfgr & RCC_D1CFGR_D1PPRE_DIVIDER) >>
RCC_D1CFGR_D1PPRE_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
dev_dbg(clk->dev, "system clock: freq after APB3 prescaler = %ld\n",
sysclk);
return sysclk;
break;
case RCC_APB4ENR:
d3cfgr = readl(&regs->d3cfgr);
if (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDED) {
/* get D3 domain APB4 prescaler */
idx = (d3cfgr & RCC_D3CFGR_D3PPRE_DIVIDER) >>
RCC_D3CFGR_D3PPRE_SHIFT;
sysclk = sysclk / prescaler_table[idx];
}
dev_dbg(clk->dev,
"system clock: freq after APB4 prescaler = %ld\n",
sysclk);
return sysclk;
break;
case RCC_APB1LENR:
case RCC_APB1HENR:
/* special case for GPT timers */
switch (clk->id) {
case TIM14_CK:
case TIM13_CK:
case TIM12_CK:
case TIM7_CK:
case TIM6_CK:
case TIM5_CK:
case TIM4_CK:
case TIM3_CK:
case TIM2_CK:
return stm32_get_timer_rate(priv, sysclk, APB1);
}
dev_dbg(clk->dev,
"system clock: freq after APB1 prescaler = %ld\n",
sysclk);
return (sysclk / stm32_get_apb_psc(regs, APB1));
break;
case RCC_APB2ENR:
/* special case for timers */
switch (clk->id) {
case TIM17_CK:
case TIM16_CK:
case TIM15_CK:
case TIM8_CK:
case TIM1_CK:
return stm32_get_timer_rate(priv, sysclk, APB2);
}
dev_dbg(clk->dev,
"system clock: freq after APB2 prescaler = %ld\n",
sysclk);
return (sysclk / stm32_get_apb_psc(regs, APB2));
break;
default:
dev_err(clk->dev, "unexpected gate_offset value (0x%x)\n",
gate_offset);
return -EINVAL;
break;
}
}
static int stm32_clk_enable(struct clk *clk)
{
struct stm32_clk *priv = dev_get_priv(clk->dev);
struct stm32_rcc_regs *regs = priv->rcc_base;
u32 gate_offset;
u32 gate_bit_index;
unsigned long clk_id = clk->id;
gate_offset = clk_map[clk_id].gate_offset;
gate_bit_index = clk_map[clk_id].gate_bit_idx;
dev_dbg(clk->dev, "clkid=%ld gate offset=0x%x bit_index=%d name=%s\n",
clk->id, gate_offset, gate_bit_index,
clk_map[clk_id].name);
setbits_le32(&regs->cr + (gate_offset / 4), BIT(gate_bit_index));
return 0;
}
static int stm32_clk_probe(struct udevice *dev)
{
struct stm32_clk *priv = dev_get_priv(dev);
struct udevice *syscon;
fdt_addr_t addr;
int err;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
priv->rcc_base = (struct stm32_rcc_regs *)addr;
/* get corresponding syscon phandle */
err = uclass_get_device_by_phandle(UCLASS_SYSCON, dev,
"st,syscfg", &syscon);
if (err) {
dev_err(dev, "unable to find syscon device\n");
return err;
}
priv->pwr_regmap = syscon_get_regmap(syscon);
if (!priv->pwr_regmap) {
dev_err(dev, "unable to find regmap\n");
return -ENODEV;
}
configure_clocks(dev);
return 0;
}
static int stm32_clk_of_xlate(struct clk *clk,
struct ofnode_phandle_args *args)
{
if (args->args_count != 1) {
dev_dbg(clk->dev, "Invalid args_count: %d\n", args->args_count);
return -EINVAL;
}
if (args->args_count) {
clk->id = args->args[0];
/*
* this computation convert DT clock index which is used to
* point into 2 separate clock arrays (peripheral and kernel
* clocks bank) (see include/dt-bindings/clock/stm32h7-clks.h)
* into index to point into only one array where peripheral
* and kernel clocks are consecutive
*/
if (clk->id >= KERN_BANK) {
clk->id -= KERN_BANK;
clk->id += LAST_PERIF_BANK - PERIF_BANK + 1;
} else {
clk->id -= PERIF_BANK;
}
} else {
clk->id = 0;
}
dev_dbg(clk->dev, "clk->id %ld\n", clk->id);
return 0;
}
static struct clk_ops stm32_clk_ops = {
.of_xlate = stm32_clk_of_xlate,
.enable = stm32_clk_enable,
.get_rate = stm32_clk_get_rate,
};
U_BOOT_DRIVER(stm32h7_clk) = {
.name = "stm32h7_rcc_clock",
.id = UCLASS_CLK,
.ops = &stm32_clk_ops,
.probe = stm32_clk_probe,
.priv_auto = sizeof(struct stm32_clk),
.flags = DM_FLAG_PRE_RELOC,
};