| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2010 - 2011 |
| * NVIDIA Corporation <www.nvidia.com> |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/flow.h> |
| #include <asm/arch/pinmux.h> |
| #include <asm/arch/tegra.h> |
| #include <asm/arch-tegra/ap.h> |
| #include <asm/arch-tegra/apb_misc.h> |
| #include <asm/arch-tegra/clk_rst.h> |
| #include <asm/arch-tegra/pmc.h> |
| #include <asm/arch-tegra/warmboot.h> |
| #include "warmboot_avp.h" |
| |
| #define DEBUG_RESET_CORESIGHT |
| |
| void wb_start(void) |
| { |
| struct apb_misc_pp_ctlr *apb_misc = |
| (struct apb_misc_pp_ctlr *)NV_PA_APB_MISC_BASE; |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; |
| struct flow_ctlr *flow = (struct flow_ctlr *)NV_PA_FLOW_BASE; |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| union osc_ctrl_reg osc_ctrl; |
| union pllx_base_reg pllx_base; |
| union pllx_misc_reg pllx_misc; |
| union scratch3_reg scratch3; |
| u32 reg; |
| |
| /* enable JTAG & TBE */ |
| writel(CFG_CTL_TBE | CFG_CTL_JTAG, &apb_misc->cfg_ctl); |
| |
| /* Are we running where we're supposed to be? */ |
| asm volatile ( |
| "adr %0, wb_start;" /* reg: wb_start address */ |
| : "=r"(reg) /* output */ |
| /* no input, no clobber list */ |
| ); |
| |
| if (reg != NV_WB_RUN_ADDRESS) |
| goto do_reset; |
| |
| /* Are we running with AVP? */ |
| if (readl(NV_PA_PG_UP_BASE + PG_UP_TAG_0) != PG_UP_TAG_AVP) |
| goto do_reset; |
| |
| #ifdef DEBUG_RESET_CORESIGHT |
| /* Assert CoreSight reset */ |
| reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| reg |= SWR_CSITE_RST; |
| writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| #endif |
| |
| /* TODO: Set the drive strength - maybe make this a board parameter? */ |
| osc_ctrl.word = readl(&clkrst->crc_osc_ctrl); |
| osc_ctrl.xofs = 4; |
| osc_ctrl.xoe = 1; |
| writel(osc_ctrl.word, &clkrst->crc_osc_ctrl); |
| |
| /* Power up the CPU complex if necessary */ |
| if (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) { |
| reg = PWRGATE_TOGGLE_PARTID_CPU | PWRGATE_TOGGLE_START; |
| writel(reg, &pmc->pmc_pwrgate_toggle); |
| while (!(readl(&pmc->pmc_pwrgate_status) & PWRGATE_STATUS_CPU)) |
| ; |
| } |
| |
| /* Remove the I/O clamps from the CPU power partition. */ |
| reg = readl(&pmc->pmc_remove_clamping); |
| reg |= CPU_CLMP; |
| writel(reg, &pmc->pmc_remove_clamping); |
| |
| reg = EVENT_ZERO_VAL_20 | EVENT_MSEC | EVENT_MODE_STOP; |
| writel(reg, &flow->halt_cop_events); |
| |
| /* Assert CPU complex reset */ |
| reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| reg |= CPU_RST; |
| writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| |
| /* Hold both CPUs in reset */ |
| reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_CPURESET1 | CPU_CMPLX_DERESET0 | |
| CPU_CMPLX_DERESET1 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DBGRESET1; |
| writel(reg, &clkrst->crc_cpu_cmplx_set); |
| |
| /* Halt CPU1 at the flow controller for uni-processor configurations */ |
| writel(EVENT_MODE_STOP, &flow->halt_cpu1_events); |
| |
| /* |
| * Set the CPU reset vector. SCRATCH41 contains the physical |
| * address of the CPU-side restoration code. |
| */ |
| reg = readl(&pmc->pmc_scratch41); |
| writel(reg, EXCEP_VECTOR_CPU_RESET_VECTOR); |
| |
| /* Select CPU complex clock source */ |
| writel(CCLK_PLLP_BURST_POLICY, &clkrst->crc_cclk_brst_pol); |
| |
| /* Start the CPU0 clock and stop the CPU1 clock */ |
| reg = CPU_CMPLX_CPU_BRIDGE_CLKDIV_4 | CPU_CMPLX_CPU0_CLK_STP_RUN | |
| CPU_CMPLX_CPU1_CLK_STP_STOP; |
| writel(reg, &clkrst->crc_clk_cpu_cmplx); |
| |
| /* Enable the CPU complex clock */ |
| reg = readl(&clkrst->crc_clk_out_enb[TEGRA_DEV_L]); |
| reg |= CLK_ENB_CPU; |
| writel(reg, &clkrst->crc_clk_out_enb[TEGRA_DEV_L]); |
| |
| /* Make sure the resets were held for at least 2 microseconds */ |
| reg = readl(TIMER_USEC_CNTR); |
| while (readl(TIMER_USEC_CNTR) <= (reg + 2)) |
| ; |
| |
| #ifdef DEBUG_RESET_CORESIGHT |
| /* |
| * De-assert CoreSight reset. |
| * NOTE: We're leaving the CoreSight clock on the oscillator for |
| * now. It will be restored to its original clock source |
| * when the CPU-side restoration code runs. |
| */ |
| reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| reg &= ~SWR_CSITE_RST; |
| writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_U]); |
| #endif |
| |
| /* Unlock the CPU CoreSight interfaces */ |
| reg = 0xC5ACCE55; |
| writel(reg, CSITE_CPU_DBG0_LAR); |
| writel(reg, CSITE_CPU_DBG1_LAR); |
| |
| /* |
| * Sample the microsecond timestamp again. This is the time we must |
| * use when returning from LP0 for PLL stabilization delays. |
| */ |
| reg = readl(TIMER_USEC_CNTR); |
| writel(reg, &pmc->pmc_scratch1); |
| |
| pllx_base.word = 0; |
| pllx_misc.word = 0; |
| scratch3.word = readl(&pmc->pmc_scratch3); |
| |
| /* Get the OSC. For 19.2 MHz, use 19 to make the calculations easier */ |
| reg = (readl(TIMER_USEC_CFG) & USEC_CFG_DIVISOR_MASK) + 1; |
| |
| /* |
| * According to the TRM, for 19.2MHz OSC, the USEC_DIVISOR is 0x5f, and |
| * USEC_DIVIDEND is 0x04. So, if USEC_DIVISOR > 26, OSC is 19.2 MHz. |
| * |
| * reg is used to calculate the pllx freq, which is used to determine if |
| * to set dccon or not. |
| */ |
| if (reg > 26) |
| reg = 19; |
| |
| /* PLLX_BASE.PLLX_DIVM */ |
| if (scratch3.pllx_base_divm == reg) |
| reg = 0; |
| else |
| reg = 1; |
| |
| /* PLLX_BASE.PLLX_DIVN */ |
| pllx_base.divn = scratch3.pllx_base_divn; |
| reg = scratch3.pllx_base_divn << reg; |
| |
| /* PLLX_BASE.PLLX_DIVP */ |
| pllx_base.divp = scratch3.pllx_base_divp; |
| reg = reg >> scratch3.pllx_base_divp; |
| |
| pllx_base.bypass = 1; |
| |
| /* PLLX_MISC_DCCON must be set for pllx frequency > 600 MHz. */ |
| if (reg > 600) |
| pllx_misc.dccon = 1; |
| |
| /* PLLX_MISC_LFCON */ |
| pllx_misc.lfcon = scratch3.pllx_misc_lfcon; |
| |
| /* PLLX_MISC_CPCON */ |
| pllx_misc.cpcon = scratch3.pllx_misc_cpcon; |
| |
| writel(pllx_misc.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_misc); |
| writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base); |
| |
| pllx_base.enable = 1; |
| writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base); |
| pllx_base.bypass = 0; |
| writel(pllx_base.word, &clkrst->crc_pll_simple[SIMPLE_PLLX].pll_base); |
| |
| writel(0, flow->halt_cpu_events); |
| |
| reg = CPU_CMPLX_CPURESET0 | CPU_CMPLX_DBGRESET0 | CPU_CMPLX_DERESET0; |
| writel(reg, &clkrst->crc_cpu_cmplx_clr); |
| |
| reg = PLLM_OUT1_RSTN_RESET_DISABLE | PLLM_OUT1_CLKEN_ENABLE | |
| PLLM_OUT1_RATIO_VAL_8; |
| writel(reg, &clkrst->crc_pll[CLOCK_ID_MEMORY].pll_out[0]); |
| |
| reg = SCLK_SWAKE_FIQ_SRC_PLLM_OUT1 | SCLK_SWAKE_IRQ_SRC_PLLM_OUT1 | |
| SCLK_SWAKE_RUN_SRC_PLLM_OUT1 | SCLK_SWAKE_IDLE_SRC_PLLM_OUT1 | |
| SCLK_SYS_STATE_IDLE; |
| writel(reg, &clkrst->crc_sclk_brst_pol); |
| |
| /* avp_resume: no return after the write */ |
| reg = readl(&clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| reg &= ~CPU_RST; |
| writel(reg, &clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| |
| /* avp_halt: */ |
| avp_halt: |
| reg = EVENT_MODE_STOP | EVENT_JTAG; |
| writel(reg, flow->halt_cop_events); |
| goto avp_halt; |
| |
| do_reset: |
| /* |
| * Execution comes here if something goes wrong. The chip is reset and |
| * a cold boot is performed. |
| */ |
| writel(SWR_TRIG_SYS_RST, &clkrst->crc_rst_dev[TEGRA_DEV_L]); |
| goto do_reset; |
| } |
| |
| /* |
| * wb_end() is a dummy function, and must be directly following wb_start(), |
| * and is used to calculate the size of wb_start(). |
| */ |
| void wb_end(void) |
| { |
| } |