| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * sun50i H616 platform dram controller driver |
| * |
| * While controller is very similar to that in H6, PHY is completely |
| * unknown. That's why this driver has plenty of magic numbers. Some |
| * meaning was nevertheless deduced from strings found in boot0 and |
| * known meaning of some dram parameters. |
| * This driver only supports DDR3 memory and omits logic for all |
| * other supported types supported by hardware. |
| * |
| * (C) Copyright 2020 Jernej Skrabec <jernej.skrabec@siol.net> |
| * |
| */ |
| #include <common.h> |
| #include <init.h> |
| #include <log.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/dram.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/prcm.h> |
| #include <linux/bitops.h> |
| #include <linux/delay.h> |
| #include <linux/kconfig.h> |
| |
| enum { |
| MBUS_QOS_LOWEST = 0, |
| MBUS_QOS_LOW, |
| MBUS_QOS_HIGH, |
| MBUS_QOS_HIGHEST |
| }; |
| |
| inline void mbus_configure_port(u8 port, |
| bool bwlimit, |
| bool priority, |
| u8 qos, |
| u8 waittime, |
| u8 acs, |
| u16 bwl0, |
| u16 bwl1, |
| u16 bwl2) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| const u32 cfg0 = ( (bwlimit ? (1 << 0) : 0) |
| | (priority ? (1 << 1) : 0) |
| | ((qos & 0x3) << 2) |
| | ((waittime & 0xf) << 4) |
| | ((acs & 0xff) << 8) |
| | (bwl0 << 16) ); |
| const u32 cfg1 = ((u32)bwl2 << 16) | (bwl1 & 0xffff); |
| |
| debug("MBUS port %d cfg0 %08x cfg1 %08x\n", port, cfg0, cfg1); |
| writel_relaxed(cfg0, &mctl_com->master[port].cfg0); |
| writel_relaxed(cfg1, &mctl_com->master[port].cfg1); |
| } |
| |
| #define MBUS_CONF(port, bwlimit, qos, acs, bwl0, bwl1, bwl2) \ |
| mbus_configure_port(port, bwlimit, false, \ |
| MBUS_QOS_ ## qos, 0, acs, bwl0, bwl1, bwl2) |
| |
| static void mctl_set_master_priority(void) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| |
| /* enable bandwidth limit windows and set windows size 1us */ |
| writel(399, &mctl_com->tmr); |
| writel(BIT(16), &mctl_com->bwcr); |
| |
| MBUS_CONF( 0, true, HIGHEST, 0, 256, 128, 100); |
| MBUS_CONF( 1, true, HIGH, 0, 1536, 1400, 256); |
| MBUS_CONF( 2, true, HIGHEST, 0, 512, 256, 96); |
| MBUS_CONF( 3, true, HIGH, 0, 256, 100, 80); |
| MBUS_CONF( 4, true, HIGH, 2, 8192, 5500, 5000); |
| MBUS_CONF( 5, true, HIGH, 2, 100, 64, 32); |
| MBUS_CONF( 6, true, HIGH, 2, 100, 64, 32); |
| MBUS_CONF( 8, true, HIGH, 0, 256, 128, 64); |
| MBUS_CONF(11, true, HIGH, 0, 256, 128, 100); |
| MBUS_CONF(14, true, HIGH, 0, 1024, 256, 64); |
| MBUS_CONF(16, true, HIGHEST, 6, 8192, 2800, 2400); |
| MBUS_CONF(21, true, HIGHEST, 6, 2048, 768, 512); |
| MBUS_CONF(25, true, HIGHEST, 0, 100, 64, 32); |
| MBUS_CONF(26, true, HIGH, 2, 8192, 5500, 5000); |
| MBUS_CONF(37, true, HIGH, 0, 256, 128, 64); |
| MBUS_CONF(38, true, HIGH, 2, 100, 64, 32); |
| MBUS_CONF(39, true, HIGH, 2, 8192, 5500, 5000); |
| MBUS_CONF(40, true, HIGH, 2, 100, 64, 32); |
| |
| dmb(); |
| } |
| |
| static void mctl_sys_init(struct dram_para *para) |
| { |
| struct sunxi_ccm_reg * const ccm = |
| (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| |
| /* Put all DRAM-related blocks to reset state */ |
| clrbits_le32(&ccm->mbus_cfg, MBUS_ENABLE); |
| clrbits_le32(&ccm->mbus_cfg, MBUS_RESET); |
| clrbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT)); |
| udelay(5); |
| clrbits_le32(&ccm->dram_gate_reset, BIT(RESET_SHIFT)); |
| clrbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_EN); |
| clrbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET); |
| |
| udelay(5); |
| |
| /* Set PLL5 rate to doubled DRAM clock rate */ |
| writel(CCM_PLL5_CTRL_EN | CCM_PLL5_LOCK_EN | CCM_PLL5_OUT_EN | |
| CCM_PLL5_CTRL_N(para->clk * 2 / 24), &ccm->pll5_cfg); |
| mctl_await_completion(&ccm->pll5_cfg, CCM_PLL5_LOCK, CCM_PLL5_LOCK); |
| |
| /* Configure DRAM mod clock */ |
| writel(DRAM_CLK_SRC_PLL5, &ccm->dram_clk_cfg); |
| writel(BIT(RESET_SHIFT), &ccm->dram_gate_reset); |
| udelay(5); |
| setbits_le32(&ccm->dram_gate_reset, BIT(GATE_SHIFT)); |
| |
| /* Disable all channels */ |
| writel(0, &mctl_com->maer0); |
| writel(0, &mctl_com->maer1); |
| writel(0, &mctl_com->maer2); |
| |
| /* Configure MBUS and enable DRAM mod reset */ |
| setbits_le32(&ccm->mbus_cfg, MBUS_RESET); |
| setbits_le32(&ccm->mbus_cfg, MBUS_ENABLE); |
| |
| clrbits_le32(&mctl_com->unk_0x500, BIT(25)); |
| |
| setbits_le32(&ccm->dram_clk_cfg, DRAM_MOD_RESET); |
| udelay(5); |
| |
| /* Unknown hack, which enables access of mctl_ctl regs */ |
| writel(0x8000, &mctl_ctl->clken); |
| } |
| |
| static void mctl_set_addrmap(struct dram_para *para) |
| { |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| u8 cols = para->cols; |
| u8 rows = para->rows; |
| u8 ranks = para->ranks; |
| |
| if (!para->bus_full_width) |
| cols -= 1; |
| |
| /* Ranks */ |
| if (ranks == 2) |
| mctl_ctl->addrmap[0] = rows + cols - 3; |
| else |
| mctl_ctl->addrmap[0] = 0x1F; |
| |
| /* Banks, hardcoded to 8 banks now */ |
| mctl_ctl->addrmap[1] = (cols - 2) | (cols - 2) << 8 | (cols - 2) << 16; |
| |
| /* Columns */ |
| mctl_ctl->addrmap[2] = 0; |
| switch (cols) { |
| case 7: |
| mctl_ctl->addrmap[3] = 0x1F1F1F00; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 8: |
| mctl_ctl->addrmap[3] = 0x1F1F0000; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 9: |
| mctl_ctl->addrmap[3] = 0x1F000000; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 10: |
| mctl_ctl->addrmap[3] = 0; |
| mctl_ctl->addrmap[4] = 0x1F1F; |
| break; |
| case 11: |
| mctl_ctl->addrmap[3] = 0; |
| mctl_ctl->addrmap[4] = 0x1F00; |
| break; |
| case 12: |
| mctl_ctl->addrmap[3] = 0; |
| mctl_ctl->addrmap[4] = 0; |
| break; |
| default: |
| panic("Unsupported DRAM configuration: column number invalid\n"); |
| } |
| |
| /* Rows */ |
| mctl_ctl->addrmap[5] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| switch (rows) { |
| case 13: |
| mctl_ctl->addrmap[6] = (cols - 3) | 0x0F0F0F00; |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 14: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | 0x0F0F0000; |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 15: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | 0x0F000000; |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 16: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| mctl_ctl->addrmap[7] = 0x0F0F; |
| break; |
| case 17: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| mctl_ctl->addrmap[7] = (cols - 3) | 0x0F00; |
| break; |
| case 18: |
| mctl_ctl->addrmap[6] = (cols - 3) | ((cols - 3) << 8) | ((cols - 3) << 16) | ((cols - 3) << 24); |
| mctl_ctl->addrmap[7] = (cols - 3) | ((cols - 3) << 8); |
| break; |
| default: |
| panic("Unsupported DRAM configuration: row number invalid\n"); |
| } |
| |
| /* Bank groups, DDR4 only */ |
| mctl_ctl->addrmap[8] = 0x3F3F; |
| } |
| |
| static const u8 phy_init[] = { |
| 0x07, 0x0b, 0x02, 0x16, 0x0d, 0x0e, 0x14, 0x19, |
| 0x0a, 0x15, 0x03, 0x13, 0x04, 0x0c, 0x10, 0x06, |
| 0x0f, 0x11, 0x1a, 0x01, 0x12, 0x17, 0x00, 0x08, |
| 0x09, 0x05, 0x18 |
| }; |
| |
| static void mctl_phy_configure_odt(struct dram_para *para) |
| { |
| unsigned int val; |
| |
| val = para->dx_dri & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x388); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x38c); |
| |
| val = (para->dx_dri >> 8) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x3c8); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x3cc); |
| |
| val = (para->dx_dri >> 16) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x408); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x40c); |
| |
| val = (para->dx_dri >> 24) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x448); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x44c); |
| |
| val = para->ca_dri & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x340); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x344); |
| |
| val = (para->ca_dri >> 8) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x348); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x34c); |
| |
| val = para->dx_odt & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x380); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x384); |
| |
| val = (para->dx_odt >> 8) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x3c0); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x3c4); |
| |
| val = (para->dx_odt >> 16) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x400); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x404); |
| |
| val = (para->dx_odt >> 24) & 0x1f; |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x440); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x444); |
| |
| dmb(); |
| } |
| |
| static bool mctl_phy_write_leveling(struct dram_para *para) |
| { |
| bool result = true; |
| u32 val; |
| |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x80); |
| writel(4, SUNXI_DRAM_PHY0_BASE + 0xc); |
| writel(0x40, SUNXI_DRAM_PHY0_BASE + 0x10); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| |
| if (para->bus_full_width) |
| val = 0xf; |
| else |
| val = 3; |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val); |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| |
| val = readl(SUNXI_DRAM_PHY0_BASE + 0x258); |
| if (val == 0 || val == 0x3f) |
| result = false; |
| val = readl(SUNXI_DRAM_PHY0_BASE + 0x25c); |
| if (val == 0 || val == 0x3f) |
| result = false; |
| val = readl(SUNXI_DRAM_PHY0_BASE + 0x318); |
| if (val == 0 || val == 0x3f) |
| result = false; |
| val = readl(SUNXI_DRAM_PHY0_BASE + 0x31c); |
| if (val == 0 || val == 0x3f) |
| result = false; |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0); |
| |
| if (para->ranks == 2) { |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0, 0x40); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| |
| if (para->bus_full_width) |
| val = 0xf; |
| else |
| val = 3; |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x188), val, val); |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 4); |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0xc0); |
| |
| return result; |
| } |
| |
| static bool mctl_phy_read_calibration(struct dram_para *para) |
| { |
| bool result = true; |
| u32 val, tmp; |
| |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x20); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| |
| if (para->bus_full_width) |
| val = 0xf; |
| else |
| val = 3; |
| |
| while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) { |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) { |
| result = false; |
| break; |
| } |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30); |
| |
| if (para->ranks == 2) { |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30, 0x10); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| |
| while ((readl(SUNXI_DRAM_PHY0_BASE + 0x184) & val) != val) { |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0x184) & 0x20) { |
| result = false; |
| break; |
| } |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 1); |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 0x30); |
| |
| val = readl(SUNXI_DRAM_PHY0_BASE + 0x274) & 7; |
| tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x26c) & 7; |
| if (val < tmp) |
| val = tmp; |
| tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x32c) & 7; |
| if (val < tmp) |
| val = tmp; |
| tmp = readl(SUNXI_DRAM_PHY0_BASE + 0x334) & 7; |
| if (val < tmp) |
| val = tmp; |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x38, 0x7, (val + 2) & 7); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 0x20); |
| |
| return result; |
| } |
| |
| static bool mctl_phy_read_training(struct dram_para *para) |
| { |
| u32 val1, val2, *ptr1, *ptr2; |
| bool result = true; |
| int i; |
| |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2); |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x804, 0x3f, 0xf); |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x808, 0x3f, 0xf); |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa04, 0x3f, 0xf); |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0xa08, 0x3f, 0xf); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6); |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1); |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3) |
| result = false; |
| |
| if (para->bus_full_width) { |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3) |
| result = false; |
| } |
| |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x898); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x850); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8bc); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x874); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| |
| if (para->bus_full_width) { |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa98); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa50); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xabc); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa74); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3); |
| |
| if (para->ranks == 2) { |
| /* maybe last parameter should be 1? */ |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3, 2); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 6); |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 1); |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x840), 0xc, 0xc); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0x840) & 3) |
| result = false; |
| |
| if (para->bus_full_width) { |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xa40), 0xc, 0xc); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0xa40) & 3) |
| result = false; |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 3); |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 3); |
| |
| return result; |
| } |
| |
| static bool mctl_phy_write_training(struct dram_para *para) |
| { |
| u32 val1, val2, *ptr1, *ptr2; |
| bool result = true; |
| int i; |
| |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x134); |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x138); |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x19c); |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x1a0); |
| |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 8); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10); |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20); |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc) |
| result = false; |
| |
| if (para->bus_full_width) { |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc) |
| result = false; |
| } |
| |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x938); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8f0); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x95c); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x914); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| |
| if (para->bus_full_width) { |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xb38); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xaf0); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| ptr1 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xb5c); |
| ptr2 = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xb14); |
| for (i = 0; i < 9; i++) { |
| val1 = readl(&ptr1[i]); |
| val2 = readl(&ptr2[i]); |
| if (val1 - val2 <= 6) |
| result = false; |
| } |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60); |
| |
| if (para->ranks == 2) { |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc, 4); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10); |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x20); |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x8e0), 3, 3); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0x8e0) & 0xc) |
| result = false; |
| |
| if (para->bus_full_width) { |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0xae0), 3, 3); |
| if (readl(SUNXI_DRAM_PHY0_BASE + 0xae0) & 0xc) |
| result = false; |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x60); |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x198, 0xc); |
| |
| return result; |
| } |
| |
| static void mctl_phy_bit_delay_compensation(struct dram_para *para) |
| { |
| u32 *ptr, val; |
| int i; |
| |
| if (para->tpr10 & TPR10_DX_BIT_DELAY1) { |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1); |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 8, 8); |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 0x10); |
| |
| if (para->tpr10 & BIT(30)) |
| val = para->tpr11 & 0x3f; |
| else |
| val = (para->tpr11 & 0xf) << 1; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x484); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 15) & 0x1e; |
| else |
| val = (para->tpr11 >> 15) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x4d0); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x590); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x4cc); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x58c); |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->tpr11 >> 8) & 0x3f; |
| else |
| val = (para->tpr11 >> 3) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x4d8); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 19) & 0x1e; |
| else |
| val = (para->tpr11 >> 19) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x524); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5e4); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x520); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5e0); |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->tpr11 >> 16) & 0x3f; |
| else |
| val = (para->tpr11 >> 7) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x604); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 23) & 0x1e; |
| else |
| val = (para->tpr11 >> 23) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x650); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x710); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x64c); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x70c); |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->tpr11 >> 24) & 0x3f; |
| else |
| val = (para->tpr11 >> 11) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x658); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 27) & 0x1e; |
| else |
| val = (para->tpr11 >> 27) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6a4); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x764); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6a0); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x760); |
| |
| dmb(); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 1); |
| } |
| |
| if (para->tpr10 & TPR10_DX_BIT_DELAY0) { |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80); |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x190, 4); |
| |
| if (para->tpr10 & BIT(30)) |
| val = para->tpr12 & 0x3f; |
| else |
| val = (para->tpr12 & 0xf) << 1; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x480); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en << 1) & 0x1e; |
| else |
| val = (para->tpr12 >> 15) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x528); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5e8); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x4c8); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x588); |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->tpr12 >> 8) & 0x3f; |
| else |
| val = (para->tpr12 >> 3) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x4d4); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 3) & 0x1e; |
| else |
| val = (para->tpr12 >> 19) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x52c); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5ec); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x51c); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x5dc); |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->tpr12 >> 16) & 0x3f; |
| else |
| val = (para->tpr12 >> 7) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x600); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 7) & 0x1e; |
| else |
| val = (para->tpr12 >> 23) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6a8); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x768); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x648); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x708); |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->tpr12 >> 24) & 0x3f; |
| else |
| val = (para->tpr12 >> 11) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x654); |
| for (i = 0; i < 9; i++) { |
| writel_relaxed(val, ptr); |
| writel_relaxed(val, ptr + 0x30); |
| ptr += 2; |
| } |
| |
| if (para->tpr10 & BIT(30)) |
| val = (para->odt_en >> 11) & 0x1e; |
| else |
| val = (para->tpr12 >> 27) & 0x1e; |
| |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x6ac); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x76c); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x69c); |
| writel_relaxed(val, SUNXI_DRAM_PHY0_BASE + 0x75c); |
| |
| dmb(); |
| |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x54, 0x80); |
| } |
| } |
| |
| static void mctl_phy_ca_bit_delay_compensation(struct dram_para *para) |
| { |
| u32 val, *ptr; |
| int i; |
| |
| if (para->tpr0 & BIT(30)) |
| val = (para->tpr0 >> 7) & 0x3e; |
| else |
| val = (para->tpr10 >> 3) & 0x1e; |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0x780); |
| for (i = 0; i < 32; i++) |
| writel(val, &ptr[i]); |
| |
| val = (para->tpr10 << 1) & 0x1e; |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x7dc); |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x7e0); |
| |
| /* following configuration is DDR3 specific */ |
| val = (para->tpr10 >> 7) & 0x1e; |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x7d4); |
| if (para->ranks == 2) { |
| val = (para->tpr10 >> 11) & 0x1e; |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x79c); |
| } |
| if (para->tpr0 & BIT(31)) { |
| val = (para->tpr0 << 1) & 0x3e; |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x78c); |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x7a4); |
| writel(val, SUNXI_DRAM_PHY0_BASE + 0x7b8); |
| } |
| } |
| |
| static bool mctl_phy_init(struct dram_para *para) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| u32 val, *ptr; |
| int i; |
| |
| if (para->bus_full_width) |
| val = 0xf; |
| else |
| val = 3; |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x3c, 0xf, val); |
| |
| writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x14); |
| writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x35c); |
| writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x368); |
| writel(0xd, SUNXI_DRAM_PHY0_BASE + 0x374); |
| |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x18); |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x360); |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x36c); |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x378); |
| |
| writel(9, SUNXI_DRAM_PHY0_BASE + 0x1c); |
| writel(9, SUNXI_DRAM_PHY0_BASE + 0x364); |
| writel(9, SUNXI_DRAM_PHY0_BASE + 0x370); |
| writel(9, SUNXI_DRAM_PHY0_BASE + 0x37c); |
| |
| ptr = (u32 *)(SUNXI_DRAM_PHY0_BASE + 0xc0); |
| for (i = 0; i < ARRAY_SIZE(phy_init); i++) |
| writel(phy_init[i], &ptr[i]); |
| |
| if (para->tpr10 & TPR10_CA_BIT_DELAY) |
| mctl_phy_ca_bit_delay_compensation(para); |
| |
| writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x3dc); |
| writel(0x80, SUNXI_DRAM_PHY0_BASE + 0x45c); |
| |
| mctl_phy_configure_odt(para); |
| |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 4, 7, 0xa); |
| |
| if (para->clk <= 672) |
| writel(0xf, SUNXI_DRAM_PHY0_BASE + 0x20); |
| if (para->clk > 500) { |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7)); |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0); |
| } else { |
| setbits_le32(SUNXI_DRAM_PHY0_BASE + 0x144, BIT(7)); |
| clrsetbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 0xe0, 0x20); |
| } |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x14c, 8); |
| |
| mctl_await_completion((u32 *)(SUNXI_DRAM_PHY0_BASE + 0x180), 4, 4); |
| |
| writel(0x37, SUNXI_DRAM_PHY0_BASE + 0x58); |
| clrbits_le32(&mctl_com->unk_0x500, 0x200); |
| |
| writel(0, &mctl_ctl->swctl); |
| setbits_le32(&mctl_ctl->dfimisc, 1); |
| |
| /* start DFI init */ |
| setbits_le32(&mctl_ctl->dfimisc, 0x20); |
| writel(1, &mctl_ctl->swctl); |
| mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| /* poll DFI init complete */ |
| mctl_await_completion(&mctl_ctl->dfistat, 1, 1); |
| writel(0, &mctl_ctl->swctl); |
| clrbits_le32(&mctl_ctl->dfimisc, 0x20); |
| |
| clrbits_le32(&mctl_ctl->pwrctl, 0x20); |
| writel(1, &mctl_ctl->swctl); |
| mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| mctl_await_completion(&mctl_ctl->statr, 3, 1); |
| |
| writel(0, &mctl_ctl->swctl); |
| clrbits_le32(&mctl_ctl->dfimisc, 1); |
| |
| writel(1, &mctl_ctl->swctl); |
| mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| |
| writel(0x1f14, &mctl_ctl->mrctrl1); |
| writel(0x80000030, &mctl_ctl->mrctrl0); |
| mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| |
| writel(4, &mctl_ctl->mrctrl1); |
| writel(0x80001030, &mctl_ctl->mrctrl0); |
| mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| |
| writel(0x20, &mctl_ctl->mrctrl1); |
| writel(0x80002030, &mctl_ctl->mrctrl0); |
| mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| |
| writel(0, &mctl_ctl->mrctrl1); |
| writel(0x80003030, &mctl_ctl->mrctrl0); |
| mctl_await_completion(&mctl_ctl->mrctrl0, BIT(31), 0); |
| |
| writel(0, SUNXI_DRAM_PHY0_BASE + 0x54); |
| |
| writel(0, &mctl_ctl->swctl); |
| clrbits_le32(&mctl_ctl->rfshctl3, 1); |
| writel(1, &mctl_ctl->swctl); |
| |
| if (para->tpr10 & TPR10_WRITE_LEVELING) { |
| for (i = 0; i < 5; i++) |
| if (mctl_phy_write_leveling(para)) |
| break; |
| if (i == 5) { |
| debug("write leveling failed!\n"); |
| return false; |
| } |
| } |
| |
| if (para->tpr10 & TPR10_READ_CALIBRATION) { |
| for (i = 0; i < 5; i++) |
| if (mctl_phy_read_calibration(para)) |
| break; |
| if (i == 5) { |
| debug("read calibration failed!\n"); |
| return false; |
| } |
| } |
| |
| if (para->tpr10 & TPR10_READ_TRAINING) { |
| for (i = 0; i < 5; i++) |
| if (mctl_phy_read_training(para)) |
| break; |
| if (i == 5) { |
| debug("read training failed!\n"); |
| return false; |
| } |
| } |
| |
| if (para->tpr10 & TPR10_WRITE_TRAINING) { |
| for (i = 0; i < 5; i++) |
| if (mctl_phy_write_training(para)) |
| break; |
| if (i == 5) { |
| debug("write training failed!\n"); |
| return false; |
| } |
| } |
| |
| mctl_phy_bit_delay_compensation(para); |
| |
| clrbits_le32(SUNXI_DRAM_PHY0_BASE + 0x60, 4); |
| |
| return true; |
| } |
| |
| static bool mctl_ctrl_init(struct dram_para *para) |
| { |
| struct sunxi_mctl_com_reg * const mctl_com = |
| (struct sunxi_mctl_com_reg *)SUNXI_DRAM_COM_BASE; |
| struct sunxi_mctl_ctl_reg * const mctl_ctl = |
| (struct sunxi_mctl_ctl_reg *)SUNXI_DRAM_CTL0_BASE; |
| u32 reg_val; |
| |
| clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x200); |
| writel(0x8000, &mctl_ctl->clken); |
| |
| setbits_le32(&mctl_com->unk_0x008, 0xff00); |
| |
| clrsetbits_le32(&mctl_ctl->sched[0], 0xff00, 0x3000); |
| |
| writel(0, &mctl_ctl->hwlpctl); |
| |
| setbits_le32(&mctl_com->unk_0x008, 0xff00); |
| |
| reg_val = MSTR_BURST_LENGTH(8) | MSTR_ACTIVE_RANKS(para->ranks); |
| reg_val |= MSTR_DEVICETYPE_DDR3 | MSTR_2TMODE; |
| if (para->bus_full_width) |
| reg_val |= MSTR_BUSWIDTH_FULL; |
| else |
| reg_val |= MSTR_BUSWIDTH_HALF; |
| writel(BIT(31) | BIT(30) | reg_val, &mctl_ctl->mstr); |
| |
| if (para->ranks == 2) |
| writel(0x0303, &mctl_ctl->odtmap); |
| else |
| writel(0x0201, &mctl_ctl->odtmap); |
| |
| writel(0x06000400, &mctl_ctl->odtcfg); |
| writel(0x06000400, &mctl_ctl->unk_0x2240); |
| writel(0x06000400, &mctl_ctl->unk_0x3240); |
| writel(0x06000400, &mctl_ctl->unk_0x4240); |
| |
| writel(BIT(31), &mctl_com->cr); |
| |
| mctl_set_addrmap(para); |
| |
| mctl_set_timing_params(para); |
| |
| writel(0, &mctl_ctl->pwrctl); |
| |
| setbits_le32(&mctl_ctl->dfiupd[0], BIT(31) | BIT(30)); |
| setbits_le32(&mctl_ctl->zqctl[0], BIT(31) | BIT(30)); |
| setbits_le32(&mctl_ctl->unk_0x2180, BIT(31) | BIT(30)); |
| setbits_le32(&mctl_ctl->unk_0x3180, BIT(31) | BIT(30)); |
| setbits_le32(&mctl_ctl->unk_0x4180, BIT(31) | BIT(30)); |
| |
| setbits_le32(&mctl_ctl->rfshctl3, BIT(0)); |
| clrbits_le32(&mctl_ctl->dfimisc, BIT(0)); |
| |
| writel(0, &mctl_com->maer0); |
| writel(0, &mctl_com->maer1); |
| writel(0, &mctl_com->maer2); |
| |
| writel(0x20, &mctl_ctl->pwrctl); |
| setbits_le32(&mctl_ctl->clken, BIT(8)); |
| |
| clrsetbits_le32(&mctl_com->unk_0x500, BIT(24), 0x300); |
| /* this write seems to enable PHY MMIO region */ |
| setbits_le32(&mctl_com->unk_0x500, BIT(24)); |
| |
| if (!mctl_phy_init(para)) |
| return false; |
| |
| writel(0, &mctl_ctl->swctl); |
| clrbits_le32(&mctl_ctl->rfshctl3, BIT(0)); |
| |
| setbits_le32(&mctl_com->unk_0x014, BIT(31)); |
| writel(0xffffffff, &mctl_com->maer0); |
| writel(0x7ff, &mctl_com->maer1); |
| writel(0xffff, &mctl_com->maer2); |
| |
| writel(1, &mctl_ctl->swctl); |
| mctl_await_completion(&mctl_ctl->swstat, 1, 1); |
| |
| return true; |
| } |
| |
| static bool mctl_core_init(struct dram_para *para) |
| { |
| mctl_sys_init(para); |
| |
| return mctl_ctrl_init(para); |
| } |
| |
| static void mctl_auto_detect_rank_width(struct dram_para *para) |
| { |
| /* this is minimum size that it's supported */ |
| para->cols = 8; |
| para->rows = 13; |
| |
| /* |
| * Strategy here is to test most demanding combination first and least |
| * demanding last, otherwise HW might not be fully utilized. For |
| * example, half bus width and rank = 1 combination would also work |
| * on HW with full bus width and rank = 2, but only 1/4 RAM would be |
| * visible. |
| */ |
| |
| debug("testing 32-bit width, rank = 2\n"); |
| para->bus_full_width = 1; |
| para->ranks = 2; |
| if (mctl_core_init(para)) |
| return; |
| |
| debug("testing 32-bit width, rank = 1\n"); |
| para->bus_full_width = 1; |
| para->ranks = 1; |
| if (mctl_core_init(para)) |
| return; |
| |
| debug("testing 16-bit width, rank = 2\n"); |
| para->bus_full_width = 0; |
| para->ranks = 2; |
| if (mctl_core_init(para)) |
| return; |
| |
| debug("testing 16-bit width, rank = 1\n"); |
| para->bus_full_width = 0; |
| para->ranks = 1; |
| if (mctl_core_init(para)) |
| return; |
| |
| panic("This DRAM setup is currently not supported.\n"); |
| } |
| |
| static void mctl_auto_detect_dram_size(struct dram_para *para) |
| { |
| /* detect row address bits */ |
| para->cols = 8; |
| para->rows = 18; |
| mctl_core_init(para); |
| |
| for (para->rows = 13; para->rows < 18; para->rows++) { |
| /* 8 banks, 8 bit per byte and 16/32 bit width */ |
| if (mctl_mem_matches((1 << (para->rows + para->cols + |
| 4 + para->bus_full_width)))) |
| break; |
| } |
| |
| /* detect column address bits */ |
| para->cols = 11; |
| mctl_core_init(para); |
| |
| for (para->cols = 8; para->cols < 11; para->cols++) { |
| /* 8 bits per byte and 16/32 bit width */ |
| if (mctl_mem_matches(1 << (para->cols + 1 + |
| para->bus_full_width))) |
| break; |
| } |
| } |
| |
| static unsigned long mctl_calc_size(struct dram_para *para) |
| { |
| u8 width = para->bus_full_width ? 4 : 2; |
| |
| /* 8 banks */ |
| return (1ULL << (para->cols + para->rows + 3)) * width * para->ranks; |
| } |
| |
| unsigned long sunxi_dram_init(void) |
| { |
| struct sunxi_prcm_reg *const prcm = |
| (struct sunxi_prcm_reg *)SUNXI_PRCM_BASE; |
| struct dram_para para = { |
| .clk = CONFIG_DRAM_CLK, |
| .type = SUNXI_DRAM_TYPE_DDR3, |
| .dx_odt = CONFIG_DRAM_SUN50I_H616_DX_ODT, |
| .dx_dri = CONFIG_DRAM_SUN50I_H616_DX_DRI, |
| .ca_dri = CONFIG_DRAM_SUN50I_H616_CA_DRI, |
| .odt_en = CONFIG_DRAM_SUN50I_H616_ODT_EN, |
| .tpr0 = CONFIG_DRAM_SUN50I_H616_TPR0, |
| .tpr10 = CONFIG_DRAM_SUN50I_H616_TPR10, |
| .tpr11 = CONFIG_DRAM_SUN50I_H616_TPR11, |
| .tpr12 = CONFIG_DRAM_SUN50I_H616_TPR12, |
| }; |
| unsigned long size; |
| |
| setbits_le32(&prcm->res_cal_ctrl, BIT(8)); |
| clrbits_le32(&prcm->ohms240, 0x3f); |
| |
| mctl_auto_detect_rank_width(¶); |
| mctl_auto_detect_dram_size(¶); |
| |
| mctl_core_init(¶); |
| |
| size = mctl_calc_size(¶); |
| |
| mctl_set_master_priority(); |
| |
| return size; |
| }; |