| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * USB HOST XHCI Controller stack |
| * |
| * Based on xHCI host controller driver in linux-kernel |
| * by Sarah Sharp. |
| * |
| * Copyright (C) 2008 Intel Corp. |
| * Author: Sarah Sharp |
| * |
| * Copyright (C) 2013 Samsung Electronics Co.Ltd |
| * Authors: Vivek Gautam <gautam.vivek@samsung.com> |
| * Vikas Sajjan <vikas.sajjan@samsung.com> |
| */ |
| |
| #include <cpu_func.h> |
| #include <dm.h> |
| #include <log.h> |
| #include <asm/byteorder.h> |
| #include <usb.h> |
| #include <malloc.h> |
| #include <asm/cache.h> |
| #include <linux/bug.h> |
| #include <linux/errno.h> |
| |
| #include <usb/xhci.h> |
| |
| #define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE |
| /** |
| * flushes the address passed till the length |
| * |
| * @param addr pointer to memory region to be flushed |
| * @param len the length of the cache line to be flushed |
| * Return: none |
| */ |
| void xhci_flush_cache(uintptr_t addr, u32 len) |
| { |
| BUG_ON((void *)addr == NULL || len == 0); |
| |
| flush_dcache_range(addr & ~(CACHELINE_SIZE - 1), |
| ALIGN(addr + len, CACHELINE_SIZE)); |
| } |
| |
| /** |
| * invalidates the address passed till the length |
| * |
| * @param addr pointer to memory region to be invalidates |
| * @param len the length of the cache line to be invalidated |
| * Return: none |
| */ |
| void xhci_inval_cache(uintptr_t addr, u32 len) |
| { |
| BUG_ON((void *)addr == NULL || len == 0); |
| |
| invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1), |
| ALIGN(addr + len, CACHELINE_SIZE)); |
| } |
| |
| |
| /** |
| * frees the "segment" pointer passed |
| * |
| * @param ptr pointer to "segement" to be freed |
| * Return: none |
| */ |
| static void xhci_segment_free(struct xhci_ctrl *ctrl, struct xhci_segment *seg) |
| { |
| xhci_dma_unmap(ctrl, seg->dma, SEGMENT_SIZE); |
| free(seg->trbs); |
| seg->trbs = NULL; |
| |
| free(seg); |
| } |
| |
| /** |
| * frees the "ring" pointer passed |
| * |
| * @param ptr pointer to "ring" to be freed |
| * Return: none |
| */ |
| static void xhci_ring_free(struct xhci_ctrl *ctrl, struct xhci_ring *ring) |
| { |
| struct xhci_segment *seg; |
| struct xhci_segment *first_seg; |
| |
| BUG_ON(!ring); |
| |
| first_seg = ring->first_seg; |
| seg = first_seg->next; |
| while (seg != first_seg) { |
| struct xhci_segment *next = seg->next; |
| xhci_segment_free(ctrl, seg); |
| seg = next; |
| } |
| xhci_segment_free(ctrl, first_seg); |
| |
| free(ring); |
| } |
| |
| /** |
| * Free the scratchpad buffer array and scratchpad buffers |
| * |
| * @ctrl host controller data structure |
| * Return: none |
| */ |
| static void xhci_scratchpad_free(struct xhci_ctrl *ctrl) |
| { |
| struct xhci_hccr *hccr = ctrl->hccr; |
| int num_sp; |
| |
| if (!ctrl->scratchpad) |
| return; |
| |
| num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2)); |
| xhci_dma_unmap(ctrl, ctrl->scratchpad->sp_array[0], |
| num_sp * ctrl->page_size); |
| xhci_dma_unmap(ctrl, ctrl->dcbaa->dev_context_ptrs[0], |
| num_sp * sizeof(u64)); |
| ctrl->dcbaa->dev_context_ptrs[0] = 0; |
| |
| free(ctrl->scratchpad->scratchpad); |
| free(ctrl->scratchpad->sp_array); |
| free(ctrl->scratchpad); |
| ctrl->scratchpad = NULL; |
| } |
| |
| /** |
| * frees the "xhci_container_ctx" pointer passed |
| * |
| * @param ptr pointer to "xhci_container_ctx" to be freed |
| * Return: none |
| */ |
| static void xhci_free_container_ctx(struct xhci_ctrl *ctrl, |
| struct xhci_container_ctx *ctx) |
| { |
| xhci_dma_unmap(ctrl, ctx->dma, ctx->size); |
| free(ctx->bytes); |
| free(ctx); |
| } |
| |
| /** |
| * frees the virtual devices for "xhci_ctrl" pointer passed |
| * |
| * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed |
| * Return: none |
| */ |
| static void xhci_free_virt_devices(struct xhci_ctrl *ctrl) |
| { |
| int i; |
| int slot_id; |
| struct xhci_virt_device *virt_dev; |
| |
| /* |
| * refactored here to loop through all virt_dev |
| * Slot ID 0 is reserved |
| */ |
| for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) { |
| virt_dev = ctrl->devs[slot_id]; |
| if (!virt_dev) |
| continue; |
| |
| ctrl->dcbaa->dev_context_ptrs[slot_id] = 0; |
| |
| for (i = 0; i < 31; ++i) |
| if (virt_dev->eps[i].ring) |
| xhci_ring_free(ctrl, virt_dev->eps[i].ring); |
| |
| if (virt_dev->in_ctx) |
| xhci_free_container_ctx(ctrl, virt_dev->in_ctx); |
| if (virt_dev->out_ctx) |
| xhci_free_container_ctx(ctrl, virt_dev->out_ctx); |
| |
| free(virt_dev); |
| /* make sure we are pointing to NULL */ |
| ctrl->devs[slot_id] = NULL; |
| } |
| } |
| |
| /** |
| * frees all the memory allocated |
| * |
| * @param ptr pointer to "xhci_ctrl" to be cleaned up |
| * Return: none |
| */ |
| void xhci_cleanup(struct xhci_ctrl *ctrl) |
| { |
| xhci_ring_free(ctrl, ctrl->event_ring); |
| xhci_ring_free(ctrl, ctrl->cmd_ring); |
| xhci_scratchpad_free(ctrl); |
| xhci_free_virt_devices(ctrl); |
| xhci_dma_unmap(ctrl, ctrl->erst.erst_dma_addr, |
| sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS); |
| free(ctrl->erst.entries); |
| xhci_dma_unmap(ctrl, ctrl->dcbaa->dma, |
| sizeof(struct xhci_device_context_array)); |
| free(ctrl->dcbaa); |
| memset(ctrl, '\0', sizeof(struct xhci_ctrl)); |
| } |
| |
| /** |
| * Malloc the aligned memory |
| * |
| * @param size size of memory to be allocated |
| * Return: allocates the memory and returns the aligned pointer |
| */ |
| static void *xhci_malloc(unsigned int size) |
| { |
| void *ptr; |
| size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE); |
| |
| ptr = memalign(cacheline_size, ALIGN(size, cacheline_size)); |
| BUG_ON(!ptr); |
| memset(ptr, '\0', size); |
| |
| xhci_flush_cache((uintptr_t)ptr, size); |
| |
| return ptr; |
| } |
| |
| /** |
| * Make the prev segment point to the next segment. |
| * Change the last TRB in the prev segment to be a Link TRB which points to the |
| * address of the next segment. The caller needs to set any Link TRB |
| * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| * |
| * @param prev pointer to the previous segment |
| * @param next pointer to the next segment |
| * @param link_trbs flag to indicate whether to link the trbs or NOT |
| * Return: none |
| */ |
| static void xhci_link_segments(struct xhci_ctrl *ctrl, struct xhci_segment *prev, |
| struct xhci_segment *next, bool link_trbs) |
| { |
| u32 val; |
| |
| if (!prev || !next) |
| return; |
| prev->next = next; |
| if (link_trbs) { |
| prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = |
| cpu_to_le64(next->dma); |
| |
| /* |
| * Set the last TRB in the segment to |
| * have a TRB type ID of Link TRB |
| */ |
| val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); |
| val &= ~TRB_TYPE_BITMASK; |
| val |= TRB_TYPE(TRB_LINK); |
| prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); |
| } |
| } |
| |
| /** |
| * Initialises the Ring's enqueue,dequeue,enq_seg pointers |
| * |
| * @param ring pointer to the RING to be intialised |
| * Return: none |
| */ |
| static void xhci_initialize_ring_info(struct xhci_ring *ring) |
| { |
| /* |
| * The ring is empty, so the enqueue pointer == dequeue pointer |
| */ |
| ring->enqueue = ring->first_seg->trbs; |
| ring->enq_seg = ring->first_seg; |
| ring->dequeue = ring->enqueue; |
| ring->deq_seg = ring->first_seg; |
| |
| /* |
| * The ring is initialized to 0. The producer must write 1 to the |
| * cycle bit to handover ownership of the TRB, so PCS = 1. |
| * The consumer must compare CCS to the cycle bit to |
| * check ownership, so CCS = 1. |
| */ |
| ring->cycle_state = 1; |
| } |
| |
| /** |
| * Allocates a generic ring segment from the ring pool, sets the dma address, |
| * initializes the segment to zero, and sets the private next pointer to NULL. |
| * Section 4.11.1.1: |
| * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| * |
| * @param none |
| * Return: pointer to the newly allocated SEGMENT |
| */ |
| static struct xhci_segment *xhci_segment_alloc(struct xhci_ctrl *ctrl) |
| { |
| struct xhci_segment *seg; |
| |
| seg = malloc(sizeof(struct xhci_segment)); |
| BUG_ON(!seg); |
| |
| seg->trbs = xhci_malloc(SEGMENT_SIZE); |
| seg->dma = xhci_dma_map(ctrl, seg->trbs, SEGMENT_SIZE); |
| |
| seg->next = NULL; |
| |
| return seg; |
| } |
| |
| /** |
| * Create a new ring with zero or more segments. |
| * TODO: current code only uses one-time-allocated single-segment rings |
| * of 1KB anyway, so we might as well get rid of all the segment and |
| * linking code (and maybe increase the size a bit, e.g. 4KB). |
| * |
| * |
| * Link each segment together into a ring. |
| * Set the end flag and the cycle toggle bit on the last segment. |
| * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0. |
| * |
| * @param num_segs number of segments in the ring |
| * @param link_trbs flag to indicate whether to link the trbs or NOT |
| * Return: pointer to the newly created RING |
| */ |
| struct xhci_ring *xhci_ring_alloc(struct xhci_ctrl *ctrl, unsigned int num_segs, |
| bool link_trbs) |
| { |
| struct xhci_ring *ring; |
| struct xhci_segment *prev; |
| |
| ring = malloc(sizeof(struct xhci_ring)); |
| BUG_ON(!ring); |
| |
| if (num_segs == 0) |
| return ring; |
| |
| ring->first_seg = xhci_segment_alloc(ctrl); |
| BUG_ON(!ring->first_seg); |
| |
| num_segs--; |
| |
| prev = ring->first_seg; |
| while (num_segs > 0) { |
| struct xhci_segment *next; |
| |
| next = xhci_segment_alloc(ctrl); |
| BUG_ON(!next); |
| |
| xhci_link_segments(ctrl, prev, next, link_trbs); |
| |
| prev = next; |
| num_segs--; |
| } |
| xhci_link_segments(ctrl, prev, ring->first_seg, link_trbs); |
| if (link_trbs) { |
| /* See section 4.9.2.1 and 6.4.4.1 */ |
| prev->trbs[TRBS_PER_SEGMENT-1].link.control |= |
| cpu_to_le32(LINK_TOGGLE); |
| } |
| xhci_initialize_ring_info(ring); |
| |
| return ring; |
| } |
| |
| /** |
| * Set up the scratchpad buffer array and scratchpad buffers |
| * |
| * @ctrl host controller data structure |
| * Return: -ENOMEM if buffer allocation fails, 0 on success |
| */ |
| static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl) |
| { |
| struct xhci_hccr *hccr = ctrl->hccr; |
| struct xhci_hcor *hcor = ctrl->hcor; |
| struct xhci_scratchpad *scratchpad; |
| uint64_t val_64; |
| int num_sp; |
| uint32_t page_size; |
| void *buf; |
| int i; |
| |
| num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2)); |
| if (!num_sp) |
| return 0; |
| |
| scratchpad = malloc(sizeof(*scratchpad)); |
| if (!scratchpad) |
| goto fail_sp; |
| ctrl->scratchpad = scratchpad; |
| |
| scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64)); |
| if (!scratchpad->sp_array) |
| goto fail_sp2; |
| |
| val_64 = xhci_dma_map(ctrl, scratchpad->sp_array, |
| num_sp * sizeof(u64)); |
| ctrl->dcbaa->dev_context_ptrs[0] = cpu_to_le64(val_64); |
| |
| xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[0], |
| sizeof(ctrl->dcbaa->dev_context_ptrs[0])); |
| |
| page_size = xhci_readl(&hcor->or_pagesize) & 0xffff; |
| for (i = 0; i < 16; i++) { |
| if ((0x1 & page_size) != 0) |
| break; |
| page_size = page_size >> 1; |
| } |
| BUG_ON(i == 16); |
| |
| ctrl->page_size = 1 << (i + 12); |
| buf = memalign(ctrl->page_size, num_sp * ctrl->page_size); |
| if (!buf) |
| goto fail_sp3; |
| memset(buf, '\0', num_sp * ctrl->page_size); |
| xhci_flush_cache((uintptr_t)buf, num_sp * ctrl->page_size); |
| |
| scratchpad->scratchpad = buf; |
| val_64 = xhci_dma_map(ctrl, buf, num_sp * ctrl->page_size); |
| for (i = 0; i < num_sp; i++) { |
| scratchpad->sp_array[i] = cpu_to_le64(val_64); |
| val_64 += ctrl->page_size; |
| } |
| |
| xhci_flush_cache((uintptr_t)scratchpad->sp_array, |
| sizeof(u64) * num_sp); |
| |
| return 0; |
| |
| fail_sp3: |
| free(scratchpad->sp_array); |
| |
| fail_sp2: |
| free(scratchpad); |
| ctrl->scratchpad = NULL; |
| |
| fail_sp: |
| return -ENOMEM; |
| } |
| |
| /** |
| * Allocates the Container context |
| * |
| * @param ctrl Host controller data structure |
| * @param type type of XHCI Container Context |
| * Return: NULL if failed else pointer to the context on success |
| */ |
| static struct xhci_container_ctx |
| *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type) |
| { |
| struct xhci_container_ctx *ctx; |
| |
| ctx = malloc(sizeof(struct xhci_container_ctx)); |
| BUG_ON(!ctx); |
| |
| BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)); |
| ctx->type = type; |
| ctx->size = (MAX_EP_CTX_NUM + 1) * |
| CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams)); |
| if (type == XHCI_CTX_TYPE_INPUT) |
| ctx->size += CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams)); |
| |
| ctx->bytes = xhci_malloc(ctx->size); |
| ctx->dma = xhci_dma_map(ctrl, ctx->bytes, ctx->size); |
| |
| return ctx; |
| } |
| |
| /** |
| * Allocating virtual device |
| * |
| * @param udev pointer to USB deivce structure |
| * Return: 0 on success else -1 on failure |
| */ |
| int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id) |
| { |
| u64 byte_64 = 0; |
| struct xhci_virt_device *virt_dev; |
| |
| /* Slot ID 0 is reserved */ |
| if (ctrl->devs[slot_id]) { |
| printf("Virt dev for slot[%d] already allocated\n", slot_id); |
| return -EEXIST; |
| } |
| |
| ctrl->devs[slot_id] = malloc(sizeof(struct xhci_virt_device)); |
| |
| if (!ctrl->devs[slot_id]) { |
| puts("Failed to allocate virtual device\n"); |
| return -ENOMEM; |
| } |
| |
| memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device)); |
| virt_dev = ctrl->devs[slot_id]; |
| |
| /* Allocate the (output) device context that will be used in the HC. */ |
| virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl, |
| XHCI_CTX_TYPE_DEVICE); |
| if (!virt_dev->out_ctx) { |
| puts("Failed to allocate out context for virt dev\n"); |
| return -ENOMEM; |
| } |
| |
| /* Allocate the (input) device context for address device command */ |
| virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl, |
| XHCI_CTX_TYPE_INPUT); |
| if (!virt_dev->in_ctx) { |
| puts("Failed to allocate in context for virt dev\n"); |
| return -ENOMEM; |
| } |
| |
| /* Allocate endpoint 0 ring */ |
| virt_dev->eps[0].ring = xhci_ring_alloc(ctrl, 1, true); |
| |
| byte_64 = virt_dev->out_ctx->dma; |
| |
| /* Point to output device context in dcbaa. */ |
| ctrl->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(byte_64); |
| |
| xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id], |
| sizeof(__le64)); |
| return 0; |
| } |
| |
| /** |
| * Allocates the necessary data structures |
| * for XHCI host controller |
| * |
| * @param ctrl Host controller data structure |
| * @param hccr pointer to HOST Controller Control Registers |
| * @param hcor pointer to HOST Controller Operational Registers |
| * Return: 0 if successful else -1 on failure |
| */ |
| int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr, |
| struct xhci_hcor *hcor) |
| { |
| uint64_t val_64; |
| uint64_t trb_64; |
| uint32_t val; |
| uint64_t deq; |
| int i; |
| struct xhci_segment *seg; |
| |
| /* DCBAA initialization */ |
| ctrl->dcbaa = xhci_malloc(sizeof(struct xhci_device_context_array)); |
| if (ctrl->dcbaa == NULL) { |
| puts("unable to allocate DCBA\n"); |
| return -ENOMEM; |
| } |
| |
| ctrl->dcbaa->dma = xhci_dma_map(ctrl, ctrl->dcbaa, |
| sizeof(struct xhci_device_context_array)); |
| /* Set the pointer in DCBAA register */ |
| xhci_writeq(&hcor->or_dcbaap, ctrl->dcbaa->dma); |
| |
| /* Command ring control pointer register initialization */ |
| ctrl->cmd_ring = xhci_ring_alloc(ctrl, 1, true); |
| |
| /* Set the address in the Command Ring Control register */ |
| trb_64 = ctrl->cmd_ring->first_seg->dma; |
| val_64 = xhci_readq(&hcor->or_crcr); |
| val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | |
| (trb_64 & (u64) ~CMD_RING_RSVD_BITS) | |
| ctrl->cmd_ring->cycle_state; |
| xhci_writeq(&hcor->or_crcr, val_64); |
| |
| /* write the address of db register */ |
| val = xhci_readl(&hccr->cr_dboff); |
| val &= DBOFF_MASK; |
| ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val); |
| |
| /* write the address of runtime register */ |
| val = xhci_readl(&hccr->cr_rtsoff); |
| val &= RTSOFF_MASK; |
| ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val); |
| |
| /* writting the address of ir_set structure */ |
| ctrl->ir_set = &ctrl->run_regs->ir_set[0]; |
| |
| /* Event ring does not maintain link TRB */ |
| ctrl->event_ring = xhci_ring_alloc(ctrl, ERST_NUM_SEGS, false); |
| ctrl->erst.entries = xhci_malloc(sizeof(struct xhci_erst_entry) * |
| ERST_NUM_SEGS); |
| ctrl->erst.erst_dma_addr = xhci_dma_map(ctrl, ctrl->erst.entries, |
| sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS); |
| |
| ctrl->erst.num_entries = ERST_NUM_SEGS; |
| |
| for (val = 0, seg = ctrl->event_ring->first_seg; |
| val < ERST_NUM_SEGS; |
| val++) { |
| struct xhci_erst_entry *entry = &ctrl->erst.entries[val]; |
| trb_64 = seg->dma; |
| entry->seg_addr = cpu_to_le64(trb_64); |
| entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); |
| entry->rsvd = 0; |
| seg = seg->next; |
| } |
| xhci_flush_cache((uintptr_t)ctrl->erst.entries, |
| ERST_NUM_SEGS * sizeof(struct xhci_erst_entry)); |
| |
| deq = xhci_trb_virt_to_dma(ctrl->event_ring->deq_seg, |
| ctrl->event_ring->dequeue); |
| |
| /* Update HC event ring dequeue pointer */ |
| xhci_writeq(&ctrl->ir_set->erst_dequeue, |
| (u64)deq & (u64)~ERST_PTR_MASK); |
| |
| /* set ERST count with the number of entries in the segment table */ |
| val = xhci_readl(&ctrl->ir_set->erst_size); |
| val &= ERST_SIZE_MASK; |
| val |= ERST_NUM_SEGS; |
| xhci_writel(&ctrl->ir_set->erst_size, val); |
| |
| /* this is the event ring segment table pointer */ |
| val_64 = xhci_readq(&ctrl->ir_set->erst_base); |
| val_64 &= ERST_PTR_MASK; |
| val_64 |= ctrl->erst.erst_dma_addr & ~ERST_PTR_MASK; |
| |
| xhci_writeq(&ctrl->ir_set->erst_base, val_64); |
| |
| /* set up the scratchpad buffer array and scratchpad buffers */ |
| xhci_scratchpad_alloc(ctrl); |
| |
| /* initializing the virtual devices to NULL */ |
| for (i = 0; i < MAX_HC_SLOTS; ++i) |
| ctrl->devs[i] = NULL; |
| |
| /* |
| * Just Zero'ing this register completely, |
| * or some spurious Device Notification Events |
| * might screw things here. |
| */ |
| xhci_writel(&hcor->or_dnctrl, 0x0); |
| |
| return 0; |
| } |
| |
| /** |
| * Give the input control context for the passed container context |
| * |
| * @param ctx pointer to the context |
| * Return: pointer to the Input control context data |
| */ |
| struct xhci_input_control_ctx |
| *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx) |
| { |
| BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT); |
| return (struct xhci_input_control_ctx *)ctx->bytes; |
| } |
| |
| /** |
| * Give the slot context for the passed container context |
| * |
| * @param ctrl Host controller data structure |
| * @param ctx pointer to the context |
| * Return: pointer to the slot control context data |
| */ |
| struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl, |
| struct xhci_container_ctx *ctx) |
| { |
| if (ctx->type == XHCI_CTX_TYPE_DEVICE) |
| return (struct xhci_slot_ctx *)ctx->bytes; |
| |
| return (struct xhci_slot_ctx *) |
| (ctx->bytes + CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams))); |
| } |
| |
| /** |
| * Gets the EP context from based on the ep_index |
| * |
| * @param ctrl Host controller data structure |
| * @param ctx context container |
| * @param ep_index index of the endpoint |
| * Return: pointer to the End point context |
| */ |
| struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl, |
| struct xhci_container_ctx *ctx, |
| unsigned int ep_index) |
| { |
| /* increment ep index by offset of start of ep ctx array */ |
| ep_index++; |
| if (ctx->type == XHCI_CTX_TYPE_INPUT) |
| ep_index++; |
| |
| return (struct xhci_ep_ctx *) |
| (ctx->bytes + |
| (ep_index * CTX_SIZE(xhci_readl(&ctrl->hccr->cr_hccparams)))); |
| } |
| |
| /** |
| * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. |
| * Useful when you want to change one particular aspect of the endpoint |
| * and then issue a configure endpoint command. |
| * |
| * @param ctrl Host controller data structure |
| * @param in_ctx contains the input context |
| * @param out_ctx contains the input context |
| * @param ep_index index of the end point |
| * Return: none |
| */ |
| void xhci_endpoint_copy(struct xhci_ctrl *ctrl, |
| struct xhci_container_ctx *in_ctx, |
| struct xhci_container_ctx *out_ctx, |
| unsigned int ep_index) |
| { |
| struct xhci_ep_ctx *out_ep_ctx; |
| struct xhci_ep_ctx *in_ep_ctx; |
| |
| out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index); |
| in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index); |
| |
| in_ep_ctx->ep_info = out_ep_ctx->ep_info; |
| in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; |
| in_ep_ctx->deq = out_ep_ctx->deq; |
| in_ep_ctx->tx_info = out_ep_ctx->tx_info; |
| } |
| |
| /** |
| * Copy output xhci_slot_ctx to the input xhci_slot_ctx. |
| * Useful when you want to change one particular aspect of the endpoint |
| * and then issue a configure endpoint command. |
| * Only the context entries field matters, but |
| * we'll copy the whole thing anyway. |
| * |
| * @param ctrl Host controller data structure |
| * @param in_ctx contains the inpout context |
| * @param out_ctx contains the inpout context |
| * Return: none |
| */ |
| void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx, |
| struct xhci_container_ctx *out_ctx) |
| { |
| struct xhci_slot_ctx *in_slot_ctx; |
| struct xhci_slot_ctx *out_slot_ctx; |
| |
| in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx); |
| out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx); |
| |
| in_slot_ctx->dev_info = out_slot_ctx->dev_info; |
| in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; |
| in_slot_ctx->tt_info = out_slot_ctx->tt_info; |
| in_slot_ctx->dev_state = out_slot_ctx->dev_state; |
| } |
| |
| /** |
| * Setup an xHCI virtual device for a Set Address command |
| * |
| * @param udev pointer to the Device Data Structure |
| * Return: returns negative value on failure else 0 on success |
| */ |
| void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl, |
| struct usb_device *udev, int hop_portnr) |
| { |
| struct xhci_virt_device *virt_dev; |
| struct xhci_ep_ctx *ep0_ctx; |
| struct xhci_slot_ctx *slot_ctx; |
| u32 port_num = 0; |
| u64 trb_64 = 0; |
| int slot_id = udev->slot_id; |
| int speed = udev->speed; |
| int route = 0; |
| #if CONFIG_IS_ENABLED(DM_USB) |
| struct usb_device *dev = udev; |
| struct usb_hub_device *hub; |
| #endif |
| |
| virt_dev = ctrl->devs[slot_id]; |
| |
| BUG_ON(!virt_dev); |
| |
| /* Extract the EP0 and Slot Ctrl */ |
| ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0); |
| slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx); |
| |
| /* Only the control endpoint is valid - one endpoint context */ |
| slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); |
| |
| #if CONFIG_IS_ENABLED(DM_USB) |
| /* Calculate the route string for this device */ |
| port_num = dev->portnr; |
| while (!usb_hub_is_root_hub(dev->dev)) { |
| hub = dev_get_uclass_priv(dev->dev); |
| /* |
| * Each hub in the topology is expected to have no more than |
| * 15 ports in order for the route string of a device to be |
| * unique. SuperSpeed hubs are restricted to only having 15 |
| * ports, but FS/LS/HS hubs are not. The xHCI specification |
| * says that if the port number the device is greater than 15, |
| * that portion of the route string shall be set to 15. |
| */ |
| if (port_num > 15) |
| port_num = 15; |
| route |= port_num << (hub->hub_depth * 4); |
| dev = dev_get_parent_priv(dev->dev); |
| port_num = dev->portnr; |
| dev = dev_get_parent_priv(dev->dev->parent); |
| } |
| |
| debug("route string %x\n", route); |
| #endif |
| slot_ctx->dev_info |= cpu_to_le32(route); |
| |
| switch (speed) { |
| case USB_SPEED_SUPER: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); |
| break; |
| case USB_SPEED_HIGH: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); |
| break; |
| case USB_SPEED_FULL: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); |
| break; |
| case USB_SPEED_LOW: |
| slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); |
| break; |
| default: |
| /* Speed was set earlier, this shouldn't happen. */ |
| BUG(); |
| } |
| |
| #if CONFIG_IS_ENABLED(DM_USB) |
| /* Set up TT fields to support FS/LS devices */ |
| if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) { |
| struct udevice *parent = udev->dev; |
| |
| dev = udev; |
| do { |
| port_num = dev->portnr; |
| dev = dev_get_parent_priv(parent); |
| if (usb_hub_is_root_hub(dev->dev)) |
| break; |
| parent = dev->dev->parent; |
| } while (dev->speed != USB_SPEED_HIGH); |
| |
| if (!usb_hub_is_root_hub(dev->dev)) { |
| hub = dev_get_uclass_priv(dev->dev); |
| if (hub->tt.multi) |
| slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); |
| slot_ctx->tt_info |= cpu_to_le32(TT_PORT(port_num)); |
| slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id)); |
| } |
| } |
| #endif |
| |
| port_num = hop_portnr; |
| debug("port_num = %d\n", port_num); |
| |
| slot_ctx->dev_info2 |= |
| cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) << |
| ROOT_HUB_PORT_SHIFT)); |
| |
| /* Step 4 - ring already allocated */ |
| /* Step 5 */ |
| ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); |
| debug("SPEED = %d\n", speed); |
| |
| switch (speed) { |
| case USB_SPEED_SUPER: |
| ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512)); |
| debug("Setting Packet size = 512bytes\n"); |
| break; |
| case USB_SPEED_HIGH: |
| /* USB core guesses at a 64-byte max packet first for FS devices */ |
| case USB_SPEED_FULL: |
| ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64)); |
| debug("Setting Packet size = 64bytes\n"); |
| break; |
| case USB_SPEED_LOW: |
| ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8)); |
| debug("Setting Packet size = 8bytes\n"); |
| break; |
| default: |
| /* New speed? */ |
| BUG(); |
| } |
| |
| /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
| ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3)); |
| |
| trb_64 = virt_dev->eps[0].ring->first_seg->dma; |
| ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state); |
| |
| /* |
| * xHCI spec 6.2.3: |
| * software shall set 'Average TRB Length' to 8 for control endpoints. |
| */ |
| ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8)); |
| |
| /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
| |
| xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx)); |
| xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx)); |
| } |