blob: 0b00ec6e29035271dcaa41ad6b16e1e322a25a8f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2009-2012 Freescale Semiconductor, Inc.
* Copyright 2020 NXP
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <fdt_support.h>
#include <i2c.h>
#include <image.h>
#include <init.h>
#include <irq_func.h>
#include <netdev.h>
#include <linux/compiler.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <asm/cache.h>
#include <asm/immap_85xx.h>
#include <asm/fsl_law.h>
#include <asm/fsl_serdes.h>
#include <asm/fsl_liodn.h>
#include <fm_eth.h>
#include "../common/qixis.h"
#include "../common/vsc3316_3308.h"
#include "t4qds.h"
#include "t4240qds_qixis.h"
DECLARE_GLOBAL_DATA_PTR;
static int8_t vsc3316_fsm1_tx[8][2] = { {0, 0}, {1, 1}, {6, 6}, {7, 7},
{8, 8}, {9, 9}, {14, 14}, {15, 15} };
static int8_t vsc3316_fsm2_tx[8][2] = { {2, 2}, {3, 3}, {4, 4}, {5, 5},
{10, 10}, {11, 11}, {12, 12}, {13, 13} };
static int8_t vsc3316_fsm1_rx[8][2] = { {2, 12}, {3, 13}, {4, 5}, {5, 4},
{10, 11}, {11, 10}, {12, 2}, {13, 3} };
static int8_t vsc3316_fsm2_rx[8][2] = { {0, 15}, {1, 14}, {6, 7}, {7, 6},
{8, 9}, {9, 8}, {14, 1}, {15, 0} };
int checkboard(void)
{
char buf[64];
u8 sw;
struct cpu_type *cpu = gd->arch.cpu;
unsigned int i;
printf("Board: %sQDS, ", cpu->name);
printf("Sys ID: 0x%02x, Sys Ver: 0x%02x, ",
QIXIS_READ(id), QIXIS_READ(arch));
sw = QIXIS_READ(brdcfg[0]);
sw = (sw & QIXIS_LBMAP_MASK) >> QIXIS_LBMAP_SHIFT;
if (sw < 0x8)
printf("vBank: %d\n", sw);
else if (sw == 0x8)
puts("Promjet\n");
else if (sw == 0x9)
puts("NAND\n");
else
printf("invalid setting of SW%u\n", QIXIS_LBMAP_SWITCH);
printf("FPGA: v%d (%s), build %d",
(int)QIXIS_READ(scver), qixis_read_tag(buf),
(int)qixis_read_minor());
/* the timestamp string contains "\n" at the end */
printf(" on %s", qixis_read_time(buf));
/*
* Display the actual SERDES reference clocks as configured by the
* dip switches on the board. Note that the SWx registers could
* technically be set to force the reference clocks to match the
* values that the SERDES expects (or vice versa). For now, however,
* we just display both values and hope the user notices when they
* don't match.
*/
puts("SERDES Reference Clocks: ");
sw = QIXIS_READ(brdcfg[2]);
for (i = 0; i < MAX_SERDES; i++) {
static const char * const freq[] = {
"100", "125", "156.25", "161.1328125"};
unsigned int clock = (sw >> (6 - 2 * i)) & 3;
printf("SERDES%u=%sMHz ", i+1, freq[clock]);
}
puts("\n");
return 0;
}
int select_i2c_ch_pca9547(u8 ch, int bus_num)
{
int ret;
#ifdef CONFIG_DM_I2C
struct udevice *dev;
ret = i2c_get_chip_for_busnum(bus_num, I2C_MUX_PCA_ADDR_PRI,
1, &dev);
if (ret) {
printf("%s: Cannot find udev for a bus %d\n", __func__,
bus_num);
return ret;
}
ret = dm_i2c_write(dev, 0, &ch, 1);
#else
ret = i2c_write(I2C_MUX_PCA_ADDR_PRI, 0, 1, &ch, 1);
#endif
if (ret) {
puts("PCA: failed to select proper channel\n");
return ret;
}
return 0;
}
/*
* read_voltage from sensor on I2C bus
* We use average of 4 readings, waiting for 532us befor another reading
*/
#define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */
#define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */
static inline int read_voltage(void)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
#ifdef CONFIG_DM_I2C
struct udevice *dev;
int bus_num = 0;
#endif
for (i = 0; i < NUM_READINGS; i++) {
#ifdef CONFIG_DM_I2C
ret = i2c_get_chip_for_busnum(bus_num, I2C_VOL_MONITOR_ADDR,
1, &dev);
if (ret) {
printf("%s: Cannot find udev for a bus %d\n", __func__,
bus_num);
return ret;
}
ret = dm_i2c_read(dev,
I2C_VOL_MONITOR_BUS_V_OFFSET,
(void *)&vol_mon, 2);
#else
ret = i2c_read(I2C_VOL_MONITOR_ADDR,
I2C_VOL_MONITOR_BUS_V_OFFSET, 1, (void *)&vol_mon, 2);
#endif
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%04x\n", vol_mon);
/* LSB = 4mv */
voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
udelay(WAIT_FOR_ADC);
}
/* calculate the average */
voltage_read /= NUM_READINGS;
return voltage_read;
}
/*
* We need to calculate how long before the voltage starts to drop or increase
* It returns with the loop count. Each loop takes several readings (532us)
*/
static inline int wait_for_voltage_change(int vdd_last)
{
int timeout, vdd_current;
vdd_current = read_voltage();
/* wait until voltage starts to drop */
for (timeout = 0; abs(vdd_last - vdd_current) <= 4 &&
timeout < 100; timeout++) {
vdd_current = read_voltage();
}
if (timeout >= 100) {
printf("VID: Voltage adjustment timeout\n");
return -1;
}
return timeout;
}
/*
* argument 'wait' is the time we know the voltage difference can be measured
* this function keeps reading the voltage until it is stable
*/
static inline int wait_for_voltage_stable(int wait)
{
int timeout, vdd_current, vdd_last;
vdd_last = read_voltage();
udelay(wait * NUM_READINGS * WAIT_FOR_ADC);
/* wait until voltage is stable */
vdd_current = read_voltage();
for (timeout = 0; abs(vdd_last - vdd_current) >= 4 &&
timeout < 100; timeout++) {
vdd_last = vdd_current;
udelay(wait * NUM_READINGS * WAIT_FOR_ADC);
vdd_current = read_voltage();
}
if (timeout >= 100) {
printf("VID: Voltage adjustment timeout\n");
return -1;
}
return vdd_current;
}
static inline int set_voltage(u8 vid)
{
int wait, vdd_last;
vdd_last = read_voltage();
QIXIS_WRITE(brdcfg[6], vid);
wait = wait_for_voltage_change(vdd_last);
if (wait < 0)
return -1;
debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC);
wait = wait ? wait : 1;
vdd_last = wait_for_voltage_stable(wait);
if (vdd_last < 0)
return -1;
debug("VID: Current voltage is %d mV\n", vdd_last);
return vdd_last;
}
static int adjust_vdd(ulong vdd_override)
{
int re_enable = disable_interrupts();
ccsr_gur_t __iomem *gur =
(void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 fusesr;
u8 vid, vid_current;
int vdd_target, vdd_current, vdd_last;
int ret;
unsigned long vdd_string_override;
char *vdd_string;
static const uint16_t vdd[32] = {
0, /* unused */
9875, /* 0.9875V */
9750,
9625,
9500,
9375,
9250,
9125,
9000,
8875,
8750,
8625,
8500,
8375,
8250,
8125,
10000, /* 1.0000V */
10125,
10250,
10375,
10500,
10625,
10750,
10875,
11000,
0, /* reserved */
};
struct vdd_drive {
u8 vid;
unsigned voltage;
};
ret = select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR, 0);
if (ret) {
debug("VID: I2c failed to switch channel\n");
ret = -1;
goto exit;
}
/* get the voltage ID from fuse status register */
fusesr = in_be32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_VID_MASK;
if (vid == FSL_CORENET_DCFG_FUSESR_VID_MASK) {
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
}
vdd_target = vdd[vid];
/* check override variable for overriding VDD */
vdd_string = env_get("t4240qds_vdd_mv");
if (vdd_override == 0 && vdd_string &&
!strict_strtoul(vdd_string, 10, &vdd_string_override))
vdd_override = vdd_string_override;
if (vdd_override >= 819 && vdd_override <= 1212) {
vdd_target = vdd_override * 10; /* convert to 1/10 mV */
debug("VDD override is %lu\n", vdd_override);
} else if (vdd_override != 0) {
printf("Invalid value.\n");
}
if (vdd_target == 0) {
debug("VID: VID not used\n");
ret = 0;
goto exit;
} else {
/* round up and divice by 10 to get a value in mV */
vdd_target = DIV_ROUND_UP(vdd_target, 10);
debug("VID: vid = %d mV\n", vdd_target);
}
/*
* Check current board VID setting
* Voltage regulator support output to 6.250mv step
* The highes voltage allowed for this board is (vid=0x40) 1.21250V
* the lowest is (vid=0x7f) 0.81875V
*/
vid_current = QIXIS_READ(brdcfg[6]);
vdd_current = 121250 - (vid_current - 0x40) * 625;
debug("VID: Current vid setting is (0x%x) %d mV\n",
vid_current, vdd_current/100);
/*
* Read voltage monitor to check real voltage.
* Voltage monitor LSB is 4mv.
*/
vdd_last = read_voltage();
if (vdd_last < 0) {
printf("VID: Could not read voltage sensor abort VID adjustment\n");
ret = -1;
goto exit;
}
debug("VID: Core voltage is at %d mV\n", vdd_last);
/*
* Adjust voltage to at or 8mV above target.
* Each step of adjustment is 6.25mV.
* Stepping down too fast may cause over current.
*/
while (vdd_last > 0 && vid_current < 0x80 &&
vdd_last > (vdd_target + 8)) {
vid_current++;
vdd_last = set_voltage(vid_current);
}
/*
* Check if we need to step up
* This happens when board voltage switch was set too low
*/
while (vdd_last > 0 && vid_current >= 0x40 &&
vdd_last < vdd_target + 2) {
vid_current--;
vdd_last = set_voltage(vid_current);
}
if (vdd_last > 0)
printf("VID: Core voltage %d mV\n", vdd_last);
else
ret = -1;
exit:
if (re_enable)
enable_interrupts();
return ret;
}
/* Configure Crossbar switches for Front-Side SerDes Ports */
int config_frontside_crossbar_vsc3316(void)
{
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 srds_prtcl_s1, srds_prtcl_s2;
int ret;
ret = select_i2c_ch_pca9547(I2C_MUX_CH_VSC3316_FS, 0);
if (ret)
return ret;
srds_prtcl_s1 = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS1_PRTCL;
srds_prtcl_s1 >>= FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT;
switch (srds_prtcl_s1) {
case 37:
case 38:
/* swap first lane and third lane on slot1 */
vsc3316_fsm1_tx[0][1] = 14;
vsc3316_fsm1_tx[6][1] = 0;
vsc3316_fsm1_rx[1][1] = 2;
vsc3316_fsm1_rx[6][1] = 13;
case 39:
case 40:
case 45:
case 46:
case 47:
case 48:
/* swap first lane and third lane on slot2 */
vsc3316_fsm1_tx[2][1] = 8;
vsc3316_fsm1_tx[4][1] = 6;
vsc3316_fsm1_rx[2][1] = 10;
vsc3316_fsm1_rx[5][1] = 5;
default:
ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm1_tx, 8);
if (ret)
return ret;
ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm1_rx, 8);
if (ret)
return ret;
break;
}
srds_prtcl_s2 = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS2_PRTCL;
srds_prtcl_s2 >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT;
switch (srds_prtcl_s2) {
case 37:
case 38:
/* swap first lane and third lane on slot3 */
vsc3316_fsm2_tx[2][1] = 11;
vsc3316_fsm2_tx[5][1] = 4;
vsc3316_fsm2_rx[2][1] = 9;
vsc3316_fsm2_rx[4][1] = 7;
case 39:
case 40:
case 45:
case 46:
case 47:
case 48:
case 49:
case 50:
case 51:
case 52:
case 53:
case 54:
/* swap first lane and third lane on slot4 */
vsc3316_fsm2_tx[6][1] = 3;
vsc3316_fsm2_tx[1][1] = 12;
vsc3316_fsm2_rx[0][1] = 1;
vsc3316_fsm2_rx[6][1] = 15;
default:
ret = vsc3316_config(VSC3316_FSM_TX_ADDR, vsc3316_fsm2_tx, 8);
if (ret)
return ret;
ret = vsc3316_config(VSC3316_FSM_RX_ADDR, vsc3316_fsm2_rx, 8);
if (ret)
return ret;
break;
}
return 0;
}
int config_backside_crossbar_mux(void)
{
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 srds_prtcl_s3, srds_prtcl_s4;
u8 brdcfg;
srds_prtcl_s3 = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS3_PRTCL;
srds_prtcl_s3 >>= FSL_CORENET2_RCWSR4_SRDS3_PRTCL_SHIFT;
switch (srds_prtcl_s3) {
case 0:
/* SerDes3 is not enabled */
break;
case 1:
case 2:
case 9:
case 10:
/* SD3(0:7) => SLOT5(0:7) */
brdcfg = QIXIS_READ(brdcfg[12]);
brdcfg &= ~BRDCFG12_SD3MX_MASK;
brdcfg |= BRDCFG12_SD3MX_SLOT5;
QIXIS_WRITE(brdcfg[12], brdcfg);
break;
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 11:
case 12:
case 13:
case 14:
case 15:
case 16:
case 17:
case 18:
case 19:
case 20:
/* SD3(4:7) => SLOT6(0:3) */
brdcfg = QIXIS_READ(brdcfg[12]);
brdcfg &= ~BRDCFG12_SD3MX_MASK;
brdcfg |= BRDCFG12_SD3MX_SLOT6;
QIXIS_WRITE(brdcfg[12], brdcfg);
break;
default:
printf("WARNING: unsupported for SerDes3 Protocol %d\n",
srds_prtcl_s3);
return -1;
}
srds_prtcl_s4 = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS4_PRTCL;
srds_prtcl_s4 >>= FSL_CORENET2_RCWSR4_SRDS4_PRTCL_SHIFT;
switch (srds_prtcl_s4) {
case 0:
/* SerDes4 is not enabled */
break;
case 1:
case 2:
/* 10b, SD4(0:7) => SLOT7(0:7) */
brdcfg = QIXIS_READ(brdcfg[12]);
brdcfg &= ~BRDCFG12_SD4MX_MASK;
brdcfg |= BRDCFG12_SD4MX_SLOT7;
QIXIS_WRITE(brdcfg[12], brdcfg);
break;
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
/* x1b, SD4(4:7) => SLOT8(0:3) */
brdcfg = QIXIS_READ(brdcfg[12]);
brdcfg &= ~BRDCFG12_SD4MX_MASK;
brdcfg |= BRDCFG12_SD4MX_SLOT8;
QIXIS_WRITE(brdcfg[12], brdcfg);
break;
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
case 16:
case 18:
/* 00b, SD4(4:5) => AURORA, SD4(6:7) => SATA */
brdcfg = QIXIS_READ(brdcfg[12]);
brdcfg &= ~BRDCFG12_SD4MX_MASK;
brdcfg |= BRDCFG12_SD4MX_AURO_SATA;
QIXIS_WRITE(brdcfg[12], brdcfg);
break;
default:
printf("WARNING: unsupported for SerDes4 Protocol %d\n",
srds_prtcl_s4);
return -1;
}
return 0;
}
int board_early_init_r(void)
{
const unsigned int flashbase = CONFIG_SYS_FLASH_BASE;
int flash_esel = find_tlb_idx((void *)flashbase, 1);
/*
* Remap Boot flash + PROMJET region to caching-inhibited
* so that flash can be erased properly.
*/
/* Flush d-cache and invalidate i-cache of any FLASH data */
flush_dcache();
invalidate_icache();
if (flash_esel == -1) {
/* very unlikely unless something is messed up */
puts("Error: Could not find TLB for FLASH BASE\n");
flash_esel = 2; /* give our best effort to continue */
} else {
/* invalidate existing TLB entry for flash + promjet */
disable_tlb(flash_esel);
}
set_tlb(1, flashbase, CONFIG_SYS_FLASH_BASE_PHYS,
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, flash_esel, BOOKE_PAGESZ_256M, 1);
/* Disable remote I2C connection to qixis fpga */
QIXIS_WRITE(brdcfg[5], QIXIS_READ(brdcfg[5]) & ~BRDCFG5_IRE);
/*
* Adjust core voltage according to voltage ID
* This function changes I2C mux to channel 2.
*/
if (adjust_vdd(0))
printf("Warning: Adjusting core voltage failed.\n");
/* Configure board SERDES ports crossbar */
config_frontside_crossbar_vsc3316();
config_backside_crossbar_mux();
select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0);
return 0;
}
unsigned long get_board_sys_clk(void)
{
u8 sysclk_conf = QIXIS_READ(brdcfg[1]);
#ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT
/* use accurate clock measurement */
int freq = QIXIS_READ(clk_freq[0]) << 8 | QIXIS_READ(clk_freq[1]);
int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]);
u32 val;
val = freq * base;
if (val) {
debug("SYS Clock measurement is: %d\n", val);
return val;
} else {
printf("Warning: SYS clock measurement is invalid, using value from brdcfg1.\n");
}
#endif
switch (sysclk_conf & 0x0F) {
case QIXIS_SYSCLK_83:
return 83333333;
case QIXIS_SYSCLK_100:
return 100000000;
case QIXIS_SYSCLK_125:
return 125000000;
case QIXIS_SYSCLK_133:
return 133333333;
case QIXIS_SYSCLK_150:
return 150000000;
case QIXIS_SYSCLK_160:
return 160000000;
case QIXIS_SYSCLK_166:
return 166666666;
}
return 66666666;
}
unsigned long get_board_ddr_clk(void)
{
u8 ddrclk_conf = QIXIS_READ(brdcfg[1]);
#ifdef CONFIG_FSL_QIXIS_CLOCK_MEASUREMENT
/* use accurate clock measurement */
int freq = QIXIS_READ(clk_freq[2]) << 8 | QIXIS_READ(clk_freq[3]);
int base = QIXIS_READ(clk_base[0]) << 8 | QIXIS_READ(clk_base[1]);
u32 val;
val = freq * base;
if (val) {
debug("DDR Clock measurement is: %d\n", val);
return val;
} else {
printf("Warning: DDR clock measurement is invalid, using value from brdcfg1.\n");
}
#endif
switch ((ddrclk_conf & 0x30) >> 4) {
case QIXIS_DDRCLK_100:
return 100000000;
case QIXIS_DDRCLK_125:
return 125000000;
case QIXIS_DDRCLK_133:
return 133333333;
}
return 66666666;
}
int misc_init_r(void)
{
u8 sw;
void *srds_base = (void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR;
serdes_corenet_t *srds_regs;
u32 actual[MAX_SERDES];
u32 pllcr0, expected;
unsigned int i;
sw = QIXIS_READ(brdcfg[2]);
for (i = 0; i < MAX_SERDES; i++) {
unsigned int clock = (sw >> (6 - 2 * i)) & 3;
switch (clock) {
case 0:
actual[i] = SRDS_PLLCR0_RFCK_SEL_100;
break;
case 1:
actual[i] = SRDS_PLLCR0_RFCK_SEL_125;
break;
case 2:
actual[i] = SRDS_PLLCR0_RFCK_SEL_156_25;
break;
case 3:
actual[i] = SRDS_PLLCR0_RFCK_SEL_161_13;
break;
}
}
for (i = 0; i < MAX_SERDES; i++) {
srds_regs = srds_base + i * 0x1000;
pllcr0 = srds_regs->bank[0].pllcr0;
expected = pllcr0 & SRDS_PLLCR0_RFCK_SEL_MASK;
if (expected != actual[i]) {
printf("Warning: SERDES%u expects reference clock %sMHz, but actual is %sMHz\n",
i + 1, serdes_clock_to_string(expected),
serdes_clock_to_string(actual[i]));
}
}
return 0;
}
int ft_board_setup(void *blob, bd_t *bd)
{
phys_addr_t base;
phys_size_t size;
ft_cpu_setup(blob, bd);
base = env_get_bootm_low();
size = env_get_bootm_size();
fdt_fixup_memory(blob, (u64)base, (u64)size);
#ifdef CONFIG_PCI
pci_of_setup(blob, bd);
#endif
fdt_fixup_liodn(blob);
fsl_fdt_fixup_dr_usb(blob, bd);
#ifdef CONFIG_SYS_DPAA_FMAN
fdt_fixup_fman_ethernet(blob);
fdt_fixup_board_enet(blob);
#endif
return 0;
}
/*
* This function is called by bdinfo to print detail board information.
* As an exmaple for future board, we organize the messages into
* several sections. If applicable, the message is in the format of
* <name> = <value>
* It should aligned with normal output of bdinfo command.
*
* Voltage: Core, DDR and another configurable voltages
* Clock : Critical clocks which are not printed already
* RCW : RCW source if not printed already
* Misc : Other important information not in above catagories
*/
void board_detail(void)
{
int i;
u8 brdcfg[16], dutcfg[16], rst_ctl;
int vdd, rcwsrc;
static const char * const clk[] = {"66.67", "100", "125", "133.33"};
for (i = 0; i < 16; i++) {
brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i);
dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i);
}
/* Voltage secion */
if (!select_i2c_ch_pca9547(I2C_MUX_CH_VOL_MONITOR, 0)) {
vdd = read_voltage();
if (vdd > 0)
printf("Core voltage= %d mV\n", vdd);
select_i2c_ch_pca9547(I2C_MUX_CH_DEFAULT, 0);
}
printf("XVDD = 1.%d V\n", ((brdcfg[8] & 0xf) - 4) * 5 + 25);
/* clock section */
printf("SYSCLK = %s MHz\nDDRCLK = %s MHz\n",
clk[(brdcfg[11] >> 2) & 0x3], clk[brdcfg[11] & 3]);
/* RCW section */
rcwsrc = (dutcfg[0] << 1) + (dutcfg[1] & 1);
puts("RCW source = ");
switch (rcwsrc) {
case 0x017:
case 0x01f:
puts("8-bit NOR\n");
break;
case 0x027:
case 0x02F:
puts("16-bit NOR\n");
break;
case 0x040:
puts("SDHC/eMMC\n");
break;
case 0x044:
puts("SPI 16-bit addressing\n");
break;
case 0x045:
puts("SPI 24-bit addressing\n");
break;
case 0x048:
puts("I2C normal addressing\n");
break;
case 0x049:
puts("I2C extended addressing\n");
break;
case 0x108:
case 0x109:
case 0x10a:
case 0x10b:
puts("8-bit NAND, 2KB\n");
break;
default:
if ((rcwsrc >= 0x080) && (rcwsrc <= 0x09f))
puts("Hard-coded RCW\n");
else if ((rcwsrc >= 0x110) && (rcwsrc <= 0x11f))
puts("8-bit NAND, 4KB\n");
else
puts("unknown\n");
break;
}
/* Misc section */
rst_ctl = QIXIS_READ(rst_ctl);
puts("HRESET_REQ = ");
switch (rst_ctl & 0x30) {
case 0x00:
puts("Ignored\n");
break;
case 0x10:
puts("Assert HRESET\n");
break;
case 0x30:
puts("Reset system\n");
break;
default:
puts("N/A\n");
break;
}
}
/*
* Reverse engineering switch settings.
* Some bits cannot be figured out. They will be displayed as
* underscore in binary format. mask[] has those bits.
* Some bits are calculated differently than the actual switches
* if booting with overriding by FPGA.
*/
void qixis_dump_switch(void)
{
int i;
u8 sw[9];
/*
* Any bit with 1 means that bit cannot be reverse engineered.
* It will be displayed as _ in binary format.
*/
static const u8 mask[] = {0, 0, 0, 0, 0, 0x1, 0xcf, 0x3f, 0x1f};
char buf[10];
u8 brdcfg[16], dutcfg[16];
for (i = 0; i < 16; i++) {
brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i);
dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i);
}
sw[0] = dutcfg[0];
sw[1] = (dutcfg[1] << 0x07) |
((dutcfg[12] & 0xC0) >> 1) |
((dutcfg[11] & 0xE0) >> 3) |
((dutcfg[6] & 0x80) >> 6) |
((dutcfg[1] & 0x80) >> 7);
sw[2] = ((brdcfg[1] & 0x0f) << 4) |
((brdcfg[1] & 0x30) >> 2) |
((brdcfg[1] & 0x40) >> 5) |
((brdcfg[1] & 0x80) >> 7);
sw[3] = brdcfg[2];
sw[4] = ((dutcfg[2] & 0x01) << 7) |
((dutcfg[2] & 0x06) << 4) |
((~QIXIS_READ(present)) & 0x10) |
((brdcfg[3] & 0x80) >> 4) |
((brdcfg[3] & 0x01) << 2) |
((brdcfg[6] == 0x62) ? 3 :
((brdcfg[6] == 0x5a) ? 2 :
((brdcfg[6] == 0x5e) ? 1 : 0)));
sw[5] = ((brdcfg[0] & 0x0f) << 4) |
((QIXIS_READ(rst_ctl) & 0x30) >> 2) |
((brdcfg[0] & 0x40) >> 5);
sw[6] = (brdcfg[11] & 0x20) |
((brdcfg[5] & 0x02) << 3);
sw[7] = (((~QIXIS_READ(rst_ctl)) & 0x40) << 1) |
((brdcfg[5] & 0x10) << 2);
sw[8] = ((brdcfg[12] & 0x08) << 4) |
((brdcfg[12] & 0x03) << 5);
puts("DIP switch (reverse-engineering)\n");
for (i = 0; i < 9; i++) {
printf("SW%d = 0b%s (0x%02x)\n",
i + 1, byte_to_binary_mask(sw[i], mask[i], buf), sw[i]);
}
}
static int do_vdd_adjust(cmd_tbl_t *cmdtp,
int flag, int argc,
char * const argv[])
{
ulong override;
if (argc < 2)
return CMD_RET_USAGE;
if (!strict_strtoul(argv[1], 10, &override))
adjust_vdd(override); /* the value is checked by callee */
else
return CMD_RET_USAGE;
return 0;
}
U_BOOT_CMD(
vdd_override, 2, 0, do_vdd_adjust,
"Override VDD",
"- override with the voltage specified in mV, eg. 1050"
);