| /* |
| * Copyright 2014-2015 Freescale Semiconductor, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/errno.h> |
| #include <asm/system.h> |
| #include <asm/armv8/mmu.h> |
| #include <asm/io.h> |
| #include <asm/arch/fsl_serdes.h> |
| #include <asm/arch/soc.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/speed.h> |
| #ifdef CONFIG_MP |
| #include <asm/arch/mp.h> |
| #endif |
| #include <fm_eth.h> |
| #include <fsl_debug_server.h> |
| #include <fsl-mc/fsl_mc.h> |
| #ifdef CONFIG_FSL_ESDHC |
| #include <fsl_esdhc.h> |
| #endif |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| static struct mm_region layerscape_mem_map[] = { |
| { |
| /* List terminator */ |
| 0, |
| } |
| }; |
| struct mm_region *mem_map = layerscape_mem_map; |
| |
| void cpu_name(char *name) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| unsigned int i, svr, ver; |
| |
| svr = gur_in32(&gur->svr); |
| ver = SVR_SOC_VER(svr); |
| |
| for (i = 0; i < ARRAY_SIZE(cpu_type_list); i++) |
| if ((cpu_type_list[i].soc_ver & SVR_WO_E) == ver) { |
| strcpy(name, cpu_type_list[i].name); |
| |
| if (IS_E_PROCESSOR(svr)) |
| strcat(name, "E"); |
| break; |
| } |
| |
| if (i == ARRAY_SIZE(cpu_type_list)) |
| strcpy(name, "unknown"); |
| } |
| |
| #ifndef CONFIG_SYS_DCACHE_OFF |
| static void set_pgtable_section(u64 *page_table, u64 index, u64 section, |
| u64 memory_type, u64 attribute) |
| { |
| u64 value; |
| |
| value = section | PTE_TYPE_BLOCK | PTE_BLOCK_AF; |
| value |= PMD_ATTRINDX(memory_type); |
| value |= attribute; |
| page_table[index] = value; |
| } |
| |
| static void set_pgtable_table(u64 *page_table, u64 index, u64 *table_addr) |
| { |
| u64 value; |
| |
| value = (u64)table_addr | PTE_TYPE_TABLE; |
| page_table[index] = value; |
| } |
| |
| /* |
| * Set the block entries according to the information of the table. |
| */ |
| static int set_block_entry(const struct sys_mmu_table *list, |
| struct table_info *table) |
| { |
| u64 block_size = 0, block_shift = 0; |
| u64 block_addr, index; |
| int j; |
| |
| if (table->entry_size == BLOCK_SIZE_L1) { |
| block_size = BLOCK_SIZE_L1; |
| block_shift = SECTION_SHIFT_L1; |
| } else if (table->entry_size == BLOCK_SIZE_L2) { |
| block_size = BLOCK_SIZE_L2; |
| block_shift = SECTION_SHIFT_L2; |
| } else { |
| return -EINVAL; |
| } |
| |
| block_addr = list->phys_addr; |
| index = (list->virt_addr - table->table_base) >> block_shift; |
| |
| for (j = 0; j < (list->size >> block_shift); j++) { |
| set_pgtable_section(table->ptr, |
| index, |
| block_addr, |
| list->memory_type, |
| list->attribute); |
| block_addr += block_size; |
| index++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Find the corresponding table entry for the list. |
| */ |
| static int find_table(const struct sys_mmu_table *list, |
| struct table_info *table, u64 *level0_table) |
| { |
| u64 index = 0, level = 0; |
| u64 *level_table = level0_table; |
| u64 temp_base = 0, block_size = 0, block_shift = 0; |
| |
| while (level < 3) { |
| if (level == 0) { |
| block_size = BLOCK_SIZE_L0; |
| block_shift = SECTION_SHIFT_L0; |
| } else if (level == 1) { |
| block_size = BLOCK_SIZE_L1; |
| block_shift = SECTION_SHIFT_L1; |
| } else if (level == 2) { |
| block_size = BLOCK_SIZE_L2; |
| block_shift = SECTION_SHIFT_L2; |
| } |
| |
| index = 0; |
| while (list->virt_addr >= temp_base) { |
| index++; |
| temp_base += block_size; |
| } |
| |
| temp_base -= block_size; |
| |
| if ((level_table[index - 1] & PTE_TYPE_MASK) == |
| PTE_TYPE_TABLE) { |
| level_table = (u64 *)(level_table[index - 1] & |
| ~PTE_TYPE_MASK); |
| level++; |
| continue; |
| } else { |
| if (level == 0) |
| return -EINVAL; |
| |
| if ((list->phys_addr + list->size) > |
| (temp_base + block_size * NUM_OF_ENTRY)) |
| return -EINVAL; |
| |
| /* |
| * Check the address and size of the list member is |
| * aligned with the block size. |
| */ |
| if (((list->phys_addr & (block_size - 1)) != 0) || |
| ((list->size & (block_size - 1)) != 0)) |
| return -EINVAL; |
| |
| table->ptr = level_table; |
| table->table_base = temp_base - |
| ((index - 1) << block_shift); |
| table->entry_size = block_size; |
| |
| return 0; |
| } |
| } |
| return -EINVAL; |
| } |
| |
| /* |
| * To start MMU before DDR is available, we create MMU table in SRAM. |
| * The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three |
| * levels of translation tables here to cover 40-bit address space. |
| * We use 4KB granule size, with 40 bits physical address, T0SZ=24 |
| * Level 0 IA[39], table address @0 |
| * Level 1 IA[38:30], table address @0x1000, 0x2000 |
| * Level 2 IA[29:21], table address @0x3000, 0x4000 |
| * Address above 0x5000 is free for other purpose. |
| */ |
| static inline void early_mmu_setup(void) |
| { |
| unsigned int el, i; |
| u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE; |
| u64 *level1_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000); |
| u64 *level1_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000); |
| u64 *level2_table0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000); |
| u64 *level2_table1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x4000); |
| |
| struct table_info table = {level0_table, 0, BLOCK_SIZE_L0}; |
| |
| /* Invalidate all table entries */ |
| memset(level0_table, 0, 0x5000); |
| |
| /* Fill in the table entries */ |
| set_pgtable_table(level0_table, 0, level1_table0); |
| set_pgtable_table(level0_table, 1, level1_table1); |
| set_pgtable_table(level1_table0, 0, level2_table0); |
| |
| #ifdef CONFIG_FSL_LSCH3 |
| set_pgtable_table(level1_table0, |
| CONFIG_SYS_FLASH_BASE >> SECTION_SHIFT_L1, |
| level2_table1); |
| #elif defined(CONFIG_FSL_LSCH2) |
| set_pgtable_table(level1_table0, 1, level2_table1); |
| #endif |
| /* Find the table and fill in the block entries */ |
| for (i = 0; i < ARRAY_SIZE(early_mmu_table); i++) { |
| if (find_table(&early_mmu_table[i], |
| &table, level0_table) == 0) { |
| /* |
| * If find_table() returns error, it cannot be dealt |
| * with here. Breakpoint can be added for debugging. |
| */ |
| set_block_entry(&early_mmu_table[i], &table); |
| /* |
| * If set_block_entry() returns error, it cannot be |
| * dealt with here too. |
| */ |
| } |
| } |
| |
| el = current_el(); |
| |
| set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR, |
| MEMORY_ATTRIBUTES); |
| set_sctlr(get_sctlr() | CR_M); |
| } |
| |
| #ifdef CONFIG_SYS_MEM_RESERVE_SECURE |
| /* |
| * Called from final mmu setup. The phys_addr is new, non-existing |
| * address. A new sub table is created @level2_table_secure to cover |
| * size of CONFIG_SYS_MEM_RESERVE_SECURE memory. |
| */ |
| static inline int final_secure_ddr(u64 *level0_table, |
| u64 *level2_table_secure, |
| phys_addr_t phys_addr) |
| { |
| int ret = -EINVAL; |
| struct table_info table = {}; |
| struct sys_mmu_table ddr_entry = { |
| 0, 0, BLOCK_SIZE_L1, MT_NORMAL, |
| PTE_BLOCK_OUTER_SHARE | PTE_BLOCK_NS |
| }; |
| u64 index; |
| |
| /* Need to create a new table */ |
| ddr_entry.virt_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1); |
| ddr_entry.phys_addr = phys_addr & ~(BLOCK_SIZE_L1 - 1); |
| ret = find_table(&ddr_entry, &table, level0_table); |
| if (ret) |
| return ret; |
| index = (ddr_entry.virt_addr - table.table_base) >> SECTION_SHIFT_L1; |
| set_pgtable_table(table.ptr, index, level2_table_secure); |
| table.ptr = level2_table_secure; |
| table.table_base = ddr_entry.virt_addr; |
| table.entry_size = BLOCK_SIZE_L2; |
| ret = set_block_entry(&ddr_entry, &table); |
| if (ret) { |
| printf("MMU error: could not fill non-secure ddr block entries\n"); |
| return ret; |
| } |
| ddr_entry.virt_addr = phys_addr; |
| ddr_entry.phys_addr = phys_addr; |
| ddr_entry.size = CONFIG_SYS_MEM_RESERVE_SECURE; |
| ddr_entry.attribute = PTE_BLOCK_OUTER_SHARE; |
| ret = find_table(&ddr_entry, &table, level0_table); |
| if (ret) { |
| printf("MMU error: could not find secure ddr table\n"); |
| return ret; |
| } |
| ret = set_block_entry(&ddr_entry, &table); |
| if (ret) |
| printf("MMU error: could not set secure ddr block entry\n"); |
| |
| return ret; |
| } |
| #endif |
| |
| /* |
| * The final tables look similar to early tables, but different in detail. |
| * These tables are in DRAM. Sub tables are added to enable cache for |
| * QBMan and OCRAM. |
| * |
| * Put the MMU table in secure memory if gd->secure_ram is valid. |
| * OCRAM will be not used for this purpose so gd->secure_ram can't be 0. |
| * |
| * Level 1 table 0 contains 512 entries for each 1GB from 0 to 512GB. |
| * Level 1 table 1 contains 512 entries for each 1GB from 512GB to 1TB. |
| * Level 2 table 0 contains 512 entries for each 2MB from 0 to 1GB. |
| * |
| * For LSCH3: |
| * Level 2 table 1 contains 512 entries for each 2MB from 32GB to 33GB. |
| * For LSCH2: |
| * Level 2 table 1 contains 512 entries for each 2MB from 1GB to 2GB. |
| * Level 2 table 2 contains 512 entries for each 2MB from 20GB to 21GB. |
| */ |
| static inline void final_mmu_setup(void) |
| { |
| unsigned int el = current_el(); |
| unsigned int i; |
| u64 *level0_table = (u64 *)gd->arch.tlb_addr; |
| u64 *level1_table0; |
| u64 *level1_table1; |
| u64 *level2_table0; |
| u64 *level2_table1; |
| #ifdef CONFIG_FSL_LSCH2 |
| u64 *level2_table2; |
| #endif |
| struct table_info table = {NULL, 0, BLOCK_SIZE_L0}; |
| |
| #ifdef CONFIG_SYS_MEM_RESERVE_SECURE |
| u64 *level2_table_secure; |
| |
| if (el == 3) { |
| /* |
| * Only use gd->secure_ram if the address is recalculated |
| * Align to 4KB for MMU table |
| */ |
| if (gd->secure_ram & MEM_RESERVE_SECURE_MAINTAINED) |
| level0_table = (u64 *)(gd->secure_ram & ~0xfff); |
| else |
| printf("MMU warning: gd->secure_ram is not maintained, disabled.\n"); |
| } |
| #endif |
| level1_table0 = level0_table + 512; |
| level1_table1 = level1_table0 + 512; |
| level2_table0 = level1_table1 + 512; |
| level2_table1 = level2_table0 + 512; |
| #ifdef CONFIG_FSL_LSCH2 |
| level2_table2 = level2_table1 + 512; |
| #endif |
| table.ptr = level0_table; |
| |
| /* Invalidate all table entries */ |
| memset(level0_table, 0, PGTABLE_SIZE); |
| |
| /* Fill in the table entries */ |
| set_pgtable_table(level0_table, 0, level1_table0); |
| set_pgtable_table(level0_table, 1, level1_table1); |
| set_pgtable_table(level1_table0, 0, level2_table0); |
| #ifdef CONFIG_FSL_LSCH3 |
| set_pgtable_table(level1_table0, |
| CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1, |
| level2_table1); |
| #elif defined(CONFIG_FSL_LSCH2) |
| set_pgtable_table(level1_table0, 1, level2_table1); |
| set_pgtable_table(level1_table0, |
| CONFIG_SYS_FSL_QBMAN_BASE >> SECTION_SHIFT_L1, |
| level2_table2); |
| #endif |
| |
| /* Find the table and fill in the block entries */ |
| for (i = 0; i < ARRAY_SIZE(final_mmu_table); i++) { |
| if (find_table(&final_mmu_table[i], |
| &table, level0_table) == 0) { |
| if (set_block_entry(&final_mmu_table[i], |
| &table) != 0) { |
| printf("MMU error: could not set block entry for %p\n", |
| &final_mmu_table[i]); |
| } |
| |
| } else { |
| printf("MMU error: could not find the table for %p\n", |
| &final_mmu_table[i]); |
| } |
| } |
| /* Set the secure memory to secure in MMU */ |
| #ifdef CONFIG_SYS_MEM_RESERVE_SECURE |
| if (el == 3 && gd->secure_ram & MEM_RESERVE_SECURE_MAINTAINED) { |
| #ifdef CONFIG_FSL_LSCH3 |
| level2_table_secure = level2_table1 + 512; |
| #elif defined(CONFIG_FSL_LSCH2) |
| level2_table_secure = level2_table2 + 512; |
| #endif |
| if (!final_secure_ddr(level0_table, |
| level2_table_secure, |
| gd->secure_ram & ~0x3)) { |
| gd->secure_ram |= MEM_RESERVE_SECURE_SECURED; |
| debug("Now MMU table is in secured memory at 0x%llx\n", |
| gd->secure_ram & ~0x3); |
| } else { |
| printf("MMU warning: Failed to secure DDR\n"); |
| } |
| } |
| #endif |
| |
| /* flush new MMU table */ |
| flush_dcache_range((ulong)level0_table, |
| (ulong)level0_table + gd->arch.tlb_size); |
| |
| /* point TTBR to the new table */ |
| set_ttbr_tcr_mair(el, (u64)level0_table, LAYERSCAPE_TCR_FINAL, |
| MEMORY_ATTRIBUTES); |
| /* |
| * MMU is already enabled, just need to invalidate TLB to load the |
| * new table. The new table is compatible with the current table, if |
| * MMU somehow walks through the new table before invalidation TLB, |
| * it still works. So we don't need to turn off MMU here. |
| */ |
| } |
| |
| u64 get_page_table_size(void) |
| { |
| return 0x10000; |
| } |
| |
| int arch_cpu_init(void) |
| { |
| icache_enable(); |
| __asm_invalidate_dcache_all(); |
| __asm_invalidate_tlb_all(); |
| early_mmu_setup(); |
| set_sctlr(get_sctlr() | CR_C); |
| return 0; |
| } |
| |
| /* |
| * This function is called from lib/board.c. |
| * It recreates MMU table in main memory. MMU and d-cache are enabled earlier. |
| * There is no need to disable d-cache for this operation. |
| */ |
| void enable_caches(void) |
| { |
| final_mmu_setup(); |
| __asm_invalidate_tlb_all(); |
| } |
| #endif |
| |
| static inline u32 initiator_type(u32 cluster, int init_id) |
| { |
| struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK; |
| u32 type = 0; |
| |
| type = gur_in32(&gur->tp_ityp[idx]); |
| if (type & TP_ITYP_AV) |
| return type; |
| |
| return 0; |
| } |
| |
| u32 cpu_mask(void) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| int i = 0, count = 0; |
| u32 cluster, type, mask = 0; |
| |
| do { |
| int j; |
| |
| cluster = gur_in32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| type = initiator_type(cluster, j); |
| if (type) { |
| if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM) |
| mask |= 1 << count; |
| count++; |
| } |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) == 0x0); |
| |
| return mask; |
| } |
| |
| /* |
| * Return the number of cores on this SOC. |
| */ |
| int cpu_numcores(void) |
| { |
| return hweight32(cpu_mask()); |
| } |
| |
| int fsl_qoriq_core_to_cluster(unsigned int core) |
| { |
| struct ccsr_gur __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| int i = 0, count = 0; |
| u32 cluster; |
| |
| do { |
| int j; |
| |
| cluster = gur_in32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| if (initiator_type(cluster, j)) { |
| if (count == core) |
| return i; |
| count++; |
| } |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) == 0x0); |
| |
| return -1; /* cannot identify the cluster */ |
| } |
| |
| u32 fsl_qoriq_core_to_type(unsigned int core) |
| { |
| struct ccsr_gur __iomem *gur = |
| (void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| int i = 0, count = 0; |
| u32 cluster, type; |
| |
| do { |
| int j; |
| |
| cluster = gur_in32(&gur->tp_cluster[i].lower); |
| for (j = 0; j < TP_INIT_PER_CLUSTER; j++) { |
| type = initiator_type(cluster, j); |
| if (type) { |
| if (count == core) |
| return type; |
| count++; |
| } |
| } |
| i++; |
| } while ((cluster & TP_CLUSTER_EOC) == 0x0); |
| |
| return -1; /* cannot identify the cluster */ |
| } |
| |
| uint get_svr(void) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| |
| return gur_in32(&gur->svr); |
| } |
| |
| #ifdef CONFIG_DISPLAY_CPUINFO |
| int print_cpuinfo(void) |
| { |
| struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR); |
| struct sys_info sysinfo; |
| char buf[32]; |
| unsigned int i, core; |
| u32 type, rcw, svr = gur_in32(&gur->svr); |
| |
| puts("SoC: "); |
| |
| cpu_name(buf); |
| printf(" %s (0x%x)\n", buf, svr); |
| memset((u8 *)buf, 0x00, ARRAY_SIZE(buf)); |
| get_sys_info(&sysinfo); |
| puts("Clock Configuration:"); |
| for_each_cpu(i, core, cpu_numcores(), cpu_mask()) { |
| if (!(i % 3)) |
| puts("\n "); |
| type = TP_ITYP_VER(fsl_qoriq_core_to_type(core)); |
| printf("CPU%d(%s):%-4s MHz ", core, |
| type == TY_ITYP_VER_A7 ? "A7 " : |
| (type == TY_ITYP_VER_A53 ? "A53" : |
| (type == TY_ITYP_VER_A57 ? "A57" : " ")), |
| strmhz(buf, sysinfo.freq_processor[core])); |
| } |
| printf("\n Bus: %-4s MHz ", |
| strmhz(buf, sysinfo.freq_systembus)); |
| printf("DDR: %-4s MT/s", strmhz(buf, sysinfo.freq_ddrbus)); |
| #ifdef CONFIG_SYS_DPAA_FMAN |
| printf(" FMAN: %-4s MHz", strmhz(buf, sysinfo.freq_fman[0])); |
| #endif |
| #ifdef CONFIG_SYS_FSL_HAS_DP_DDR |
| if (soc_has_dp_ddr()) { |
| printf(" DP-DDR: %-4s MT/s", |
| strmhz(buf, sysinfo.freq_ddrbus2)); |
| } |
| #endif |
| puts("\n"); |
| |
| /* |
| * Display the RCW, so that no one gets confused as to what RCW |
| * we're actually using for this boot. |
| */ |
| puts("Reset Configuration Word (RCW):"); |
| for (i = 0; i < ARRAY_SIZE(gur->rcwsr); i++) { |
| rcw = gur_in32(&gur->rcwsr[i]); |
| if ((i % 4) == 0) |
| printf("\n %08x:", i * 4); |
| printf(" %08x", rcw); |
| } |
| puts("\n"); |
| |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_FSL_ESDHC |
| int cpu_mmc_init(bd_t *bis) |
| { |
| return fsl_esdhc_mmc_init(bis); |
| } |
| #endif |
| |
| int cpu_eth_init(bd_t *bis) |
| { |
| int error = 0; |
| |
| #ifdef CONFIG_FSL_MC_ENET |
| error = fsl_mc_ldpaa_init(bis); |
| #endif |
| #ifdef CONFIG_FMAN_ENET |
| fm_standard_init(bis); |
| #endif |
| return error; |
| } |
| |
| int arch_early_init_r(void) |
| { |
| #ifdef CONFIG_MP |
| int rv = 1; |
| #endif |
| |
| #ifdef CONFIG_SYS_FSL_ERRATUM_A009635 |
| erratum_a009635(); |
| #endif |
| |
| #ifdef CONFIG_MP |
| rv = fsl_layerscape_wake_seconday_cores(); |
| if (rv) |
| printf("Did not wake secondary cores\n"); |
| #endif |
| |
| #ifdef CONFIG_SYS_HAS_SERDES |
| fsl_serdes_init(); |
| #endif |
| #ifdef CONFIG_FMAN_ENET |
| fman_enet_init(); |
| #endif |
| return 0; |
| } |
| |
| int timer_init(void) |
| { |
| u32 __iomem *cntcr = (u32 *)CONFIG_SYS_FSL_TIMER_ADDR; |
| #ifdef CONFIG_FSL_LSCH3 |
| u32 __iomem *cltbenr = (u32 *)CONFIG_SYS_FSL_PMU_CLTBENR; |
| #endif |
| #ifdef CONFIG_LS2080A |
| u32 __iomem *pctbenr = (u32 *)FSL_PMU_PCTBENR_OFFSET; |
| #endif |
| #ifdef COUNTER_FREQUENCY_REAL |
| unsigned long cntfrq = COUNTER_FREQUENCY_REAL; |
| |
| /* Update with accurate clock frequency */ |
| asm volatile("msr cntfrq_el0, %0" : : "r" (cntfrq) : "memory"); |
| #endif |
| |
| #ifdef CONFIG_FSL_LSCH3 |
| /* Enable timebase for all clusters. |
| * It is safe to do so even some clusters are not enabled. |
| */ |
| out_le32(cltbenr, 0xf); |
| #endif |
| |
| #ifdef CONFIG_LS2080A |
| /* |
| * In certain Layerscape SoCs, the clock for each core's |
| * has an enable bit in the PMU Physical Core Time Base Enable |
| * Register (PCTBENR), which allows the watchdog to operate. |
| */ |
| setbits_le32(pctbenr, 0xff); |
| #endif |
| |
| /* Enable clock for timer |
| * This is a global setting. |
| */ |
| out_le32(cntcr, 0x1); |
| |
| return 0; |
| } |
| |
| void reset_cpu(ulong addr) |
| { |
| u32 __iomem *rstcr = (u32 *)CONFIG_SYS_FSL_RST_ADDR; |
| u32 val; |
| |
| /* Raise RESET_REQ_B */ |
| val = scfg_in32(rstcr); |
| val |= 0x02; |
| scfg_out32(rstcr, val); |
| } |
| |
| phys_size_t board_reserve_ram_top(phys_size_t ram_size) |
| { |
| phys_size_t ram_top = ram_size; |
| |
| #ifdef CONFIG_SYS_MEM_TOP_HIDE |
| #error CONFIG_SYS_MEM_TOP_HIDE not to be used together with this function |
| #endif |
| /* Carve the Debug Server private DRAM block from the end of DRAM */ |
| #ifdef CONFIG_FSL_DEBUG_SERVER |
| ram_top -= debug_server_get_dram_block_size(); |
| #endif |
| |
| /* Carve the MC private DRAM block from the end of DRAM */ |
| #ifdef CONFIG_FSL_MC_ENET |
| ram_top -= mc_get_dram_block_size(); |
| ram_top &= ~(CONFIG_SYS_MC_RSV_MEM_ALIGN - 1); |
| #endif |
| |
| return ram_top; |
| } |