blob: 907f5dadc4fb4bf000543683e48b5cff30fd8681 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2012
* Altera Corporation <www.altera.com>
*/
#include <common.h>
#include <clk.h>
#include <log.h>
#include <asm-generic/io.h>
#include <dm.h>
#include <fdtdec.h>
#include <malloc.h>
#include <reset.h>
#include <spi.h>
#include <spi-mem.h>
#include <dm/device_compat.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/sizes.h>
#include <zynqmp_firmware.h>
#include "cadence_qspi.h"
#include <dt-bindings/power/xlnx-versal-power.h>
#define NSEC_PER_SEC 1000000000L
#define CQSPI_STIG_READ 0
#define CQSPI_STIG_WRITE 1
#define CQSPI_READ 2
#define CQSPI_WRITE 3
__weak int cadence_qspi_apb_dma_read(struct cadence_spi_plat *plat,
const struct spi_mem_op *op)
{
return 0;
}
__weak int cadence_qspi_versal_flash_reset(struct udevice *dev)
{
return 0;
}
static int cadence_spi_write_speed(struct udevice *bus, uint hz)
{
struct cadence_spi_plat *plat = dev_get_plat(bus);
struct cadence_spi_priv *priv = dev_get_priv(bus);
cadence_qspi_apb_config_baudrate_div(priv->regbase,
plat->ref_clk_hz, hz);
/* Reconfigure delay timing if speed is changed. */
cadence_qspi_apb_delay(priv->regbase, plat->ref_clk_hz, hz,
plat->tshsl_ns, plat->tsd2d_ns,
plat->tchsh_ns, plat->tslch_ns);
return 0;
}
static int cadence_spi_read_id(struct cadence_spi_plat *plat, u8 len,
u8 *idcode)
{
struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x9F, 1),
SPI_MEM_OP_NO_ADDR,
SPI_MEM_OP_NO_DUMMY,
SPI_MEM_OP_DATA_IN(len, idcode, 1));
return cadence_qspi_apb_command_read(plat, &op);
}
/* Calibration sequence to determine the read data capture delay register */
static int spi_calibration(struct udevice *bus, uint hz)
{
struct cadence_spi_priv *priv = dev_get_priv(bus);
struct cadence_spi_plat *plat = dev_get_plat(bus);
void *base = priv->regbase;
unsigned int idcode = 0, temp = 0;
int err = 0, i, range_lo = -1, range_hi = -1;
/* start with slowest clock (1 MHz) */
cadence_spi_write_speed(bus, 1000000);
/* configure the read data capture delay register to 0 */
cadence_qspi_apb_readdata_capture(base, 1, 0);
/* Enable QSPI */
cadence_qspi_apb_controller_enable(base);
/* read the ID which will be our golden value */
err = cadence_spi_read_id(plat, 3, (u8 *)&idcode);
if (err) {
puts("SF: Calibration failed (read)\n");
return err;
}
/* use back the intended clock and find low range */
cadence_spi_write_speed(bus, hz);
for (i = 0; i < CQSPI_READ_CAPTURE_MAX_DELAY; i++) {
/* Disable QSPI */
cadence_qspi_apb_controller_disable(base);
/* reconfigure the read data capture delay register */
cadence_qspi_apb_readdata_capture(base, 1, i);
/* Enable back QSPI */
cadence_qspi_apb_controller_enable(base);
/* issue a RDID to get the ID value */
err = cadence_spi_read_id(plat, 3, (u8 *)&temp);
if (err) {
puts("SF: Calibration failed (read)\n");
return err;
}
/* search for range lo */
if (range_lo == -1 && temp == idcode) {
range_lo = i;
continue;
}
/* search for range hi */
if (range_lo != -1 && temp != idcode) {
range_hi = i - 1;
break;
}
range_hi = i;
}
if (range_lo == -1) {
puts("SF: Calibration failed (low range)\n");
return err;
}
/* Disable QSPI for subsequent initialization */
cadence_qspi_apb_controller_disable(base);
/* configure the final value for read data capture delay register */
cadence_qspi_apb_readdata_capture(base, 1, (range_hi + range_lo) / 2);
debug("SF: Read data capture delay calibrated to %i (%i - %i)\n",
(range_hi + range_lo) / 2, range_lo, range_hi);
/* just to ensure we do once only when speed or chip select change */
priv->qspi_calibrated_hz = hz;
priv->qspi_calibrated_cs = spi_chip_select(bus);
return 0;
}
static int cadence_spi_set_speed(struct udevice *bus, uint hz)
{
struct cadence_spi_plat *plat = dev_get_plat(bus);
struct cadence_spi_priv *priv = dev_get_priv(bus);
int err;
if (!hz || hz > plat->max_hz)
hz = plat->max_hz;
/* Disable QSPI */
cadence_qspi_apb_controller_disable(priv->regbase);
/*
* If the device tree already provides a read delay value, use that
* instead of calibrating.
*/
if (plat->read_delay >= 0) {
cadence_spi_write_speed(bus, hz);
cadence_qspi_apb_readdata_capture(priv->regbase, 1,
plat->read_delay);
} else if (priv->previous_hz != hz ||
priv->qspi_calibrated_hz != hz ||
priv->qspi_calibrated_cs != spi_chip_select(bus)) {
/*
* Calibration required for different current SCLK speed,
* requested SCLK speed or chip select
*/
err = spi_calibration(bus, hz);
if (err)
return err;
/* prevent calibration run when same as previous request */
priv->previous_hz = hz;
}
/* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase);
debug("%s: speed=%d\n", __func__, hz);
return 0;
}
static int cadence_spi_probe(struct udevice *bus)
{
struct cadence_spi_plat *plat = dev_get_plat(bus);
struct cadence_spi_priv *priv = dev_get_priv(bus);
struct clk clk;
int ret;
priv->regbase = plat->regbase;
priv->ahbbase = plat->ahbbase;
if (CONFIG_IS_ENABLED(ZYNQMP_FIRMWARE))
xilinx_pm_request(PM_REQUEST_NODE, PM_DEV_OSPI,
ZYNQMP_PM_CAPABILITY_ACCESS, ZYNQMP_PM_MAX_QOS,
ZYNQMP_PM_REQUEST_ACK_NO, NULL);
if (plat->ref_clk_hz == 0) {
ret = clk_get_by_index(bus, 0, &clk);
if (ret) {
#ifdef CONFIG_HAS_CQSPI_REF_CLK
plat->ref_clk_hz = CONFIG_CQSPI_REF_CLK;
#elif defined(CONFIG_ARCH_SOCFPGA)
plat->ref_clk_hz = cm_get_qspi_controller_clk_hz();
#else
return ret;
#endif
} else {
plat->ref_clk_hz = clk_get_rate(&clk);
clk_free(&clk);
if (IS_ERR_VALUE(plat->ref_clk_hz))
return plat->ref_clk_hz;
}
}
priv->resets = devm_reset_bulk_get_optional(bus);
if (priv->resets)
reset_deassert_bulk(priv->resets);
if (!priv->qspi_is_init) {
cadence_qspi_apb_controller_init(plat);
priv->qspi_is_init = 1;
}
plat->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC, plat->ref_clk_hz);
if (CONFIG_IS_ENABLED(ARCH_VERSAL)) {
/* Versal platform uses spi calibration to set read delay */
if (plat->read_delay >= 0)
plat->read_delay = -1;
/* Reset ospi flash device */
ret = cadence_qspi_versal_flash_reset(bus);
if (ret)
return ret;
}
return 0;
}
static int cadence_spi_remove(struct udevice *dev)
{
struct cadence_spi_priv *priv = dev_get_priv(dev);
int ret = 0;
if (priv->resets)
ret = reset_release_bulk(priv->resets);
return ret;
}
static int cadence_spi_set_mode(struct udevice *bus, uint mode)
{
struct cadence_spi_plat *plat = dev_get_plat(bus);
struct cadence_spi_priv *priv = dev_get_priv(bus);
/* Disable QSPI */
cadence_qspi_apb_controller_disable(priv->regbase);
/* Set SPI mode */
cadence_qspi_apb_set_clk_mode(priv->regbase, mode);
/* Enable Direct Access Controller */
if (plat->use_dac_mode)
cadence_qspi_apb_dac_mode_enable(priv->regbase);
/* Enable QSPI */
cadence_qspi_apb_controller_enable(priv->regbase);
return 0;
}
static int cadence_spi_mem_exec_op(struct spi_slave *spi,
const struct spi_mem_op *op)
{
struct udevice *bus = spi->dev->parent;
struct cadence_spi_plat *plat = dev_get_plat(bus);
struct cadence_spi_priv *priv = dev_get_priv(bus);
void *base = priv->regbase;
int err = 0;
u32 mode;
/* Set Chip select */
cadence_qspi_apb_chipselect(base, spi_chip_select(spi->dev),
plat->is_decoded_cs);
if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
if (!op->addr.nbytes)
mode = CQSPI_STIG_READ;
else
mode = CQSPI_READ;
} else {
if (!op->addr.nbytes || !op->data.buf.out)
mode = CQSPI_STIG_WRITE;
else
mode = CQSPI_WRITE;
}
switch (mode) {
case CQSPI_STIG_READ:
err = cadence_qspi_apb_command_read_setup(plat, op);
if (!err)
err = cadence_qspi_apb_command_read(plat, op);
break;
case CQSPI_STIG_WRITE:
err = cadence_qspi_apb_command_write_setup(plat, op);
if (!err)
err = cadence_qspi_apb_command_write(plat, op);
break;
case CQSPI_READ:
err = cadence_qspi_apb_read_setup(plat, op);
if (!err) {
if (plat->is_dma)
err = cadence_qspi_apb_dma_read(plat, op);
else
err = cadence_qspi_apb_read_execute(plat, op);
}
break;
case CQSPI_WRITE:
err = cadence_qspi_apb_write_setup(plat, op);
if (!err)
err = cadence_qspi_apb_write_execute(plat, op);
break;
default:
err = -1;
break;
}
return err;
}
static bool cadence_spi_mem_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
bool all_true, all_false;
all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
op->data.dtr;
all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
!op->data.dtr;
/* Mixed DTR modes not supported. */
if (!(all_true || all_false))
return false;
if (all_true)
return spi_mem_dtr_supports_op(slave, op);
else
return spi_mem_default_supports_op(slave, op);
}
static int cadence_spi_of_to_plat(struct udevice *bus)
{
struct cadence_spi_plat *plat = dev_get_plat(bus);
ofnode subnode;
plat->regbase = (void *)devfdt_get_addr_index(bus, 0);
plat->ahbbase = (void *)devfdt_get_addr_size_index(bus, 1,
&plat->ahbsize);
plat->is_decoded_cs = dev_read_bool(bus, "cdns,is-decoded-cs");
plat->fifo_depth = dev_read_u32_default(bus, "cdns,fifo-depth", 128);
plat->fifo_width = dev_read_u32_default(bus, "cdns,fifo-width", 4);
plat->trigger_address = dev_read_u32_default(bus,
"cdns,trigger-address",
0);
/* Use DAC mode only when MMIO window is at least 8M wide */
if (plat->ahbsize >= SZ_8M)
plat->use_dac_mode = true;
plat->is_dma = dev_read_bool(bus, "cdns,is-dma");
/* All other paramters are embedded in the child node */
subnode = dev_read_first_subnode(bus);
if (!ofnode_valid(subnode)) {
printf("Error: subnode with SPI flash config missing!\n");
return -ENODEV;
}
/* Use 500 KHz as a suitable default */
plat->max_hz = ofnode_read_u32_default(subnode, "spi-max-frequency",
500000);
/* Read other parameters from DT */
plat->page_size = ofnode_read_u32_default(subnode, "page-size", 256);
plat->block_size = ofnode_read_u32_default(subnode, "block-size", 16);
plat->tshsl_ns = ofnode_read_u32_default(subnode, "cdns,tshsl-ns",
200);
plat->tsd2d_ns = ofnode_read_u32_default(subnode, "cdns,tsd2d-ns",
255);
plat->tchsh_ns = ofnode_read_u32_default(subnode, "cdns,tchsh-ns", 20);
plat->tslch_ns = ofnode_read_u32_default(subnode, "cdns,tslch-ns", 20);
/*
* Read delay should be an unsigned value but we use a signed integer
* so that negative values can indicate that the device tree did not
* specify any signed values and we need to perform the calibration
* sequence to find it out.
*/
plat->read_delay = ofnode_read_s32_default(subnode, "cdns,read-delay",
-1);
debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n",
__func__, plat->regbase, plat->ahbbase, plat->max_hz,
plat->page_size);
return 0;
}
static const struct spi_controller_mem_ops cadence_spi_mem_ops = {
.exec_op = cadence_spi_mem_exec_op,
.supports_op = cadence_spi_mem_supports_op,
};
static const struct dm_spi_ops cadence_spi_ops = {
.set_speed = cadence_spi_set_speed,
.set_mode = cadence_spi_set_mode,
.mem_ops = &cadence_spi_mem_ops,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id cadence_spi_ids[] = {
{ .compatible = "cdns,qspi-nor" },
{ .compatible = "ti,am654-ospi" },
{ }
};
U_BOOT_DRIVER(cadence_spi) = {
.name = "cadence_spi",
.id = UCLASS_SPI,
.of_match = cadence_spi_ids,
.ops = &cadence_spi_ops,
.of_to_plat = cadence_spi_of_to_plat,
.plat_auto = sizeof(struct cadence_spi_plat),
.priv_auto = sizeof(struct cadence_spi_priv),
.probe = cadence_spi_probe,
.remove = cadence_spi_remove,
.flags = DM_FLAG_OS_PREPARE,
};